### 14.3 Partial Derivatives:

The partial derivative of $f(x, y)$ with respect to $x$ is the derivative of the function $x \mapsto$ $f(x, y)$ where $y$ is regarded as a constant. It is denoted

$$
\frac{\partial f}{\partial x}(x, y)
$$

Example Find the partial derivatives of $f(x, y)$ with respect to $x$ and $y$ if

$$
f(x, y)=3 x+5 y+x^{2}+y^{4}+7 x^{2} y
$$

Solution

$$
\frac{\partial f}{\partial x}(x, y)=3+2 x+14 x y \quad \frac{\partial f}{\partial y}(x, y)=5+4 y^{3}+7 x^{2}
$$

Example Find the partial derivatives of $f(x, y)=y^{3} \cos (x y)$ with respect to $x$ and $y$ if Solution

$$
\frac{\partial f}{\partial x}(x, y)=-y^{3} \sin (x y) y=-y^{4} \sin (x y) \quad \frac{\partial f}{\partial y}(x, y)=3 y^{2} \cos (x y)-y^{3} \sin (x y) x=3 y^{2} \cos (x y)-x y^{3} \sin (x y)
$$

Physical interpretation: Consider the graph $z=f(x, y)$. If the domain of $f$ is $D \subseteq \mathbb{R}^{2}$ (in the $x y$-plane) then the graph is a surface in $\mathbb{R}^{3}$ above $D$. Then

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)
$$

is the slope of the curve formed by the intersection of the surface $z=f(x, y)$ with the plane $y=y_{0}$, that is $z(x)=f\left(x, y_{0}\right)$ at the point $x=x_{0}$. See the picture:
and a similar interpretation applies to $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$.
Higher Order Partials For $f(x, y, z)=e^{2 x-y}+x^{3} y^{2}+\ln x y z$ find all the second partial derivatives.

Solution First we need the first partials. We should use the identity $\ln x y z=\ln x+$
$\ln y+\ln z$. We introduce an alternate notation .

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=f_{x}=2 e^{2 x-y}+3 x^{2} y^{2}+\frac{1}{x} \\
& \frac{\partial f}{\partial y}=f_{y}=-e^{2 x-y}+2 x^{3} y+\frac{1}{y} \\
& \frac{\partial f}{\partial z}=f_{z}=\frac{1}{z}
\end{aligned}
$$

Now the second partials.

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =f_{x x}=4 e^{2 x-y}+6 x y^{2}-\frac{1}{x^{2}} \\
\frac{\partial^{2} f}{\partial y \partial x} & =f_{x y}=-2 e^{2 x-y}+6 x^{2} y \\
\frac{\partial^{2} f}{\partial z \partial x} & =f_{x z}=0 \\
\frac{\partial^{2} f}{\partial y^{2}} & =f_{y y}=e^{2 x-y}+2 x^{3}-\frac{1}{y^{2}} \\
\frac{\partial^{2} f}{\partial x \partial y} & =f_{y x}=-2 e^{2 x-y}+6 x^{2} y \\
\frac{\partial^{2} f}{\partial z \partial y} & =f_{y z}=0 \\
\frac{\partial^{2} f}{\partial z^{2}} & =f_{z z}==-\frac{1}{z^{2}} \\
\frac{\partial^{2} f}{\partial x \partial z} & =f_{z x}=0 \\
\frac{\partial^{2} f}{\partial y \partial z} & =f_{z y}=0
\end{aligned}
$$

Of course one can compute higher order derivatives. Note in the Example that $f_{x y}=f_{y x}$, $f_{x z}=f_{z x}$ and $f_{y z}=f_{z y}$.

Theorem (Clairaut 1713-1765) If $f, f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ all exist and are continuous near $(a, b)$ then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

The order of differentiation does not matter! In the previous example, we need only have computed 6 and then we know all 9 second partials. For functions of two variables we need compute only 3 second partials to know all 4.

Definition A function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if there exist constants $A$ and $B$ so that

$$
f(x, y)=f\left(x_{0}, y_{0}\right)+A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+\left(x-x_{0}\right) \epsilon_{1}+\left(y-y_{0}\right) \epsilon_{2}
$$

and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \epsilon_{1}=0=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \epsilon_{2}
$$

Physically the definition says that the graph $z=f(x, y)$ has a tangent plane $(z=$ $\left.A\left(x-x_{0}\right)+B\left(y-y_{0}\right)\right)$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$

Theorem If $f$ is differentiable at $\left(x_{0}, y_{0}\right)$ then the partial derivatives exist at $\left(x_{0}, y_{0}\right)$ and $A=f_{x}\left(x_{0}, y_{0}\right)$ and $B=f_{y}\left(x_{0}, y_{0}\right)$

$$
f(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\left(x-x_{0}\right) \epsilon_{1}+\left(y-y_{0}\right) \epsilon_{2}
$$

so that the tangent plane to the graph of $f$ is $z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+$ $f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.

If $f_{x}$ and $f_{y}$ exist and are continuous on an open set then $f$ is differentialble on that open set but it is not enough to have $f_{x}$ and $f_{y}$ exist at a point. Example: See the transparency.

Example Find an equation for the tangent plane to the surface $z=x^{+} y^{3}$ at $(1,1)$.
Solution $z_{x}=2 x=2$ at $(1,1)$ and $z_{y}=3 y^{2}=3$ at $(1,1)$ and so the tangent plane is $z=2+2(x-1)+3(y-1)$.

Theorem If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ then it is continuous there.
Proof As in the single variable case.

