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Abstract

A theorem of Karrass, Pietrowski and Solitar on the structure of
the automorphism group of an amalgamated free product is extended
to automorphism groups of fundamental groups of graphs of groups
in which the edge groups are incomparable up to conjugacy.

1 Introduction

The primary motivation for this note is the following theorem of Karrass,
Pietrowski and Solitar [1]: Let G be an amalgamated free product H ∗U K,
where H 6= U 6= K and assume that U is conjugate maximal in each of H
and K (i.e. no conjugate of U in either factor properly contains U). If A
is the group of automorphisms of G which map each of the factors H and
K to a conjugate of either itself or the other factor, then A also admits an
amalgamated free product decomposition.

It seems natural to ask to what extent an analogous conclusion holds for
products involving more than two factors or, more generally, for fundamen-
tal groups of graphs of groups (the “graph products” of the title). In this
paper an extension of the Karrass-Pietrowski-Solitar result is obtained by
replacing conjugate maximality with a hypothesis on the edge groups (the
“EGI hypothesis”) which is generally more restrictive but which, in the case
of two factors (and also HNN extensions), is equivalent to it. In essence, we
show that if G is the fundamental group of a graph of groups which satisfies
this hypothesis and if A is the group of those automorphisms of G which
map vertex groups to conjugates of vertex groups then the action of G on
the associated standard tree extends to an action of A and hence, A admits
a combinatorial decomposition resembling that of G.

The argument depends heavily on basic results from the Bass-Serre theory
of group actions on trees. Most of our notation and terminology follows that
of [2].

If G is a group, an inverted edge of a G-graph is one which is mapped to
itself by some element of G but with the orientation reversed (i.e. with the
incident vertices interchanged). Such an edge is subdivided by adding a new
vertex at its mid-point and replacing it with two adjacent edges which are
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interchanged by the elements of G which inverted the original edge. (Sub-
division of the inverted edges is thus a topologically harmless device for
eliminating inversions from a G-graph.)

We consider a graph of groups (G(−), D) where D is a connected directed
graph and for v ∈ V D and e ∈ ED, G(v) and G(e) denote the corresponding
vertex and edge groups (which will be treated as subgroups of the fundamen-
tal group G = π1(G(−), D)). G(e) is taken to be a subgroup of G(v) if v is
the initial vertex of e. The edge labels serve also as names of embeddings
and as names of certain elements of the generating set of G. Thus, if v is
the terminal vertex of e, then e denotes both an embedding of G(e) in G(v)
and also an element of G (possibly the identity) which conjugates elements
of G(e) to their images in G(v) under the map e. Of course, in the case that
G is an amalgamated free product, D is simply a segment and in the case of
an HNN extension, it is a loop.

Some additional ad hoc terminology will facilitate the statement of the
theorem. If v is a vertex of D, the subgroups of G(v) of the form G(e)
(where e is an outgoing edge) and G(e)e (where e is an incoming edge) will
both be called v-incident edge groups corresponding to e. We shall consider
only graphs of groups which are proper in the sense that for each vertex
v of G, every v-incident edge group which does not correspond to a loop
at v is a proper subgroup of G(v). One class of proper graphs of groups
which we will need to avoid is those in which D consists of a single loop
with both edge groups equal to the full vertex group. These we shall refer
to as degenerate loops. (If (G(−), D) is a degenerate loop then G is simply
a semidirect product of the vertex group G(v) with an infinite cyclic group
and A = NAutG(G(v)).)

The central hypothesis of the paper is the following:

Definition. We shall say that (G(−), D) satisfies the edge group incompa-
rability (or EGI) hypothesis if, for each vertex v of D, no v-incident edge
group is conjugate in G(v) to a subgroup of another v-incident edge group
unless the two are identical and correspond to the same edge of D.

For example, the EGI hypothesis is obviously satisfied if the edge groups
are all finite with none having order divisible by the order of another.

If Γ is any directed graph, we will denote the underlying undirected graph
by Γ0 . Our main objective is

Theorem 1 Let G be the fundamental group of a proper graph of groups
(G(−), D) which satisfies the EGI hypothesis and is not a degenerate loop.
Let T be the corresponding standard G-tree and let A be the group of all
automorphisms of G which map each vertex group of (G(−), D) to a G-
conjugate of some vertex group. Then T is an InnG-tree and the action of
InnG on the underlying undirected tree T0 extends to an action of A which,
in turn, induces an action of A/InnG on the undirected graph D0.
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As a consequence, A is isomorphic to the fundamental group of a proper
graph of groups (A(−), D∗) which satisfies the EGI hypothesis and such that
the following hold:

(i) D∗
0 is isomorphic to the quotient modulo A of the A-graph obtained from

D0 by subdividing all inverted edges.

(ii) If v̄ ∈ V D∗
0 is the image of a vertex v of D0 then A(v̄) = NA(G(v)). If

v̄ ∈ V D∗
0 arises from subdivision of an edge of D0 which is inverted under

the action of A then A(v̄) consists of those elements of A which either fix or
invert this edge.

(iii) |ED∗| ≤ |ED|. Moreover, if D is a finite tree then so is D∗.

