14.1 Functions of several variables.

Definition: Suppose that \vec{x}_{0} is a point in \mathbb{R}^{3} (or \mathbb{R}^{n}) and $r>0$. The open ball of radius r and center \vec{x} is $B_{\vec{x}_{0}}(r)=\left\{\vec{x}:\left|\vec{x}-\vec{x}_{0}\right|<r\right\} . B_{\vec{x}_{0}}(r)$ is a disk in \mathbb{R}^{2} and a ball in \mathbb{R}^{3}.

Suppose now that R is some set and \vec{x}_{0} is in R. Then \vec{x}_{0} is an interior point of R if there exists $r>0$ so that $B_{\vec{x}_{0}}(r)$ is entirely contained in R. The set of all interior points of R is called the interior of R.

Now suppose that \vec{x}_{0} is any point and not necessarily in R. Then \vec{x}_{0} is a boundary point of R if, for every $r>0, B_{\vec{x}_{0}}(r)$ contains points both in R and not in R. The set of all boundary points of r is the boundary of R

A set R that consists entirely of interior points is said to be open. A set R that contains its boundary is said to be closed.

No point can be an interior point of R and a boundary point of R. However every point of R is either an interior point or a boundary point. If the set R is an interval (in \mathbb{R}) then the boundary is the endpoints and the interior is all the other points in R. Also $B_{\vec{x}_{0}}(r)=\left\{\vec{x}:\left|\vec{x}-\vec{x}_{0}\right|<r\right\}$ is open but $\left\{\vec{x}:\left|\vec{x}-\vec{x}_{0}\right| \leq r\right\}$ is closed. When introducing differentiability of a function of several variables at a point \vec{x}_{0} we will want of our functions to be defined in an open set containing \vec{x}_{0}.

Definition: A real valued function f defined on a domain $D \subseteq \mathbb{R}^{3}$ is rule that assigns to every $\vec{x} \in D$ one and only one real number denoted $f(\vec{x})$. (Note $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$.) The range of f is defined to be $\{w \in \mathbb{R}: w=f(\vec{x})$, for some $\vec{x} \in D\}$

Example: $f(x, y, z)=\sqrt{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}}$ is the distance of a point $(x, y, z) \in$ $D=\mathbb{R}^{3}$ to a fixed point (a, b, c).

Example: $f(x, y, z)=\ln \left(z-x^{2}+y^{2}\right)$ has domain $D=\left\{(x, y, z): z>x^{2}+y^{2}\right)$ which is the region above the circular paraboloid. This is the maximal domain on which f makes sense.

Recall that the graph of a function $f(x)$ of one variable is $\left\{(x, y) \in \mathbb{R}^{2}: y=f(x)\right\}$. In other words, it requires the $x y$ plane to graph a function of one variable. For functions of two variables $f(x, y)$ the graph $\left\{(x, y, z) \in \mathbb{R}^{3}: z=f(x, y)\right\}$ is in \mathbb{R}^{3}. For functions of $f(x, y, z)$ of three variables four dimensions is needed for the graph and so the graph can't serve as a visual aid. Level curves and surfaces can serve as visual aids.

Level curves: If $f(x, y)$ is a function and c is any constant then the equation $\{(x, y)$: $c=f(x, y)\}$ is a level curve of the f.

Example: Consider $f(x, y)=4 x^{2}+y^{2}$. Sketch several representative level curves and then graph the function.

Solution: Consider the level curve corresponding to various values of f (and so various horizontal planes intersection with the graph of f. For example when $c=f=1$ we have $1=4 x^{2}+y^{2}$ which is an ellipse with major axis 1 (on the y-axis) and minor $1 / 2$. When $c=f=4$ then the level curve is $4=4 x^{2}+y^{2}$ and the major axis is 2 and the minor is 1 and so the level curve in this case is twice as big (but the f values is 4 times as big). When $c=f=16$, the level curve is $16=4 x^{2}+y^{2}$ and so the major axis is 4 and minor is 2 . If we choose $c=f=0$ then the level curve degenerates to a point $(0,0)$ and if $c<0$ the level "curve" is the empty set (there are no points satisfying the equation and that corresponds to the fact that f never takes negative values. In the sketch below several of the level curves
are sketched in the $x y$-plane and labeled with the corresponding values of c.

Of course the graph of this function is the surface $z=4 x^{2}+y^{2}$ which is an elliptic parabola with vertex the origin and opening up along the positive z-axis. We will learn later that f increases and decreases the fastest in the directions perpendicular to the level curves.

Example: If $f(x, y, z)=9 x^{2}+y^{2}+4 z^{2}$ then we can not expect to graph f because the graph $(w=f(x, y, z))$ is four dimensional. Now we are reliant on the level "surfaces" to visualize the function. If we choose $c=f=9$ for example we see we get the level surface is an ellipsoid centered at the origin $(0,0,0)$ and touching the coordinate axes at $(\pm 1,0,0)$, $(0, \pm 3,0)$ and $(0,0, \pm 3 / 2)$. If we choose $c=f=36$ we get an ellipsoid exactly twice the size in the three directions. If we choose $c=0$ then the level "surface" degenerates to a point $(0,0,0)$ and the surfaces corresponding to $c<0$ are empty (contain no points). The level surfaces can be graphed in 3 -space $\left(\mathbb{R}^{3}\right)$.

Example: If $f(x, y, z)=x^{2}+y^{2}-z^{2}$. The level surfaces in this case are $c=f=1$ is an elliptic (circular) hyperboloid of one sheet and if $c=f=0$ is a circular cone ("inside" the previous hyperboloid) and if $c=f=-1$ is a circular hyperboloid of two sheets ("inside" the cone) The level surfaces are sketched below. Pick a point $\left(x_{0}, y_{0}, z_{0}\right)$ and use the level surfaces to see in what direction f increases (or decreases) the most rapidly. It is in the direction perpendicular to the level surfaces.

