15.7 Triple Integrals in Cylindrical and Spherical Coordinates

Example: Find the second moment of inertia of a circular cylinder of radius a about its axis of symmetry. Assume uniform density δ and (constant) height h.

Solution: Orient the axes so that the z-axis is the axis of symmetry and the $x y$-plane bisects the cylinder. The cylinder is all (x, y) so that $x^{2}+y^{2} \leq a^{2},-h / 2 \leq z \leq h / 2$. The second moment of inertia about the z axis is

$$
\begin{aligned}
\iiint_{D}\left(x^{2}+y^{2}\right) \delta d V & =\int_{-h / 2}^{h / 2} \int_{R} x^{2}+y^{2} \delta d A d z \\
& =\delta \int_{-h / 2}^{h / 2} \int_{0}^{2 \pi} \int_{0}^{a} r^{2} r d r d \theta \\
& =\delta \frac{h}{4} a^{4}(2 \pi)=\frac{\pi}{2} a^{4} h \delta
\end{aligned}
$$

Notice energy growing as a^{4}.
Note the use of "cylindrical coordinates" (r, θ, z) and the use of $r d r d \theta d z$ or $d z r d r d \theta$.
Example: Set up but do not evaluate an integral in cylindrical coordinates that represents the mass of the portion of the solid bounded by $z=4$ and $z^{2}=x^{2}+y^{2}$ that lies in the first octant if the density is $\delta=x^{2} y$

Solution This is one quarter (or one eighth) of a cone. Draw a picture

$$
\begin{aligned}
\iiint_{D} x^{2} y d V & =\int_{0}^{\pi / 2} \int_{0}^{4} \int_{r}^{4} r^{2}(\cos \theta)^{2} r \sin \theta d z r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{4} r^{4}[z]_{r}^{4}(\cos \theta)^{2} \sin \theta d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{4}\left[4 r^{4}-r^{5}\right](\cos \theta)^{2} \sin \theta d r d \theta \\
& =\int_{0}^{\pi / 2} \frac{4}{5} r^{5}-\left.\frac{1}{6} r^{6}\right|_{0} ^{4}(\cos \theta)^{2} \sin \theta d \theta \\
& =4^{6}\left[\frac{1}{5}-\frac{1}{6}\right] \int_{0}^{\pi / 2}(\cos \theta)^{2} \sin \theta d \theta \\
& =\frac{4^{6}}{30}\left[-\frac{1}{3}(\cos \theta)^{3}\right]_{0}^{\pi / 2}=\frac{2^{11}}{45}
\end{aligned}
$$

Spherical Co-ordinates: The points in three space can be specified by three real numbers: ρ is the distance to the origin $\left(\rho=\sqrt{x^{2}+y^{2}+z^{2}} ; \rho \geq 0\right)$ and ϕ is the angle made with the positive z axis ($0 \leq \phi \leq \pi$) and θ is as in cylindrical coordinates: the angle made with respect to the positive x-axis. $0 \leq \theta \leq 2 \pi$. The conversions are

$$
\begin{aligned}
& z=\rho \cos \phi \\
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& r=\rho \sin \phi \\
& \rho=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

ExamplesIdentify and /or sketch.

1. $\rho=11$
2. $\theta=\pi / 4$
3. $\phi=\pi / 4$
4. $\rho=3 \cos \phi$

Volumes in Spherical Coordinates If there is a symmetry about the origin in 3 -space in either the solid D and/or the integrand $f(x, y, z)$ then one considers spherical coordinates but if we just integrate in ρ, ϕ and θ then our integral is designed for Cartesion coordinates and volumes. If we consider the solid in three space specified by $\rho_{i} \leq \rho \leq \rho_{i}+\Delta \rho, \theta_{j} \leq \theta \leq$ $\theta_{j}+\Delta \theta \phi_{k} \leq \phi \leq \phi_{k}+\Delta \phi$. See the picture. The volume is roughly $\rho_{i}^{2} \sin \phi_{k} \Delta \rho \Delta \theta \Delta \phi$.

Converting integrals from Cartesian to Spherical.

$$
\iiint_{D} f(x, y, z) d V=\iiint_{D} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

On teh left side of the equation D must be described in Cartesian coordinates; on the right it should be described in spherical coordinates.

Example Find the volume of the solid that lies above the cone $z=\sqrt{3} \sqrt{x^{2}+y^{2}}$ but below the sphere $x^{2}+y^{2}+z^{2}=2 z$.

Solution These two surfaces are specified easily in spherical coordinates. The cone is $\rho \cos \phi=\sqrt{3} \rho \sin \phi$ or $\tan \phi=1 / \sqrt{3}$ or $\phi=\pi / 6$. The sphere is $\rho^{2}=2 \rho \cos \phi$ or $\rho=2 \cos \phi$
$0 \leq \phi \leq \pi / 2$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{\pi / 6} \int_{0}^{2 \pi} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\pi / 6} \int_{0}^{2 \pi}\left[\frac{1}{3} \rho^{3}\right]_{0}^{2 \cos \phi} \sin \phi d \theta d \phi \\
& =\frac{8}{3} \int_{0}^{\pi / 6} \int_{0}^{2 \pi}[\cos \phi]^{3} \sin \phi d \theta d \phi \\
& =\frac{16 \pi}{3} \int_{0}^{\pi / 6}[\cos \phi]^{3} \sin \phi d \phi \\
& =\frac{16 \pi}{3}\left[-\frac{1}{4}(\cos \phi)^{4}\right]_{0}^{\pi / 6} \\
& =\frac{4 \pi}{3}\left(1-(\cos \pi / 6)^{4}\right)=\frac{7 \pi}{12}
\end{aligned}
$$

