
Multiple Integrals: Our goal is to use integration to find, for example, the mass of
a three dimensional solid of known density (mass per volume). If the density is 1 then we
find the volume. We did this in Chapter 6 for bodies with rotational symmetry or, at least,
known cross section. Here we make minimal assumptions on the solid

15.1 Double Integrals over Rectangles: We begin by trying to find the volume of a
solid bounded above by a surface z = f(x, y) and below by a rectangle R in the xy–plane:
R : a ≤ x ≤ b, c ≤ y ≤ d Therefore f(x, y) ≥ 0 on R for this to make physical sense. We
subdivide R into small rectangles as in the picture

If the rectangles are small enough in area ∆A = ∆x∆y then the volume under the graph
of f but above the small rectangle is approximately

f(x, y)∆A

provided (x, y) is somewhere in the rectangle ∆A and f is bounded. The volume under
z = f(x, y) and above R is approximately

m
∑

i=1

n
∑

j=1

f(xi, yj)∆A(i,j) =
m
∑

i=1

n
∑

j=1

f(xi, yj)∆xi∆yj

where the little rectangles ∆A(i,j) subdivide all of R and are ∆xi by ∆yj and (xi, yj) belongs
to ∆A(i,j). We say that f(x, y) is Riemann integrable over R if these approximations tend
to a limiting value as the small rectangles A(i,j) get smaller and more numerous and their
“diameter” gets smaller. The volume is that limiting value:

∫∫

R

f(x, y) dA

(or in some texts

∫∫

R

f(x, y) dx dy).

It can be shown that, provided f is continuous or, if it has discontinuities then they are
on “small” sets (like lines or curves) the f is Riemann integrable.

Example: Find the volume of the solid bounded above f(x, y) = 2x2 + y2 above the
rectangle R = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 2}.

Solution: The volume is V =
∫∫

R
f(x, y) dA but what is that? Let’s find the area of a

cross section of the solid cut by a plane x = xi where 1 ≤ xi ≤ 2. The area is
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0
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The cross sectional area is 4x2 + 8
3
, 1 ≤ x ≤ 2 (dropping the xi notation). Now recall from

Chapter 6, the formula for volume V ,

V =

∫ b

a

A(x) dx

where A(x) is the cross sectional area and the solid lie entirely between the planes x = a
and x = b. Here A(x) = 4x2 + (8/3) so that the volume is

V =
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Solution 2: Let us interchange the roles of x and y to see what we get in that case. The
area of a cross section of the solid perpendicular to the y–axis is

∫ 2

1

f(x, y) dx(= A(y)) =
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1

2x2 + y2 dx =
2

3
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3
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and again we can get the volume as V =
∫ 2

0
A(y) dy:

V =
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Fubini’s Theorem (First Form) If f(x, y) is Riemann integrable on the rectangle
R = [a, b]× [c, d] then

∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

Remark The theorem says that the double integral
∫∫

R
f(x, y) dA can be evaluated

using “iterated integrals” and either order.


