15. Double Integrals and Area: The area of a region R in the $x y$-plane is same as the volume of the solid that sits above R and is 1 unit thick.

$$
\text { Area }=\iint_{R} d A=\iint_{R} 1 d A
$$

where $\mathbf{1}$ is the identically one function.
Example: Find the area of the region bounded by the curves $x=y^{2}-2 y$ and $x=2 y-y^{2}$.
The curves intersect when $y^{2}-2 y=2 y-y^{2}$ or $2 y^{2}-4 y=0$ or $2 y(y-2)=0$, that is $y=0$ and $y=2$.

The region is of type II. Sketch? The area is

$$
\int_{0}^{2} \int_{y^{2}-2 y}^{2 y-y^{2}} d x d y=\int_{0}^{2} 2 y-y^{2}-\left(y^{2}-2 y\right) d y=\int_{0}^{2} 4 y-2 y^{2} d y=2 y^{2}-\left.\frac{2}{3} y^{3}\right|_{0} ^{2}=\frac{8}{3}
$$

