13.2 Curves in Space: Integration

We define the integral of $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$.

$$
\begin{aligned}
\int \vec{r}(t) d t & =\int x(t) d t \vec{i}+\int y(t) d t \vec{j}+\int z(t) d t \vec{k} \\
\int_{a}^{b} \vec{r}(t) d t & =\int_{a}^{b} x(t) d t \vec{i}+\int_{a}^{b} y(t) d t \vec{j}+\int_{a}^{b} z(t) d t \vec{k}
\end{aligned}
$$

Example: Suppose that a particle's velocity is $\vec{v}(t)=e^{t} \vec{i}-t e^{t} \vec{j}+\sqrt{t} \vec{k}$. What is its position?

We are given $\vec{r}^{\prime}=\vec{v}$ and we want \vec{r} : the position is

$$
\vec{r}(t)=\int \vec{v}(t) d t=e^{t} \vec{i}+\left(-t e^{t}+e^{t}\right) \vec{j}+\frac{2}{3} t^{3 / 2} \vec{k}+\vec{C}
$$

Notice that the constant of integration is a vector (there are 3 constants of integration).
Recall integration by parts: $u=t, d v=e^{t} d t$ so that $d u=d t$ and $v=e^{t}$ and $\int u d v=$ $u v-\int v d u=t e^{t}-e^{t}+C_{2}$.

Example: (continued) Suppose that a particle's velocity is $\vec{v}(t)=e^{t} \vec{i}-t e^{t} \vec{j}+\sqrt{t} \vec{k}$. What is its position 2 seconds later if the particle starts at $(3,1,2)$?

Solution: We want

$$
\begin{aligned}
\vec{r}(2)-\vec{r}(0) & =\int_{0}^{2} \vec{v}(t) d t=e^{t} \vec{i}+\left(-t e^{t}+e^{t}\right) \vec{j}+\left.\frac{2}{3} t^{3 / 2} \vec{k}\right|_{0} ^{2} \\
\vec{r}(2)-(3 \vec{i}+\vec{j}+2 \vec{k}) & =e^{2} \vec{i}+\left(-2 e^{2}+e^{2}\right) \vec{j}+\frac{2}{3} 2^{3 / 2}-(\vec{i}+\vec{j})
\end{aligned}
$$

and we can solve for $\vec{r}(2)=\left(e^{2}+2\right) \vec{i}-e^{2} \vec{j}+\left(\frac{2}{3} 2^{3 / 2}+2\right) \vec{k}$.
Example: A projectile has initial position \vec{r}_{0} and initial position \vec{v}_{0}. Find the path.
Solution: We know $\vec{r}^{\prime \prime}(t)=-g \vec{k}$ where g is the gravitational constant. Integrating we find

$$
\vec{r}^{\prime}(t)=-g t \vec{k}+\vec{C}
$$

But $\vec{r}^{\prime}(0)=\vec{v}_{0}$ and so $\vec{v}_{0}=-g(0) \vec{k}+\vec{C}$ and so

$$
\vec{r}^{\prime}(t)=-g t \vec{k}+\vec{v}_{0}
$$

Integrating a second time we have

$$
\vec{r}(t)=-\frac{g}{2} t^{2} \vec{k}+\vec{v}_{0} t+\vec{C}
$$

Setting $t=0$, we have $\vec{r}_{0}=\vec{r}(0)=\overrightarrow{0}+\vec{C}$ and so

$$
\vec{r}(t)=-\frac{g}{2} t^{2} \vec{k}+\vec{v}_{0} t+\vec{r}_{0}
$$

The textbook considers the case that $\vec{v}_{0}=v_{0}(\cos \alpha \vec{i}+\sin \alpha \vec{j})$ (and there is no \vec{k}.)

