14.6 Tangent Planes and Differentials:

Example Find the tangent plane to the surface $x^{3}+x y^{2}+2 y^{3}+z^{2}=4$ at $(-1,1,-2)$. Find also the normal line to the surface at $(-1,1,-2)$.

Solution This surface is the level surface of the function $f(x, y, z)=x^{3}+x y^{2}+2 y^{3}+z^{2}$. Therefore we have a normal to the surface:

$$
\nabla f=\left(3 x^{2}+y^{2}\right) \vec{i}+\left(2 x y+6 y^{2}\right) \vec{j}+2 z \vec{k} \text { so that } \nabla f(-1,1,2)=4 \vec{i}+4 \vec{j}-4 \vec{k}
$$

Therefore an equation for the tangent plane is

$$
4(x+1)+4(y-1)-4(z+2)=0 \text { or } x+y-z=2
$$

The normal line is

$$
\vec{r}=(-1+4 t) \vec{i}+(1+4 t) \vec{j}+(-2-4 t) \vec{k}
$$

(that is $x=-1+4 t, y=1+4 t$ and $z=-2-4 t$.)
Example Find the gradient of $f(x, y, z)=y^{2} e^{x z}+x^{2} z \ln y$
The surface $f(x, y, z)=c\left(c\right.$ is a constant) has tangent plane at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ (on the surface, so that $f\left(x_{0}, y_{0}, z_{0}\right)=c$)

$$
f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-y_{0}\right)+f_{z}\left(P_{0}\right)\left(z-z_{0}\right)=0
$$

The normal line is

$$
x=x_{0}+f_{x}\left(P_{0}\right) t, \quad y=y_{0}+f_{y}\left(P_{0}\right) t, \quad z=z_{0}+f_{z}\left(P_{0}\right) t
$$

Example Find the tangent plane and the normal line to the graph $z=\tan x y+x^{2} \ln y$ at ($\pi / 4,1$).

We see that the graph of $F(x, y)=\tan x y+x \ln y$ is the level surface of $f(x, y, z)=$ $\tan x y+x \ln y-z$ at $(\pi / 4,1,1)$ and so we can apply the formula above. We have $f_{x}=F_{x}=$ $(\sec x y)^{2} y+\ln y, f_{y}=F_{y}=(\sec x y)^{2} x+x / y$ and $f_{z}=-1$. At $(\pi / 4,1,1), f_{x}=2, f_{y}=3 \pi / 4$ so that the tangent plane is

$$
2\left(x-\frac{\pi}{4}\right)+\frac{3 \pi}{4}(y-1)-(z-1)=0 \text { or } z=1+2\left(x-\frac{\pi}{4}\right)+\frac{3 \pi}{4}(y-1)
$$

The normal line is $x=\pi / 4+2 t, y=1+(3 \pi / 4) t$ and $z=1-t$.
The surface $z=F(x, y)$ has the tangent plane at $P_{0}=\left(x_{0}, y_{0}, F\left(x_{0}, y_{0}\right)\right)$

$$
z=F\left(x_{0}, y_{0}\right)+F_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

The normal line is

$$
x=x_{0}+F_{x}\left(x_{0}, y_{0}\right) t, \quad y=y_{0}+F_{y}\left(x_{0}, y_{0}\right) t, \quad z=F\left(x_{0}, y_{0}\right)-t
$$

Example Find parametric equations for the tangent line to the curve of intersection of the two surfaces

$$
\begin{aligned}
4 x^{2}-y^{2}+9 z^{2} & =36 \\
-2 x+5 y+z & =8
\end{aligned}
$$

at $(3,3,-1)$.
Solution: The tangent line is tangent to both surfaces and so it is perpendicular to both normals. The normal to the hyperboloid of one sheet is $\nabla f=(8 x) \vec{i}-2 y \vec{j}+18 z \vec{k}$ and so at $(3,3,-1)$ it is $\nabla f=(24) \vec{i}-6 \vec{j}-18 \vec{k}=6(4 \vec{i}-\vec{j}-3 \vec{k})$. The normal to the plane is, of course $\vec{N}=-2 \vec{i}+5 \vec{j}+\vec{k}$. These vectors are perpendicular to the curve of intersection and so their cross product is parallel to the curve.

$$
\begin{aligned}
\nabla f \times \vec{N} & =6\left[\begin{array}{rrr}
\vec{i} & \vec{j} & \vec{k} \\
4 & -1 & -3 \\
-2 & 5 & 1
\end{array}\right] \\
& =6(14 \vec{i}+2 \vec{j}+18 \vec{k})=12(7 \vec{i}+\vec{j}+9 \vec{k})
\end{aligned}
$$

Consequently the tangent line to the curve of intersection is

$$
\vec{r}(t)=(3+7 t) \vec{i}+(3+t) \vec{j}+(-1+9 t) \vec{k}
$$

or in the book's notation: $x=3+7 t, y=\ldots$
Definition The linearization of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$, assuming f is differentiable at $\left(x_{0}, y_{0}\right)$, is

$$
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Error If f has continuous first and second partials and if $\left|f_{x x}\right| \leq M,\left|f_{x y}\right| \leq M$ and $\left|f_{y y}\right| \leq M$ for some constant $M>0$ on some rectangle around $\left(x_{0}, y_{0}\right)$ then

$$
|f(x, y)-L(x, y)| \leq M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}
$$

Example If $f(x, y)=\sqrt{x^{2}+y}+2 y$ then the linearization at $(1,3)$ is: $f_{x}=x\left(x^{2}+y\right)^{-1 / 2}$, $f_{y}=(1 / 2)\left(x^{2}+y\right)^{-1 / 2}+2$,

$$
L(x, y)=8+(1 / 2)(x-1)+(17 / 8)(y-3)
$$

Definition The total differential of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$, assuming f is differentiable at $\left(x_{0}, y_{0}\right)$, is

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

There is a comparable formula in the case of functions of 3 variables

$$
d f=f_{x}\left(x_{0}, y_{0}, z_{0}\right) d x+f_{y}\left(x_{0}, y_{0}, z_{0}\right) d y+f_{z}\left(x_{0}, y_{0}, z_{0}\right) d z
$$

Example The diagonal of an x by y rectangle is $\sqrt{x^{2}+y^{2}}$. If the construction is such that the $x=4 \pm 0.02$ and $y=3 \pm 0.01$ then the diagonal is is $\sqrt{3^{2}+4^{2}} \pm d f \approx 5 \pm d f$ where

$$
\begin{aligned}
d f & =f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y \\
& =x_{0}\left(x_{0}^{2}+y_{0}^{2}\right)^{-1 / 2}(\pm 0.02)+y_{0}\left(x_{0}^{2}+y_{0}^{2}\right)^{-1 / 2}(\pm 0.01) \sim \pm\left(\frac{4}{5}(0.02)+\frac{3}{5}(0.01)\right)= \pm 0.022
\end{aligned}
$$

