Consider a solid D in \mathbb{R}^{3} with density $\delta=\delta(x, y, z)$ (in units of mass per unit volume). Then the mass is

$$
M=\iiint_{D} \delta d V
$$

The first moments are
About the x-axis

$$
M_{y z}=\iiint_{D} x \delta d V
$$

About the y-axis

$$
M_{x z}=\iiint_{D} y \delta d V
$$

About the z-axis

$$
M_{x y}=\iiint_{D} z \delta d V
$$

and the center of mass is

$$
(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{M}, \frac{M_{x z}}{M}, \frac{M_{x y}}{M}\right)
$$

The second moments (or moments of inertia) are
About the x-axis

$$
I_{x}=\iiint_{D}\left(y^{2}+z^{2}\right) \delta d V
$$

About the y-axis

$$
I_{y}=\iiint_{D}\left(x^{2}+z^{2}\right) \delta d V
$$

About the z-axis

$$
I_{z}=\iiint_{D}\left(x^{2}+y^{2}\right) \delta d V
$$

For example if a body is rotating about the x axis at ω radians per second then the kinetic energy of rotation is $(1 / 2) w^{2} I_{x}$

Example: Find the center of mass of the block that lies below the plane $z=3+x+y$ and above the square R : $-1 \leq x \leq 1,-1 \leq y \leq 1$ in the $x y$-plane assuming constant density δ.

Solution: The mass is

$$
\begin{aligned}
M & =\iiint_{D} \delta d V=\int_{-1}^{1} \int_{-1}^{1} \int_{0}^{3+x+y} \delta d z d y d x \\
& =\delta \int_{-1}^{1} \int_{-1}^{1} 3+x+y d y d x \\
& =\delta \int_{-1}^{1} 3 y+x y+\left.\frac{1}{2} y^{2}\right|_{-1} ^{1} d x \\
& =\delta \int_{-1}^{1} 6+2 x+0 d x \\
& =\delta 6 x+\left.x^{2}\right|_{-1} ^{1}=12 \delta
\end{aligned}
$$

Note that all terms involving an odd power of x and/or y integrate to 0 . The first moment about the x-axis is

$$
\begin{aligned}
M_{y z} & =\iiint_{D} \delta x d V=\int_{-1}^{1} \int_{-1}^{1} \int_{0}^{3+x+y} x \delta d z d y d x \\
& =\delta \int_{-1}^{1} \int_{-1}^{1} 3 x+x^{2}+x y d y d x \\
& =\delta \int_{-1}^{1} 3 x y-x^{2} y+\left.\frac{1}{2} x y^{2}\right|_{-1} ^{1} d x \\
& =\delta \int_{-1}^{1} 6 x+2 x^{2}-2 x-0 d x \\
& =\delta 3 x^{2}+\left.\frac{2}{3} x^{3}\right|_{-1} ^{1}=\frac{4}{3} \delta
\end{aligned}
$$

and so $\bar{x}=M_{y z} / M=1 / 9$ We see by symmetry (interchange x and y) $M_{x z}=4 / 3$ and $\bar{y}=M_{x z} / M=1 / 9$. It remains to calculate

$$
\begin{aligned}
M_{x y} & =\iiint_{D} \delta z d V=\int_{-1}^{1} \int_{-1}^{1} \int_{0}^{3+x+y} z \delta d z d y d x \\
& =\frac{\delta}{2} \int_{-1}^{1} \int_{-1}^{1}(3+x+y)^{2} d y d x \\
& =\frac{\delta}{2} \int_{-1}^{1} \int_{-1}^{1} 9+6 x+6 y+x^{2}+y^{2}+2 x y d y d x \\
& =\frac{\delta}{2} \int_{0}^{2} 9 y+x^{2} y+\left.\frac{1}{3} y^{3}\right|_{-1} ^{1} d x \\
& =\frac{\delta}{2} 18 x+\frac{2}{3} x^{3}+\left.\frac{2}{3} x\right|_{x=-1} ^{x=1}=\left(18+\frac{4}{3}\right) \delta=\frac{58 \delta}{3}
\end{aligned}
$$

so that $\bar{z}=\frac{58}{3(12)}=\frac{29}{18}$
Example: Find the second moment of inertia of a circular cylinder of radius a about its axis of symmetry. Assume uniform density δ and (constant) height h.

Solution: Orient the axes so that the z-axis is the axis of symmetry and the $x y$-plane bisects the cylinder. The cylinder is all (x, y) so that $x^{2}+y^{2} \leq a^{2}$. The second moment of inertia about the z axis is

$$
\begin{aligned}
\iiint_{D}\left(x^{2}+y^{2}\right) \delta d V & =\int_{-h / 2}^{h / 2} \int_{R} x^{2}+y^{2} \delta d A \\
& =\delta \int_{-h / 2}^{h / 2} \int_{0}^{2 \pi} \int_{0}^{a} r^{2} r d r d \theta \\
& =\delta \frac{h}{4} a^{4}(2 \pi)=\frac{\pi}{2} a^{4} h \delta
\end{aligned}
$$

Notice energy growing as a^{4}.

Example: Find the second moment of inertia about the z-axis of the solid D if D is the region in the first quadrant bounded above by the surface $z=x^{2}+2 y^{2}$ and bounded by the three coordinate planes and the plane $2 x+y=2$. Assume D has constant density. Picture

$$
\begin{aligned}
\iiint_{D}\left(x^{2}+y^{2}\right) \delta d V & =\iint_{R} \int_{0}^{x^{2}+2 y^{2}}\left(x^{2}+y^{2}\right) \delta d z d A \\
& =\iint_{R}\left(x^{2}+2 y^{2}\right)\left(x^{2}+y^{2}\right) \delta d A \\
& =\int_{0}^{1} \int_{0}^{2-2 x}\left(x^{4}+3 x^{2} y^{2}+2 y^{4}\right) \delta d y d x \\
& =\int_{0}^{1}\left[x^{4} y+x^{2} y^{3}+\frac{2}{5} y^{5}\right]_{0}^{2-2 x} \delta d x \\
& =\int_{0}^{1}\left[x^{4}(2-2 x)+x^{2}(2-2 x)^{3}+\frac{2}{5}(2-2 x)^{5} \delta\right] d x \\
& =\int_{0}^{1}\left[2 x^{4}-2 x^{5}+8 x^{2}-24 x^{3}+24 x^{4}-8 x^{5}+\frac{64}{5}(1-x)^{5}\right] d x=\delta\left[\frac{2}{5}-\frac{1}{3}+\frac{8}{3}-6+\right.
\end{aligned}
$$

