15.4 Double Integrals in Polar Form: Certain doubles integrals $\iint_{R} f(x, y) d A$ are easier to evaluate if we take advantage of a point (the origin) symmetry. Possibly f is simpler in polar coordinates but more often the region is R is more easily specified in polar coordinates. The boundary of R might be a circle centered at the origin ($r=$ constant) a circle through the origin $(r=a \cos \theta$ or $r=a \sin \theta)$ or a cardioid ($r=a(1 \pm \cos \theta)$ or $r=a(1 \pm \sin \theta))$ or even a lemniscate $(r=a \sin 2 \theta)$

Let's observe that we need to be a little careful here. For example a disk of radius $a>0$ can be specified in polar coordinates by $0 \leq r \leq a$ and $0 \leq \theta \leq 2 \pi$ But the area of a circle is πa^{2} and NOT

$$
\int_{0}^{2 \pi} \int_{0}^{a} d r d \theta=2 \pi a
$$

The integral does not know we are working polar coordinates and thinks we want the area of a rectangle that is $a \times 2 \pi$. We have to modify our integration procedure so that it measure area correctly. We want to find the area of a region in the plane

$$
\left\{(r, \theta): r_{0} \leq r \leq r_{0}+\Delta r, \theta_{0} \leq \theta \leq \theta_{0}+\Delta \theta\right.
$$

(If we were in Cartesian coordinate then this would be a Δr by $\Delta \theta$ rectangle but in polar coordinates it is a segment of a annular ring. Picture)

The area of a sector of a circle of radius r whose opening angle is $\Delta \theta$ is $r^{2} \Delta \theta / 2$ so that the area of the segment is

$$
(r+\Delta r)^{2} \Delta \theta / 2-r^{2} \Delta \theta / 2=r \Delta r \Delta \theta+(\Delta r)^{2} \Delta \theta / 2 \approx r \Delta r \Delta \theta
$$

since Δr is very small.
This suggests that to find area of a region specified in polar coordinates we emply " $r d r d \theta$ " instead of simply " $d r d \theta$ " Check by using a double integral to find the area of a circle.

$$
\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta=\left.\int_{0}^{2 \pi} \frac{1}{2} r^{2}\right|_{0} ^{R}, d \theta=\left[\frac{1}{2} R^{2} \theta\right]_{0}^{2 \pi}=\pi R^{2}
$$

Integration in Polar Coordinates:

$$
\iint_{R} f(x, y) d A=\int_{R} f(r \cos \theta, \sin \theta) r d r d \theta
$$

Example: Find the volume of the solid that is bounded above by the paraboloid $z=x^{2}+$ y^{2} and lies above the region in the first quadrant $R=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4,0 \leq x, 0 \leq y\right\}$.

Solution: The volume is $V=\iint_{R} x^{2}+y^{2} d A$. This is a good candidate for polar coordinates because the R is simple in polar coordinates and so is $x^{2}+y^{2}$. Therefore

$$
V=\int_{0}^{\pi / 2} \int_{1}^{2} r^{2} r d r d \theta=\left.\int_{0}^{\pi / 2} \frac{1}{4} r^{4}\right|_{1} ^{2} d \theta=\frac{15}{4} \frac{\pi}{2}=\frac{15 \pi}{8}
$$

Example: Find the volume of the solid region that is interior to both the sphere $x^{2}+$ $y^{2}+z^{2}=4$ of radius 2 and the cylinder $(x-1)^{2}+y^{2}=1$. This is the volume of material removed when an off-center hole of radius 1 is bored just tangent to a diameter all the way through the sphere.

Solution: The height function of this solid is $f(x, y)=2 \sqrt{4-x^{2}-y^{2}}$. The region R is the projection of the solid in the $x y$-plane which is the same as the interior of the cylinder and so bounded by $(x-1)^{2}+y^{2}=1$. The volume is therefore $V=\iint_{R} 2 \sqrt{4-x^{2}-y^{2}} d A$

In polar coordinates, the boundary of R is $(x-1)^{2}+y^{2}=1$ or $x^{2}+y^{2}=2 x$ or $r^{2}=2 r \cos \theta$ or $r=2 \cos \theta,-\pi / 2 \leq \theta \pi / 2$. Therefore

$$
V=2 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} \sqrt{4-r^{2}} r d r d \theta
$$

We can evaluate the inner integral by a u-substitution: $u=4-r^{2}, d u=-2 r d r$,

$$
\begin{aligned}
V & =-\left.\frac{2}{3} \int_{-\pi / 2}^{\pi / 2} u^{3 / 2}\right|_{4} ^{4-4 \cos ^{2} \theta} d u d \theta=\quad-\frac{2}{3} \int_{-\pi / 2}^{\pi / 2}\left(4-4 \cos ^{2} \theta\right)^{3 / 2}-4^{3 / 2} d \theta \\
& =\frac{2}{3} \int_{-\pi / 2}^{\pi / 2} 8-8\left|\sin ^{3} \theta\right| d \theta \\
& =\frac{16 \pi}{3}-\frac{32}{3} \int_{1}^{0} 1-u^{2} d u \\
& =\frac{16 \pi}{3}-\frac{64}{9}=\frac{16}{9}[3 \pi-4]
\end{aligned}
$$

