13.3 Arc Length

The distance traveled by a particle $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ in a time interval $t_{1} \leq t<t_{2}$ is approximately $\left|\vec{v}\left(t_{1}\right)\right|\left(t_{2}-t_{1}\right)$ (speed times time elapsed.) To get the distance traveled over a long time interval $a \leq t \leq b$ one adds up the approximate distances

$$
\left|\vec{v}\left(t_{1}\right)\right|\left(t_{2}-t_{1}\right)+\left|\vec{v}\left(t_{2}\right)\right|\left(t_{3}-t_{2}\right)+\left|\vec{v}\left(t_{3}\right)\right|\left(t_{4}-t_{3}\right)+\cdots+\left|\vec{v}\left(t_{n-1}\right)\right|\left(t_{n}-t_{n-1}\right)
$$

where $a=t_{1}<t_{2}<\ldots<t_{n}$. In the limit as n goes to infinity and the intervals get shorter we get the distance traveled is

$$
\int_{a}^{b}|\vec{v}(t)| d t=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

Example Find the distance traveled by the particle on the path

$$
\vec{r}(t)=e^{t} \cos t \vec{i}+e^{t} \sin t \vec{j}+e^{t} \vec{k}
$$

$0 \leq t \leq 4 \pi$
Solution: Compute the speed. First we need the velocity.
$\vec{r}^{\prime}(t)=\left(e^{t} \cos t-e^{t} \sin t\right) \vec{i}+\left(e^{t} \sin t+e^{t} \cos t\right) \vec{j}+e^{t} \vec{k}=e^{t}[(\cos t-\sin t) \vec{i}+(\sin t+\cos t) \vec{j}+\vec{k}]$
Therefore the speed is
$\left|\vec{r}^{\prime}(t)\right|=e^{t}\left[(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}+1\right]^{1 / 2}=e^{t}\left[(\cos t)^{2}+(\sin t)^{2}-2 \cos t \sin t+(\sin t)^{2}+(\cos t)^{2}+2 \cos t\right.$
The length of the curve is

$$
\int_{0}^{4 \pi}|\vec{v}(t)| d t=\int_{0}^{4 \pi} \sqrt{3} e^{t} d t=\left.\sqrt{3} e^{t}\right|_{0} ^{4 \pi}=\sqrt{3}\left(e^{4 \pi}-1\right)
$$

Arc Length Parameterization Given a curve $\vec{r}(t), a \leq t \leq b$ and t_{0} where $a \leq t_{0} \leq b$ The arclength parameter with base point $\vec{r}\left(t_{0}\right)$ is

$$
s(t)=\int_{t_{0}}^{t}|\vec{v}(\tau)| d \tau=\int_{t_{0}}^{t} \sqrt{\left(x^{\prime}(\tau)\right)^{2}+\left(y^{\prime}(\tau)\right)^{2}+\left(z^{\prime}(\tau)\right)^{2}} d \tau
$$

which is the distance traveled along the curve in the time interval $t_{0}<\tau \leq t$ Given t, s is determined but assuming $|v(\vec{\tau})| \neq 0$ for any τ then it is also true that s determines t. (The odometer reading tells us what time it is.)

Example In the previous example $s=\int_{t_{0}}^{t} \mid \vec{v}(\tau) d \tau=\sqrt{3} \int_{t_{0}}^{t} e^{\tau} d \tau=\sqrt{3}\left[e^{t}-e^{t_{0}}\right]$. Therefore

$$
t(s)=\ln \left[\frac{s}{\sqrt{3}}+e^{t_{0}}\right]
$$

This tells us the time when we have traveled s units along the curve. Note when $s=0$ $t(0)=t_{0}$. We can use this computation to "parameterize \vec{r} according to arclength"

$$
\begin{aligned}
\vec{r}_{1}(s) & =e^{t(s)} \cos t(s) \vec{i}+e^{t(s)} t(s) \sin t(s) \vec{j}+e^{t(s)} \vec{k} \\
& =\left[\frac{s}{\sqrt{3}}+e^{t_{0}}\right]\left[\cos \left(\ln \left(\frac{s}{\sqrt{3}}+e^{t_{0}}\right)\right) \vec{i}+\sin \left(\ln \left(\frac{s}{\sqrt{3}}+e^{t_{0}}\right)\right) \vec{j}+\vec{k}\right]
\end{aligned}
$$

This is the same path but it is parameterized to that the speed as on traverses the path is one

$$
\begin{aligned}
\vec{r}_{1}^{\prime}(s)= & {\left[\frac{1}{\sqrt{3}} \cos \left(\ln \left(\frac{s}{\sqrt{3}}+e^{t_{0}}\right)\right)-\sin \left(\ln \left(\frac{s}{\sqrt{3}}+e^{t_{0}}\right)\right) \frac{1}{\sqrt{3}}\right] \vec{i} } \\
& +\left[\frac{1}{\sqrt{3}} \sin \left(\ln \left(\frac{s}{\sqrt{3}}+e^{t_{0}}\right)\right)+\cos \left(\ln \left(\frac{s}{\sqrt{3}}+e^{t_{0}}\right)\right) \frac{1}{\sqrt{3}}\right] \vec{j}+\frac{1}{\sqrt{3}} \vec{k}
\end{aligned}
$$

and one can check that $\left|\vec{r}_{1}^{\prime}(s)\right|=1$.

