
15.7 Triple Integrals in Cylindrical and Spherical Coordinates

Example: Find the second moment of inertia of a circular cylinder of radius a about its
axis of symmetry. Assume uniform density δ and (constant ) height h.

Solution: Orient the axes so that the z–axis is the axis of symmetry and the xy–plane
bisects the cylinder. The cylinder is all (x, y) so that x2 + y2 ≤ a2, −h/2 ≤ z ≤ h/2. The
second moment of inertia about the z axis is

∫∫∫
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Notice energy growing as a4.
Note the use of “cylindrical coordinates” (r, θ, z) and the use of r dr dθ dz or dz r dr dθ.
Example: Set up but do not evaluate an integral in cylindrical coordinates that repre-

sents the mass of the portion of the solid bounded by z = 4 and z2 = x2 + y2 that lies in the
first octant if the density is δ = x2y

Solution This is one quarter (or one eighth) of a cone. Draw a picture
∫∫∫
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Spherical Co-ordinates: The points in three space can be specified by three real
numbers: ρ is the distance to the origin (ρ =

√

x2 + y2 + z2; ρ ≥ 0) and φ is the angle made
with the positive z axis (0 ≤ φ ≤ π) and θ is as in cylindrical coordinates: the angle made
with respect to the positive x–axis. 0 ≤ θ ≤ 2π. The conversions are

z =ρ cosφ

x =ρ sinφ cos θ

y =ρ sinφ sin θ

r =ρ sinφ

ρ =
√

x2 + y2 + z2
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ExamplesIdentify and /or sketch.

1. ρ = 11

2. θ = π/4

3. φ = π/4

4. ρ = 3 cosφ

Volumes in Spherical Coordinates If there is a symmetry about the origin in 3–space
in either the solid D and/or the integrand f(x, y, z) then one considers spherical coordinates
but if we just integrate in ρ, φ and θ then our integral is designed for Cartesion coordinates
and volumes. If we consider the solid in three space specified by ρi ≤ ρ ≤ ρi +∆ρ, θj ≤ θ ≤
θj +∆θ φk ≤ φ ≤ φk +∆φ. See the picture. The volume is roughly ρ2i sinφk∆ρ∆θ∆φ.

Converting integrals from Cartesian to Spherical.

∫∫∫

D

f(x, y, z) dV =

∫∫∫

D

f(ρ sinφ cos θ, ρ sinφ sin θ, cosφ)ρ2 sinφdρdθdφ

On teh left side of the equation D must be described in Cartesian coordinates; on the right
it should be described in spherical coordinates.

Example Find the volume of the solid that lies above the cone z =
√
3
√

x2 + y2 but
below the sphere x2 + y2 + z2 = 2z.

Solution These two surfaces are specified easily in spherical coordinates. The cone is
ρ cosφ =

√
3ρ sinφ or tanφ = 1/

√
3 or φ = π/6. The sphere is ρ2 = 2ρ cosφ or ρ = 2 cosφ
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0 ≤ φ ≤ π/2. The volume is

V =

∫ π/6
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=
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