14.4 The Chain Rule: Consider a composite function $f \circ \vec{r}(t)$ where $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}$ and f is a differentiable function of two variables $f(x, y)$. Then

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(x\left(t_{0}+h\right), y\left(t_{0}+h\right)\right)-f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)\right] \\
= & \lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}\left(x\left(t_{0}\right), y_{0}\left(t_{0}\right)\right)\left(x\left(t_{0}+h\right)-x\left(t_{0}\right)\right)+f_{y}\left(x\left(t_{0}\right), y_{0}\left(t_{0}\right)\right)\left(y\left(t_{0}+h\right)-y_{0}\left(t_{0}\right)\right)\right. \\
+ & \left.\left(x\left(t_{0}+h\right)-x\left(t_{0}\right)\right) \epsilon_{1}+\left(y\left(t_{0}+h\right)-y\left(t_{0}\right)\right) \epsilon_{2}\right] \\
= & f_{x}\left(x\left(t_{0}\right), y_{0}\left(t_{0}\right)\right) \lim _{h \rightarrow 0} \frac{1}{h}\left(x\left(t_{0}+h\right)-x\left(t_{0}\right)\right)+f_{y}\left(x\left(t_{0}\right), y_{0}\left(t_{0}\right)\right) \lim _{h \rightarrow 0} \frac{1}{h}\left(y\left(t_{0}+h\right)-y\left(t_{0}\right)\right) \\
+ & \lim _{h \rightarrow 0} \frac{1}{h}\left(x\left(t_{0}+h\right)-x\left(t_{0}\right)\right) \epsilon_{1}+\lim _{h \rightarrow 0} \frac{1}{h}\left(y\left(t_{0}+h\right)-y\left(t_{0}\right)\right) \epsilon_{2} \\
= & f_{x}\left(x\left(t_{0}\right), y_{0}\left(t_{0}\right)\right) x^{\prime}\left(t_{0}\right)+f_{y}\left(x\left(t_{0}\right), y_{0}\left(t_{0}\right)\right) y^{\prime}\left(t_{0}\right)+0
\end{aligned}
$$

because ϵ_{1} and ϵ_{2} go to 0 as $x\left(t_{0}+h\right)$ goes to $x\left(t_{0}\right)$ and $y\left(t_{0}+h\right)$ goes to $y\left(t_{0}\right)$
Chain Rule for $f(x(t), y(t))$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Example Use the chain rule to find $d w / d t$ if $w=x^{2} y$ along the hyerbola $x=\sec t$ and $y=$ tant

Solution

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t} \\
& =2 x y \sec t \tan t+x^{2}(\sec t)^{2}=2 \sec t \tan t \sec t+(\sec t)^{2}(\sec t)^{2}=(\sec t)^{2}\left[2 \tan t+(\sec t)^{2}\right]
\end{aligned}
$$

There are other versions of the chain rule.
Chain Rule for $f(x(t), y(t), z(t))$

$$
\frac{d}{d t} f(x(t), y(t), z(t))=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

Chain Rule for $f(x(r, s), y(r, s), z(r, s))$

$$
\begin{aligned}
\frac{\partial}{\partial r} f(x(r, s), y(r, s), z(r, s)) & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial r} \\
\frac{\partial}{\partial r} f(x(r, s), y(r, s), z(r, s)) & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial r}
\end{aligned}
$$

This rule follows from the previous because the partial derivative is computed by regarding the other variable (s or r) as a constant.

Example Express $\partial f / \partial r$ and $\partial f / \partial \theta$ in terms of f_{x} and f_{y} for $f(x, y)$ where $x=r \cos \theta$ and $y=r \sin \theta$. Apply your formula to $f=x^{2} y-x y^{2}$

Solution

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\
& =\frac{\partial f}{\partial x} \cos \theta+\frac{\partial f}{\partial y} \sin \theta \\
\frac{\partial f}{\partial \theta} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
& =\frac{\partial f}{\partial x}(-r \sin \theta)+\frac{\partial f}{\partial y}(r \cos \theta)
\end{aligned}
$$

and in the case $f=x^{2} y-x y^{2}, f_{x}=2 x y-y^{2}=2 r^{2} \cos \theta \sin \theta-r^{2}(\sin \theta)^{2}$ and $f_{y}=x^{2}-2 x y=$ $r^{2}(\cos \theta)^{2}-2 r^{2}(\sin \theta)(\cos \theta)$

Branch Diagrams Suppose $f(x, y, z)$ is a function depending on three variables x, y and z. These variables, themselves depend on two variables r and s. Then to determine the chain rule to find f_{r} and f_{s} we can draw the following branch diagram. so that

$$
f_{r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial r}
$$

and similarly

$$
f_{s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}
$$

Implicit Differentiation Revisited Recall, from Calculus I, that an equation $F(x, y)=0$ defines y as a function of x which may be difficult to solve for explicitly. (Here F is a differentiable function of two variables.) If we differentiate in x we get

$$
F_{x} \frac{d x}{d x}+F_{y} \frac{d y}{d x}=0
$$

so that

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

