15. Double Integrals over General Regions: We begin by trying to find the volume
of a solid bounded above by a surface z = f(z,y) and below by a region R in the xy—plane
and R need not be a rectangle. As before the volume is given by

/Rf(x,y)dA

How do we integrate over a general region like R?

Let us suppose that our region R can be expressed as the region between the graph of
two functions

Type I R = {(z,y) : g1(z) <y < gao(x),a < w < b}

R is bounded above by the graph y = go(z) and below by y = ¢g;(z). PICTURE!

Type Il R = {(z,y) : l(y) S < g2(y), c Sy < d}

R is bounded on the right by the graph y = g(x) and on the left by y = ¢;(z). PICTURE!

Example: Find the volume of the solid bounded above by the graph of f(z,y) = 2z%y
and below by the region in the zy plane R={(z,y) 2> <y <4,0<z <2}

Solution: The volume is V = [, f » f(x,y)dA. How do we evaluate this? We look for the
area A(x) of the cross section corresponding to a fixed values of z, 0 < z < 2. Sketch R.
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The volume of the solid is therefore V = fo x)dx or
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Solution 2 The region R can also be described as a type II domain: R = {(z,y) : 0 <
v <,/y,0 <y <4} so that
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Fubini’s Theorem (Second Form) If f(z,y) is Riemann integrable on the rectangle
R and

I. R={(z,y) :a <x<b,gi(x) <y < go(x)} then

//fxydA // F(z,y) dy da

2. ORR={(z,y):c <y <d,hi(z) <y < hs(x)} then

J[ remaa= | d / h(()) F(z,y) d dy



Remark The theorem says that the double integral [[, f(x,y)dA can be evaluated
using “iterated integrals” and either order. The first case corresponds to R is type I and the

second corresponds to R is type II.
Example Reverse the order of integration to evaluate the integral
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Sketch the region of integration.
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We can evaluate the integral by a u—substitution with v = 22 and du = 2z dx
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