13.4 Curvature:

The unit tangent vector is

$$
\vec{T}(t)=\frac{1}{|\vec{v}(t)|} \vec{v}(t)
$$

which is the direction that the partivel is traveling. $\vec{T}(t)$ is the unit vector tangent to the curve and in the direction of travel. The unit normal is $\vec{N}(t)$ defined by

$$
\vec{N}(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}
$$

Since $|\vec{T}|=1$ it follows that the unit normal $N(t)$ is perpendicular to $\vec{T}(t)$ and it is not hards to see that it is in the plane determined by the velocity and acceleration. An orthogonal unit vector $\vec{B}(t)$ which is perpendicular to the tangent and normal vector is the unit binormal

$$
\vec{B}(t)=\vec{T}(t) \times \vec{N}(t)
$$

and the three orthogonal normalized (that is orthonormal) vectors $\vec{T}, \vec{N}(t)$ and $\vec{B}(t)$ form an natural system of coordinates for studying the curve.

Curvature: The curvature is a measure of how fast a curve turns. It is the reciprocal of the radius of the "osculating" circle. The curvature of the curve \vec{r} at $\vec{r}(t)$ is

$$
\kappa(t)=\frac{|\vec{v}(t) \times \vec{a}(t)|}{|\vec{v}|^{3}}
$$

Example: Consider $\vec{r}=\cos 2 \pi t \vec{i}+\sin 2 \pi t \vec{j}+t \vec{k}$. Then

$$
\begin{aligned}
\vec{v}(t) & =-2 \pi \sin 2 \pi t \vec{i}+2 \pi \cos 2 \pi t \vec{j}+\vec{j} \\
\vec{T}(t) & =\frac{\vec{v}(t)}{\sqrt{4 \pi^{2}+1}} \\
\vec{a}(t) & =-4 \pi^{2} \cos 2 \pi t \vec{i}-4 \pi^{2} \sin 2 \pi t \\
\vec{N}(t) & =-\cos 2 \pi t \vec{i}-\sin 2 \pi t \\
\vec{B}(t) & =\frac{1}{\sqrt{4 \pi^{2}+1}}\left[\begin{array}{rrr}
-2 \pi \sin 2 \pi t & 2 \pi \cos 2 \pi t & 1 \\
-\cos 2 \pi t & -\sin 2 \pi t & 0
\end{array}\right] \\
& =\frac{1}{\sqrt{4 \pi^{2}+1}}[\sin 2 \pi t \vec{i}-\cos 2 \pi t \vec{j}+2 \pi \vec{k}] \\
\kappa & =\frac{|\vec{v} \times \vec{a}|}{\mid \vec{v}(t)^{3}} \\
& =\frac{4 \pi^{2} \sqrt{4 \pi^{2}+1}}{\left(\sqrt{4 \pi^{2}+1}\right)^{3}}=\frac{4 \pi^{2}}{4 \pi^{2}+1}
\end{aligned}
$$

