Multiple Integrals: Our goal is to use integration to find, for example, the mass of a three dimensional solid of known density (mass per volume). If the density is 1 then we find the volume. We did this in Chapter 6 for bodies with rotational symmetry or, at least, known cross section. Here we make minimal assumptions on the solid
15.1 Double Integrals over Rectangles: We begin by trying to find the volume of a solid bounded above by a surface $z=f(x, y)$ and below by a rectangle R in the $x y$-plane: $R: a \leq x \leq b, c \leq y \leq d$ Therefore $f(x, y) \geq 0$ on R for this to make physical sense. We subdivide R into small rectangles as in the picture

If the rectangles are small enough in area $\Delta A=\Delta x \Delta y$ then the volume under the graph of f but above the small rectangle is approximately

$$
f(x, y) \Delta A
$$

provided (x, y) is somewhere in the rectangle ΔA and f is bounded. The volume under $z=f(x, y)$ and above R is approximately

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right) \Delta A_{(i, j)}=\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right) \Delta x_{i} \Delta y_{j}
$$

where the little rectangles $\Delta A_{(i, j)}$ subdivide all of R and are Δx_{i} by Δy_{j} and $\left(x_{i}, y_{j}\right)$ belongs to $\Delta A_{(i, j)}$. We say that $f(x, y)$ is Riemann integrable over R if these approximations tend to a limiting value as the small rectangles $A_{(i, j)}$ get smaller and more numerous and their "diameter" gets smaller. The volume is that limiting value:

$$
\iint_{R} f(x, y) d A
$$

(or in some texts $\iint_{R} f(x, y) d x d y$).
It can be shown that, provided f is continuous or, if it has discontinuities then they are on "small" sets (like lines or curves) the f is Riemann integrable.

Example: Find the volume of the solid bounded above $f(x, y)=2 x^{2}+y^{2}$ above the rectangle $R=\{(x, y): 1 \leq x \leq 2,0 \leq y \leq 2\}$.

Solution: The volume is $V=\iint_{R} f(x, y) d A$ but what is that? Let's find the area of a cross section of the solid cut by a plane $x=x_{i}$ where $1 \leq x_{i} \leq 2$. The area is

$$
\int_{0}^{2} f\left(x_{i}, y\right) d y=\int_{0}^{2} 2 x_{i}^{2}+y^{2} d y=\left[2 x_{i}^{2} y+\frac{1}{3} y^{3}\right]_{0}^{2}=4 x_{i}^{2}+\frac{8}{3}
$$

The cross sectional area is $4 x^{2}+\frac{8}{3}, 1 \leq x \leq 2$ (dropping the x_{i} notation). Now recall from Chapter 6, the formula for volume V,

$$
V=\int_{a}^{b} A(x) d x
$$

where $A(x)$ is the cross sectional area and the solid lie entirely between the planes $x=a$ and $x=b$. Here $A(x)=4 x^{2}+(8 / 3)$ so that the volume is

$$
V=\int_{1}^{2} 4 x^{2}+(8 / 3) d x=\frac{4}{3} x^{3}+\left.\frac{8}{3} x\right|_{1} ^{2}=\frac{4}{3}\left[2^{3}\right]+\frac{16}{3}-\left(\frac{4}{3}+\frac{8}{3}=12\right.
$$

Solution 2: Let us interchange the roles of x and y to see what we get in that case. The area of a cross section of the solid perpendicular to the y-axis is

$$
\int_{1}^{2} f(x, y) d x(=A(y))=\int_{1}^{2} 2 x^{2}+y^{2} d x=\frac{2}{3} x^{3}+\left.x y^{2}\right|_{1} ^{2}=\frac{16}{3}-\frac{2}{3}+2 y^{2}-y^{2}=\frac{14}{3}+y^{2}
$$

and again we can get the volume as $V=\int_{0}^{2} A(y) d y$:

$$
V=\int_{0}^{2} \frac{14}{3}+y^{2} d y=\frac{14}{3} y+\left.\frac{1}{3} y^{3}\right|_{0} ^{2}=\frac{28}{3}+\frac{8}{3}-0=12
$$

Fubini's Theorem (First Form) If $f(x, y)$ is Riemann integrable on the rectangle $R=[a, b] \times[c, d]$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Remark The theorem says that the double integral $\iint_{R} f(x, y) d A$ can be evaluated using "iterated integrals" and either order.

