13.4 Curvature:

The unit tangent vector is

$$\vec{T}(t) = \frac{1}{|\vec{v}(t)|}\vec{v}(t)$$

which is the direction that the particle is traveling. $\vec{T}(t)$ is the unit vector tangent to the curve and in the direction of travel. The unit normal is $\vec{N}(t)$ defined by

$$\vec{N}(t) = \frac{T'(t)}{|T'(t)|}$$

Since $|\vec{T}| = 1$ it follows that the unit normal N(t) is perpendicular to $\vec{T}(t)$ and it is not hards to see that it is in the plane determined by the velocity and acceleration. An orthogonal unit vector $\vec{B}(t)$ which is perpendicular to the tangent and normal vector is the unit binormal

$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$$

and the three orthogonal normalized (that is orthonormal) vectors \vec{T} , $\vec{N}(t)$ and $\vec{B}(t)$ form an natural system of coordinates for studying the curve.

Curvature: The curvature is a measure of how fast a curve turns. It is the reciprocal of the radius of the "osculating" circle. The curvature of the curve \vec{r} at $\vec{r}(t)$ is

$$\kappa(t) = \frac{|\vec{v}(t) \times \vec{a}(t)|}{|\vec{v}|^3}$$

Example: Consider $\vec{r} = \cos 2\pi t \vec{i} + \sin 2\pi t \vec{j} + t \vec{k}$. Then

$$\begin{aligned} \vec{v}(t) &= -2\pi \sin 2\pi t \vec{i} + 2\pi \cos 2\pi t \vec{j} + \vec{j} \\ \vec{T}(t) &= \frac{\vec{v}(t)}{\sqrt{4\pi^2 + 1}} \\ \vec{a}(t) &= -4\pi^2 \cos 2\pi t \vec{i} - 4\pi^2 \sin 2\pi t \\ \vec{N}(t) &= -\cos 2\pi t \vec{i} - \sin 2\pi t \\ \vec{B}(t) &= \frac{1}{\sqrt{4\pi^2 + 1}} \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2\pi \sin 2\pi t & 2\pi \cos 2\pi t & 1 \\ -\cos 2\pi t & -\sin 2\pi t & 0 \end{bmatrix} \\ &= \frac{1}{\sqrt{4\pi^2 + 1}} \begin{bmatrix} \sin 2\pi t \vec{i} - \cos 2\pi t \vec{j} + 2\pi \vec{k} \end{bmatrix} \\ \kappa &= \frac{|\vec{v} \times \vec{a}|}{|\vec{v}(t)|^3} \\ &= \frac{4\pi^2 \sqrt{4\pi^2 + 1}}{(\sqrt{4\pi^2 + 1})^3} = \frac{4\pi^2}{4\pi^2 + 1} \end{aligned}$$