15. Double Integrals over General Regions: We begin by trying to find the volume of a solid bounded above by a surface $z=f(x, y)$ and below by a region R in the $x y$-plane and R need not be a rectangle. As before the volume is given by

$$
\iint_{R} f(x, y) d A
$$

How do we integrate over a general region like R ?
Let us suppose that our region R can be expressed as the region between the graph of two functions

Type I $R=\left\{(x, y): g_{1}(x) \leq y \leq g_{2}(x), a \leq x \leq b\right\}$
R is bounded above by the graph $y=g_{2}(x)$ and below by $y=g_{1}(x)$. PICTURE!
Type II $R=\left\{(x, y): h_{1}(y) \leq x \leq g_{2}(y), c \leq y \leq d\right\}$
R is bounded on the right by the graph $y=g_{2}(x)$ and on the left by $y=g_{1}(x)$. PICTURE!
Example: Find the volume of the solid bounded above by the graph of $f(x, y)=2 x^{2} y$ and below by the region in the $x y$ plane $R=\left\{(x, y): x^{2} \leq y \leq 4,0 \leq x \leq 2\right\}$.

Solution: The volume is $V=\iint_{R} f(x, y) d A$. How do we evaluate this? We look for the area $A(x)$ of the cross section corresponding to a fixed values of $x, 0 \leq x \leq 2$. Sketch R.

$$
A(x)=\int_{x^{2}}^{4} 2 x^{2} y d y=\left.x^{2} y^{2}\right|_{x^{2}} ^{4}=16 x^{2}-x^{6}
$$

The volume of the solid is therefore $V=\int_{0}^{2} A(x) d x$ or

$$
V=\int_{0}^{2} \int_{x^{2}}^{4} 2 x^{2} y d y d x=\int_{0}^{2} 16 x^{2}-x^{6} d x=\frac{16}{3} x^{3}-\left.\frac{1}{7} x^{7}\right|_{0} ^{2}=\frac{128}{3}-\frac{128}{7}=\frac{512}{21}
$$

Solution 2 The region R can also be described as a type II domain: $R=\{(x, y): 0 \leq$ $x \leq \sqrt{y}, 0 \leq y \leq 4\}$ so that

$$
\begin{aligned}
V=\int_{0}^{4} \int_{0}^{\sqrt{y}} 2 x^{2} y d x d y & =\left.\int_{0}^{4} \frac{2}{3} x^{3} y\right|_{0} ^{\sqrt{y}} d y \\
& =\frac{2}{3} \int_{0}^{4} y^{3 / 2} y-0 d y \\
& =\left.\frac{2}{3} \frac{2}{7} y^{7 / 2}\right|_{0} ^{4}=\frac{512}{21}
\end{aligned}
$$

Fubini's Theorem (Second Form) If $f(x, y)$ is Riemann integrable on the rectangle R and

1. $R=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

2. OR $R=\left\{(x, y): c \leq y \leq d, h_{1}(x) \leq y \leq h_{2}(x)\right\}$ then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Remark The theorem says that the double integral $\iint_{R} f(x, y) d A$ can be evaluated using "iterated integrals" and either order. The first case corresponds to R is type I and the second corresponds to R is type II.

Example Reverse the order of integration to evaluate the integral

$$
\int_{0}^{1} \int_{y}^{1} x^{2} \sin (x y) d x d y
$$

Sketch the region of integration.

$$
\begin{align*}
\int_{0}^{1} \int_{y}^{1} x^{2} \sin (x y) d x d y & =\int_{0}^{1} \int_{0}^{x} x^{2} \sin (x y) d y d x \tag{1}\\
& =\int_{0}^{1}[-x \cos (x y)]_{0}^{x} d x \tag{2}\\
& =\int_{0}^{1}\left[-x \cos \left(x^{2}\right)+x\right] d x=\int_{0}^{1}-x \cos \left(x^{2}\right) d x+\frac{1}{2} \tag{3}
\end{align*}
$$

We can evaluate the integral by a u-substitution with $u=x^{2}$ and $d u=2 x d x$

$$
\int_{0}^{1}-x \cos \left(x^{2}\right) d x+\frac{1}{2}=\frac{1}{2}\left[1-\int_{0}^{1} \cos u d u\right]=\frac{1}{2}[1-\sin 1]
$$

