14.5 Directional Derivatives and the Gradient:

Definition The gradient of $f(x, y, z)$ is

$$
\nabla f=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}+\frac{\partial f}{\partial z} \vec{k}
$$

Example Find the gradient of $f(x, y)=y \cos x y+x^{2} y^{3}$.
Solution

$$
\nabla f=\left(-y^{2} \sin x y+2 x y^{3}\right) \vec{i}+\left(\cos x y-x y \sin x y+3 x^{2} y^{2}\right) \vec{j}
$$

Example Find the gradient of $f(x, y, z)=y^{2} e^{x z}+x^{2} z \ln y$
Solution

$$
\nabla f=\left(y^{2} z e^{x z}+2 x z \ln y\right) \vec{i}+\left(2 y e^{x z}+\frac{x^{2} z}{y}\right) \vec{j}+\left(x y^{2} e^{x z}+x^{2} \ln y\right) \vec{k}
$$

Directional Derivative Suppose that $\vec{u}=u_{1} \vec{i}+u_{2} \vec{j}$ is a unit vector $|\vec{u}|=1$. The directional derivative of $f(x, y)$ in the direction u is

$$
D_{\vec{u}} f=\frac{\partial f}{\partial x} u_{1}+\frac{\partial f}{\partial y} u_{2}=\nabla f \cdot \vec{u}
$$

By the chain rule the function $h(t)=f\left(\left(x+t u_{1}, y+t u_{2}\right)\right)$ has derivative $h^{\prime}(0)=D_{\vec{u}} f$ when $t=0$. Picture:

Example Suppose a mountaineer is on the surface $z=3 x^{2}-y^{2}$ at $(1,2,-1)$ and she wishes to head northeast. What slope does she encounter?

Solution The slope is the directional derivative in the northeast direction that is in the direction of the vector $\vec{i}+\vec{j}$ that is the direction $\vec{u}=(1 / \sqrt{2})[\vec{i}+\vec{j}]$ The slope is
$D_{\vec{u}} z=\nabla f \cdot \vec{u}=\left[\frac{\partial z}{\partial x} \vec{i}+\frac{\partial z}{\partial y} \vec{j}\right] \cdot\left[\frac{1}{\sqrt{2}} \vec{i}+\frac{1}{\sqrt{2}} \vec{j}\right]=[6 \vec{i}-4 \vec{j}] \cdot\left[\frac{1}{\sqrt{2}} \vec{i}+\frac{1}{\sqrt{2}} \vec{j}\right]=\frac{6}{\sqrt{2}}-\frac{4}{\sqrt{2}}=\sqrt{2}$
She encounters a slope of $\sqrt{2}$ (about 0.955 radians or 55 degrees above horizontal.)
Example In the previous Example it is reasonable to ask what is the greatest slope our intrepid mountaineer would encounter at $(1,2,-1)$? What is the maximum of

$$
D_{\vec{u}} z=\nabla f \cdot \vec{u}=|\nabla f||\vec{u}| \cos \theta=|\nabla f| \cos \theta
$$

over all choices of the unit vector \vec{u}. We want $\theta=0$ to maximize $\cos \theta$ and so \vec{u} has to point in the same direction as ∇f :

$$
\vec{u}=\frac{\nabla f}{|\nabla f|}=\frac{6 \vec{i}-4 \vec{j}}{\sqrt{52}}
$$

Therefore the gradient points in the direction of most rapid increase of f and that rate of increase is

$$
D_{\vec{u}} f=|\nabla f| \mid=\sqrt{52}
$$

Similarly

$$
-\frac{\nabla f}{|\nabla f|}=-\frac{6 \vec{i}-4 \vec{j}}{\sqrt{52}}
$$

is the direction of most rapid decreased of $f(\theta=\pi)$ and the rate of decrease is $-|\nabla f| \mid=$ $-\sqrt{52}$

Physical Interpretation I of ∇f. The direction $\frac{\nabla f}{|\nabla f|}$ is the direction of most rapid increase of f and that rate of increase is $|\nabla f|$.

The opposite direction $\left(-\frac{\nabla f}{|\nabla f|}\right)$ is the direction of most rapid decrease of f and that rate of decrease is $-|\nabla f|$.

Application: Water flow on the surface $z=f(x, y)$. Water flows in the direction $-\nabla f$.
Level Curves and the Gradient. Consider the level curve $f(x, y)=c$ of f. It is possible under most circumstances (assuming f is differentiable) to parameterize the curve $\vec{r}=x(t) \vec{i}+y(t) \vec{j}$. (This is a version of the Implicit Function Theorem of Advanced Calculus.) Therefore $f(x(t), y(t))=f \circ \vec{r}(t)=c$ is constant. Differentiate both sides.

$$
\nabla f \cdot \vec{r}^{\prime}=\frac{\partial f}{\partial x} x^{\prime}+\frac{\partial f}{\partial y} y^{\prime}=0
$$

by the chain rule. This shows that ∇f is orthogonal to $\vec{r}^{\prime}=x^{\prime} \vec{i}+y^{\prime} \vec{j}$, that is orthogonal to the tangent to the curve. We say ∇f is orthogonal to the level curve.

Physical Interpretation II of ∇f. The direction $\frac{\nabla f}{|\nabla f|}$ at any point is perpendicular to the level curve (for $f(x, y)$) or level surface (for $f(x, y, z)$) through that point.

Example Consider $f(x, y, z)=4 x^{2}+y^{2}+9 z^{2}$ at the point $(1,2,-1)$. The level surface of f that passes through $(1,2,-1)$ is $f=17$

$$
4 x^{2}+y^{2}+9 z^{2}=17
$$

We have $\nabla f=4 x \vec{i}+2 y \vec{j}+18 z \vec{k}$ and at $(1,2,-1), \nabla f=4 \vec{i}+4 \vec{j}-18 \vec{k}$ and this vector is perpendicular to the level surface at $(1,2,-1)$ and points in the direction of most rapid increase of f. The directional derivative of f in the direction $(1 / \sqrt{340})(4 \vec{i}+4 \vec{j}-18 \vec{k})=$ $(1 / \sqrt{85})(2 \vec{i}+2 \vec{j}-9 \vec{k}$ is $\sqrt{340}=2 \sqrt{85}$

