14.7 Extreme Values and Saddle Points: As in Calculus I, we are interested in local
maxima and minima. A function f(z,y) has a local maximum (resp. local minimum)
at (a,b) if f(z,y) < f(a,b) (resp. f(z,y) > f(a,b) for all (z,y) in a disk centered at (a,b).

A disk is the interior of a circle. The disk could be small or large.

Definition A function f(x,y) has a critical point at (a,b) if f is not differentiable at
(a,b) or Vf(a,b) = 0.

Theorem If f is defined on some set D and if f has a local max or min at (a,b) in D
then either (a,b) is a critical point or (a,b) is a boundary point.

Recall that (a,b) is a boundary point of a set D if every open disk centered at (a,b)
contains points inside D and outside D.

Example f(z,y) = y/22 4+ y? where D is a disk of radius a > 0 centered at the origin
in the xy-plane. Then f has exactly one critical point at the (0,0) because the partial
derivatives there do not exist. (f(x,0) = |z|.) This corresponds to a local minimum. If
D contains a boundary point then that is a local maximum. If D has no boundary points
D = {(z,y) : ¥ + y* < a®} then there are no local max and that is the same if D is the
entire zy-plane.

Example f(x,y) = y*> — 2 has a critical point at (0,0) but it is neither a local max
nor min: it is a saddle point because there are points (x,y) arbitrarily near (0,0) so that
f(z,y) > f(0,0) and other points so that f(z,y) < f(0,0). In this example f(0,y) > 0 =
£(0,0) and f(x,0) < 0.

Closed Bounded Region Method This is an analogue of the closed interval method
of Section 4.1.

Suppose f(z,y) is continuous on a closed and bounded region R. (Thus R can be con-
tained in a large enough ball and it contains all its boundary points.) Then f takes on both
its absolute maximum value and its absolute minimum value in R and the points are either

1. critical point of f inside R or
2. at local extrema of f on the boundary point R

Then compare the values of f at all the points found and discover which is the absolute max
and which is the absolute min.
Example Consider the function f(z,y) = 22? + y* — 2y on the triangle with vertices
(0,0), (2,2) and (-2,2) assuming the edges and corners of the triangle are included.
Solution Sketch the region. This is a closed bounded region Check for critical points:

—

Vf(x,y) = 4xi + (2y — 2)j. The critical points occur where V f(z,y) = 0 or Vf(z,y) does



not exist.

4x =0
2y —2 =0

The only critical point is (0,1).
Check next the boundary. The boundary consists of the 3 edges and the 3 corners.

1. Edge from (0,0) to (2,2): Here y = x: f(x,y) = f(x,x) = 222 + 2* — 22 = 322 — 2z,
0<zr<?2

d
— 322 —2r =61 — 2
dzx

So (1/3,1/3) is a critical point on the edge.

2. Edge from (0,0) to (-2,2): Here y = —x: f(z,y) = f(z, —x) = 22° + 2%+ 22 = 32°+ 2,
—2<z<0.

4302 4 90— 60 4 2
dz
So (-1/3,1/3) is a critical point on the edge.

3. Edge from (-2,2) to (2,2). Here y = 2: f(x,2) = 2z and
%2372 =4z

so that there is a critical point at (0,2).
4. The vertices (0,0), (2,2) and (-2,2).

Finally we have isolated all possible points where f could take on its absolute max and min
values and we need only evaluate.

Point P f(P)
0,1) £(0,1) =1
(1/3,1/3) £(1/3,1/3)=-1/3
(—1/3,1/3) £(-1/3,1/3)=-1/3
(0,2) £0,2)=0
(0,0) £(0,0)=0
(2,2) f(2.2)=8
(—2,2) £(-2.2)=8

The absolute maximum value 8 occurs at (2,2) and (-2,2) and the absolute minimum value
—1 occurs at (0,1).

If the region is not closed and bounded then there is no foolproof method for finding
absolute extrema but we do have a criterion for the local extrema.

Recall the:

The Second Derivative Test for functions f(x) of a single variable. If f'(a) =0
then f”(a) > 0 implies f has a local minimum at a and f”(a) < 0 implies f has a local max



at a and f”(a) =0 or f”(a) does not exist then this test is indeterminant. (We don’t have
a clue.)

The Second Derivative Test for Functions f(z,y) If Vf(a,b) = 0 and if the second
partials exist near (a,b) and if D = f,.(a,b) f,,(a,b) — (fuy(a,b))? (the Discriminant) then

1. if D >0 and f;.(a,b) <0 then f has a local maximum at (a,b).
2. if D > 0 and f,.(a,b) > 0 then f has a local minimum at (a, b).
3. if D < 0 then f has a saddle at (a,b).

4. if D = 0 or if the second partials do not exist near (a, b) then the test is “indeterminant”
(does not work).

Example

1. f(x,y) = 2% + y? has a local minimum at (0,0)

2. f(z,y) = 2® + y* has a local saddle at (0,0) but the test is indeterminant (D = 0).
3. f(x,y) = 2* + y* has a local minimum at (0,0) but the test is indeterminant.

Example: Find all the local maxima, minima and saddle points of f(z,y) = 23+ 12zy +
3

Solution: Find all critical points Vf = (322 4 12y)i + (122 + 24y?)j. F is differentiable
everywhere and so the only critical points are where Vf = 0 We solve the (non linear!)
system

8y

322 + 12y =012z + 24y° = 0
from which we see 2> = —4y and x = —2y%. Square both sides of the first equation z? = 4y*
and combined with the first equation implies 4y* = —4y or y(y* + 1) = 0. Therefore y = 0
or y = —1. Substituting to find x we have (0,0) and (-2,-1) are the two critical points. (We
check that they satisfy the equation V f = 6) Next we classify the critical points using the
second derivative test. Compute the second partial derivatives: f,, = 6z, f,, = 48y and
foy = fye = 12 and so D = 288zy — 144. We only need the value of D at the critical points.

1. (0,0): Here D = —144 < 0 and so (0,0) is a saddle point.
2. (-2,-1): Here D > 0 and f,.(—2,—1) = —12 < 0 and so (-2,-1) is a local maximum.

There is a similar test for functions f(x,y, z) of three variables.



