16.1 and 16.2 Vector Fields and Line Integrals

A vector field is a function from \mathbb{R}^{3} to itself.

$$
\vec{F}(x, y, z)=M(x, y, z) \vec{i}+N(x, y, z) \vec{j}+P(x, y, z) \vec{k}
$$

To each point in space \vec{F} assigns a vector.
Applications: (a) Velocity Fields At each point on earth the wind is blowing with a certain velocity. That velocity field is the function that assigns to every point on the earth or every point in the atmosphere the wind velocity. See page 927 .
(b) Force Fields. At every point near the surface of the earth gravity exerts a force towards the earth's center. The force on a mass m is

$$
\vec{F}(x, y, z)=-\frac{G M m}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}[x \vec{i}+y \vec{j}+z \vec{k}]
$$

where G is the gravitational constant and M is the mass of the earth and (x, y, z) is near but "above the surface of the earth

Abstract Line Integrals: Recall that the length of a curve C parameterized by $\vec{r}(t)=$ $x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}, a \leq t \leq b$ is

$$
\int_{C} d s=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

An abstract line integral of f along C is

$$
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

It might represent the mass of a wire which has variable density $f(x(t), y(t), z(t))$ in units of mass per unit length.

Example Suppose that a particle is traveling through a liquid in the path

$$
\vec{r}(t)=2 \cos t \vec{i}+2 \sin t \vec{j}+t \vec{k}, \quad 0 \leq t \leq \pi
$$

and the liquid is of variable density $f(x, y, z)=x+2 y+3 z$ (in grams per cubic centimeter) and suppose that the particle causes a thin wire to solidify along its path. The wire is of constant cross sectional area A. What is the mass of the wire?

$$
\begin{aligned}
\int_{C} f d s & =A \int_{0}^{\pi} 2 \cos t+4 \sin t+3 t \sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}+1} d t \\
& =\sqrt{5} A \int_{0}^{\pi} 2 \cos t+4 \sin t+3 t d t=\sqrt{5} A\left[2 \sin t-4 \cos t+\frac{3}{2} t^{2}\right]_{0}^{\pi}=\frac{3}{2} A \pi^{2}
\end{aligned}
$$

16.2 Work If a constant force \vec{F} acts on an object through a displacement of \vec{u} then the work done by \vec{F} is $\vec{F} \cdot \vec{u}=|\vec{F}||\vec{u}| \cos \theta$. Picture Observe that $\theta>\pi / 2$ implies negative work
is done. It is convenient to write work as

$$
W=\vec{F} \cdot \vec{u}=\frac{\vec{F} \cdot \vec{u}}{|\vec{u}|}|\vec{u}|=\operatorname{comp}_{\vec{u}}(\vec{F})|\vec{u}|
$$

Work is the component of \vec{F} along \vec{u} times the distance displaces.
Now consider the case the \vec{F} is not constant and acts along a curve $\vec{r}, a \leq t \leq b$. How much work is done? Over a short enough time period \vec{F} is essentially constant and so the work done over the time period t_{i} to $t_{i}+\Delta t$ is approximately

$$
\vec{F}\left(t_{i}\right) \cdot \vec{r}^{\prime}\left(t_{i}\right) \Delta t
$$

because $\vec{r}^{\prime}\left(t_{i}\right) \Delta t$ is approximately the displacement. If we add up over choices of i (so that the intervals $\left[t_{i}, t_{i}+\Delta\right]$ partition $[a, b]$ we get total work done is approximately

$$
\begin{aligned}
\sum_{i=1}^{n} \vec{F}\left(t_{i}\right) \cdot \vec{r}^{\prime}\left(t_{i}\right) \Delta t & \approx \int_{a}^{b} \vec{F}\left(t_{i}\right) \cdot \vec{r}^{\prime}\left(t_{i}\right) d t \\
& =\int_{a}^{b} \frac{\vec{F}\left(t_{i}\right) \cdot \vec{r}^{\prime}\left(t_{i}\right)}{\left|\vec{r}^{\prime}(t)\right|}\left|\vec{r}^{\prime}(t)\right| d t \\
& =\int_{C} \frac{\vec{F}\left(t_{i}\right) \cdot \vec{r}^{\prime}\left(t_{i}\right)}{\left|\vec{r}^{\prime}(t)\right|} d s
\end{aligned}
$$

