14.2 Limits and Continuity:

We now extend the concepts of limits and continuity to the case that f is a real valued function defined on a set D in \mathbb{R}^{2} (or \mathbb{R}^{3}).

Definition: We say that the limit of $f(x, y)$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$ is L if $\mid f(x, y)-$ $L \mid$ can be made arbitrarily small by choosing $0<\left|(x, y)-\left(x_{0}, y_{0}\right)\right|$ small (but not 0). We write

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L .
$$

The subtlety here, that did not arise in functions of a single variable, is that $f(x, y)$ must get close to L no matter how (x, y) goes to $\left(x_{0}, y_{0}\right)$. For example it is quite possible that $\lim _{x \rightarrow x_{0}} f\left(x, y_{0}\right)$ exists but $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ does not.

Examples:

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(1,3)} \sin x+\frac{y}{x-2}=\sin 1-3 \\
\lim _{(x, y) \rightarrow(2,2)} \frac{x^{2}-y^{2}}{y-x}=\lim _{(x, y) \rightarrow(2,2)}-(x+y)=-4 \\
\lim _{(x, y) \rightarrow(2,0)} \frac{x \sin y}{y}
\end{gathered}
$$

Counterexample:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}} \text { does not exist }
$$

The reason is that if we approach the origin along the straight line $y=m x$ (where m is the slope) then $x y /\left(x^{2}+y^{2}\right)=m x^{2} /\left(x^{2}+m^{2} x^{2}\right)=m /\left(1+m^{2}\right)$ and so the limiting value depends on th epath of approach and that means there is no limit as $(x, y) \rightarrow(0,0)$.

Curvature: The curvature is a measure of how fast a curve turns. It is the reciprocal of the radius of the "osculating" circle. The curvature of the curve \vec{r} at $\vec{r}(t)$ is

$$
\kappa(t)=\frac{|\vec{v}(t) \times \vec{a}(t)|}{|\vec{v}|^{3}}
$$

Example: Consider $\vec{r}=\cos 2 \pi t \vec{i}+\sin 2 \pi t \vec{j}+t \vec{k}$. Then

$$
\begin{aligned}
\vec{v}(t) & =-2 \pi \sin 2 \pi t \vec{i}+2 \pi \cos 2 \pi t \vec{j}+\vec{j} \\
\vec{T}(t) & =\frac{\vec{v}(t)}{\sqrt{4 \pi^{2}+1}} \\
\vec{a}(t) & =-4 \pi^{2} \cos 2 \pi t \vec{i}-4 \pi^{2} \sin 2 \pi t \\
\vec{N}(t) & =-\cos 2 \pi t \vec{i}-\sin 2 \pi t \\
\vec{B}(t) & =\frac{1}{\sqrt{4 \pi^{2}+1}}\left[\begin{array}{rrr}
-2 \pi \sin 2 \pi t & 2 \pi \cos 2 \pi t & 1 \\
-\cos 2 \pi t & -\sin 2 \pi t & 0
\end{array}\right] \\
& =\frac{1}{\sqrt{4 \pi^{2}+1}}[\sin 2 \pi t \vec{i}-\cos 2 \pi t \vec{j}+2 \pi \vec{k}] \\
\kappa & =\frac{|\vec{v} \times \vec{a}|}{\mid \vec{v}(t))^{3}} \\
& =\frac{4 \pi^{2} \sqrt{4 \pi^{2}+1}}{\left(\sqrt{4 \pi^{2}+1}\right)^{3}}=\frac{4 \pi^{2}}{4 \pi^{2}+1}
\end{aligned}
$$

