
14.7 Extreme Values and Saddle Points: As in Calculus I, we are interested in local
maxima and minima. A function f(x, y) has a local maximum (resp. local minimum)
at (a, b) if f(x, y) ≤ f(a, b) (resp. f(x, y) ≥ f(a, b) for all (x, y) in a disk centered at (a, b).

A disk is the interior of a circle. The disk could be small or large.
Definition A function f(x, y) has a critical point at (a, b) if f is not differentiable at

(a, b) or ∇f(a, b) = ~0.
Theorem If f is defined on some set D and if f has a local max or min at (a, b) in D

then either (a, b) is a critical point or (a, b) is a boundary point.
Recall that (a, b) is a boundary point of a set D if every open disk centered at (a, b)

contains points inside D and outside D.
Example f(x, y) =

√

x2 + y2 where D is a disk of radius a > 0 centered at the origin
in the xy-plane. Then f has exactly one critical point at the (0,0) because the partial
derivatives there do not exist. (f(x, 0) = |x|.) This corresponds to a local minimum. If
D contains a boundary point then that is a local maximum. If D has no boundary points
D = {(x, y) : x2 + y2 < a2} then there are no local max and that is the same if D is the
entire xy-plane.

Example f(x, y) = y2 − x2 has a critical point at (0,0) but it is neither a local max
nor min: it is a saddle point because there are points (x, y) arbitrarily near (0,0) so that
f(x, y) > f(0, 0) and other points so that f(x, y) < f(0, 0). In this example f(0, y) > 0 =
f(0, 0) and f(x, 0) < 0.

Closed Bounded Region Method This is an analogue of the closed interval method
of Section 4.1.

Suppose f(x, y) is continuous on a closed and bounded region R. (Thus R can be con-
tained in a large enough ball and it contains all its boundary points.) Then f takes on both
its absolute maximum value and its absolute minimum value in R and the points are either

1. critical point of f inside R or

2. at local extrema of f on the boundary point R

Then compare the values of f at all the points found and discover which is the absolute max
and which is the absolute min.

Example Consider the function f(x, y) = 2x2 + y2 − 2y on the triangle with vertices
(0,0), (2,2) and (-2,2) assuming the edges and corners of the triangle are included.

Solution Sketch the region. This is a closed bounded region Check for critical points:

∇f(x, y) = 4x~i + (2y − 2)~j. The critical points occur where ∇f(x, y) = ~0 or ∇f(x, y) does
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not exist.

4x =0

2y − 2 =0

The only critical point is (0,1).
Check next the boundary. The boundary consists of the 3 edges and the 3 corners.

1. Edge from (0,0) to (2,2): Here y = x: f(x, y) = f(x, x) = 2x2 + x2 − 2x = 3x2 − 2x,
0 ≤ x ≤ 2

d

dx
3x2 − 2x = 6x− 2

So (1/3,1/3) is a critical point on the edge.

2. Edge from (0,0) to (-2,2): Here y = −x: f(x, y) = f(x,−x) = 2x2+x2+2x = 3x2+2x,
−2 ≤ x ≤ 0.

d

dx
3x2 + 2x = 6x+ 2

So (-1/3,1/3) is a critical point on the edge.

3. Edge from (-2,2) to (2,2). Here y = 2: f(x, 2) = 2x2 and

d

dx
2x2 = 4x

so that there is a critical point at (0,2).

4. The vertices (0,0), (2,2) and (-2,2).

Finally we have isolated all possible points where f could take on its absolute max and min
values and we need only evaluate.

Point P f(P)
(0, 1) f(0,1) =-1

(1/3, 1/3) f(1/3,1/3)=-1/3
(−1/3, 1/3) f(-1/3,1/3)=-1/3

(0, 2) f(0,2)=0
(0, 0) f(0,0)=0
(2, 2) f(2,2)= 8

(−2, 2) f(-2,2)=8

The absolute maximum value 8 occurs at (2,2) and (-2,2) and the absolute minimum value
−1 occurs at (0,1).

If the region is not closed and bounded then there is no foolproof method for finding
absolute extrema but we do have a criterion for the local extrema.

Recall the:
The Second Derivative Test for functions f(x) of a single variable. If f ′(a) = 0

then f ′′(a) > 0 implies f has a local minimum at a and f ′′(a) < 0 implies f has a local max
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at a and f ′′(a) = 0 or f ′′(a) does not exist then this test is indeterminant. (We don’t have
a clue.)

The Second Derivative Test for Functions f(x, y) If ∇f(a, b) = ~0 and if the second
partials exist near (a, b) and if D = fxx(a, b)fyy(a, b)− (fxy(a, b))

2 (the Discriminant) then

1. if D > 0 and fxx(a, b) < 0 then f has a local maximum at (a, b).

2. if D > 0 and fxx(a, b) > 0 then f has a local minimum at (a, b).

3. if D < 0 then f has a saddle at (a, b).

4. ifD = 0 or if the second partials do not exist near (a, b) then the test is “indeterminant”
(does not work).

Example

1. f(x, y) = x2 + y2 has a local minimum at (0,0)

2. f(x, y) = x3 + y3 has a local saddle at (0,0) but the test is indeterminant (D = 0).

3. f(x, y) = x4 + y4 has a local minimum at (0,0) but the test is indeterminant.

Example: Find all the local maxima, minima and saddle points of f(x, y) = x3+12xy+
8y3

Solution: Find all critical points ∇f = (3x2 +12y)~i+ (12x+24y2)~j. F is differentiable
everywhere and so the only critical points are where ∇f = ~0 We solve the (non linear!)
system

3x2 + 12y =012x+ 24y2 = 0

from which we see x2 = −4y and x = −2y2. Square both sides of the first equation x2 = 4y4

and combined with the first equation implies 4y4 = −4y or y(y3 + 1) = 0. Therefore y = 0
or y = −1. Substituting to find x we have (0,0) and (-2,-1) are the two critical points. (We
check that they satisfy the equation ∇f = ~0.) Next we classify the critical points using the
second derivative test. Compute the second partial derivatives: fxx = 6x, fyy = 48y and
fxy = fyx = 12 and so D = 288xy− 144. We only need the value of D at the critical points.

1. (0,0): Here D = −144 < 0 and so (0,0) is a saddle point.

2. (-2,-1): Here D > 0 and fxx(−2,−1) = −12 < 0 and so (-2,-1) is a local maximum.

There is a similar test for functions f(x, y, z) of three variables.