Work is therefore a line integral $\int_{C} f d s$ where f is the component of the force $\vec{F}(t)$ along the unit tangent vector $\vec{T}(t)=\vec{r}^{\prime}\left(t_{i}\right)\left|\vec{r}^{\prime}(t)\right|$ Work done by \vec{F} along C is

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{C} \vec{F} \cdot \vec{T}(t) d s \\
& =\int_{C} M d x+N d y \\
& =\int_{a}^{b} M(x(t), y(t), z(t)) x^{\prime}(t)+N(x(t), y(t), z(t)) y^{\prime}(t) d t
\end{aligned}
$$

where C is parameterized by $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}, a \leq t \leq b$.
Example Find the work done by $\vec{F}(x, y, z)=x^{2} \vec{i}-x y \vec{j}$ along the curve C which consists of a quarter circle or radius 1 centered at the origin from $(1,0)$ and then $(0,1)$ and followed by the vertical straight line segment from $(0,1$,$) to (0,2)$. Picture

Solution: We should parameterize the curve.

$$
\begin{aligned}
& \vec{r}_{1}(t)=\cos t \vec{i}+\sin t \vec{j}, \quad 0 \leq t \leq \pi / 2 \\
& \vec{r}_{2}(t)=(1+t) \vec{j}, \quad 0 \leq t \leq 1
\end{aligned}
$$

The total work is therefore

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{C} M d x+N d y \\
& =\int_{C_{1}} M d x+N d y+\int_{C_{2}} M d x+N d y \\
& =\int_{0}^{\pi / 2}(\cos t)^{2}(-\sin t)-(\cos t)(\sin t) \cos t+\int_{0}^{1} t+1 d t \\
& =\left.\frac{2}{3}(\cos t)^{3}\right|_{0} ^{\pi / 2}+\frac{1}{2} t^{2}+\left.t\right|_{0} ^{1} \\
& =-\frac{2}{3}+\frac{3}{2}=\frac{5}{6}
\end{aligned}
$$

Flux. Here we suppose that the curve C is "closed" which means $\vec{r}(b)=\vec{r}(a)$ and we are interested in how much of the velocity flow \vec{F} is outward across the curve. Flux is

$$
\int_{C} \vec{F} \cdot \vec{n} d s=\int_{C} M d y-N d x
$$

Here \vec{n} denotes the unit outward normal. The tangent is $\vec{r}^{\prime}(t)=x^{\prime}(t) \vec{i}+y^{\prime}(t) \vec{j}$ so that $y^{\prime}(t) \vec{i}-x^{\prime}(t) \vec{j}$ is outward and perpendicular to the tangent vector and so

$$
\vec{n}(t)=\frac{y^{\prime}(t) \vec{i}-x^{\prime}(t) \vec{j}}{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}
$$

so that

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \vec{n} d s & =\int_{a}^{b}(M \vec{i}+N \vec{j}) \cdot \frac{y^{\prime}(t) \vec{i}-x^{\prime}(t) \vec{j}}{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =\int_{a}^{b} M y^{\prime}(t)-N x^{\prime}(t) d t=\int_{C} M d y-N d x
\end{aligned}
$$

Example Find the flux of $\vec{F}(x, y, z)=x^{2} \vec{i}+(y+x y) \vec{j}$ outward through the curve C : $x^{2} / 9+y^{2} / 4=1$.

Parameterize the curve $x=3 \cos t, y=2 \sin t, 0 \leq t \leq 2 \pi$ Flux is

$$
\begin{aligned}
\int_{C} M d y-N d x & =\int_{0}^{2 \pi}(3 \cos t)^{2} 2 \cos t-[2 \sin t+(3 \cos t)(2 \sin t)](-3 \sin t) d t \\
& =\int_{0}^{2 \pi}(18 \cos t)^{3}+18 \cos t(\sin t)^{2}+6(\sin t)^{2} d t \\
& =\int_{0}^{2 \pi} 18 \cos t+3(1-\cos 2 t) d t=6 \pi
\end{aligned}
$$

Work?