The inspiration for the proof of the theorem is the observation that if
(G(−), D) is a proper graph of groups which satisfies the EGI hypothesis
and is not a degenerate loop, then there is a G-bijection between the vertex
set V T of the standard G-tree T and the A-set of all vertex stabilizers in G
(Lemma 4.1). The bulk of the argument is concerned with establishing that
under the EGI hypothesis, the action of A on V T induced by this bijection
is actually isometric on the underlying undirected tree T0 (Lemma 3.1).

As a simple application, let H and K be groups with proper non-trivial
subgroups U and V respectively and consider the group

G = 〈H,K : [u, v] = 1 ∀u ∈ U, v ∈ V 〉.

If L = U × V , then G = H ∗U L ∗V K and since U and V are normal in L,
the EGI hypothesis holds. Here the graph D0 is

d d d

If the non-identity automorphism of D0 is realized by an element of A (the
case if, for example, there is an isomorphism φ : H → K such that Uφ = V )
then D∗

0 is a segment and Theorem 1 yields that A is an amalgamated free
product NA(H) ∗B NA(L), where B = NA(H)∩NA(L). Otherwise, D∗

0
∼= D0

and so A has the form NA(H) ∗B NA(L) ∗C NA(K).
Theorem 1 is probably of greatest interest in the case that the subgroup

A is the full automorphism group of G. One additional hypothesis which
ensures that A = AutG is that each vertex group of (G(−), D) possess in-
trinsically the property that it fixes a vertex of any tree on which it acts.
(This is termed property (FA) in [4] where it is shown to be characterized
by three conditions: that G have no non-trivial amalgamated free product
decomposition, that it have no infinite cyclic quotient, and that it not be
a union of a strictly ascending chain of proper subgroups.) In this case,
if v is a vertex of the G-tree T and if α ∈ AutG, then (Gv)

α ⊆ Gu for
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some u ∈ V T and similarly, (Gu)
α−1 ⊆ Gw for some w ∈ V T , whence

Gv ⊆ Gw. The EGI hypothesis and the fact that (G(−), D) is proper then
force v = w (Lemma 4.1) and so (Gv)

α = Gu, proving that α maps vertex
stabilizers to vertex stabilizers and so belongs to A. It follows, for example,
that A = AutG if each vertex group of (G(−), D) is finitely generated and
periodic. (See 6.3.1 of [4].) Theorem 2.3 of [5] provides another criterion of
this type which applies when the vertex groups are polycyclic-by-finite.

Following the completion of the proof of Theorem 1 in Section 4, we
derive an analog of the Karrass-Pietrowski-Solitar theorem for proper HNN
extensions G = H ∗U t (Theorem 2). This theme is pursued further in Section
5 where, in the special case that U is centralized by t, a short computation
leads to a very precise description of A in terms of H and U . The final obser-
vation in Section 4 is a natural extension of a result of E. Raptis, D. Varsos
and O. Talelli on automorphism groups of amalgamated free products and
HNN extensions of polycyclic-by-finite groups (Theorem 3).

2 Preliminaries

Let G be a group acting on a set X. We shall say that the action is locally
transitive if for every element x of X, NG(Gx) is transitive on the set Fix(Gx)
of points fixed by the stabilizer Gx of x or, equivalently, if for any two elements
x and y of X, Gx is contained in Gy only if Gx = Gy and the orbits xG and
yG are identical. In the context of finite permutation groups, this property
is a familiar (and trivial) consequence of transitivity (although in general,
local transitivity does not follow from transitivity without the additional
hypothesis that each point stabilizer be conjugate maximal).

From the Bass-Serre theory, the group G of Theorem 1 acts on the stan-
dard tree (or universal cover) T . Accordingly, most of the steps in the argu-
ment will be formulated in terms of group actions on trees. We say that the
action of G on a graph Γ is locally edge-transitive if it is locally transitive on
the edge set EΓ . If e and f are edges of the standard tree T with Ge ⊆ Gf

and if e = e1, e2, . . . , en = f is the edge sequence in the geodesic connecting
e and f , then Ge = Ge ∩ Gf ⊆ Gei

for 1 ≤ i ≤ n. From this observation,
the EGI hypothesis defined in the Introduction is easily seen to be simply a
reformulation in terms of the graph of groups of the assumption that G acts
locally edge-transitively on T .

The following observation is crucial here: If e is an edge of the G-tree T
and if p and q are any two vertices of FixT (Ge) then Ge fixes each vertex
and edge in the unique reduced path (or geodesic) between p and q. (By
Ge, we shall always mean the point-wise stabilizer of the edge e viewed as
a 1-simplex.) In particular, Ge fixes each of the vertices incident with e.) It
follows that FixT (Ge) is a NG(Ge)-tree and so (see, for example, §4 and §5
of [4]) if G acts locally edge-transitively and without inversion on T , then
for each edge e of T with incident vertices u and v, NG(Ge) is either an
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amalgamated free product NGu(Ge)∗Ge NGv(Ge) (if u and v are not NG(Ge)-
conjugate) or an HNN-extension NGv(Ge) ∗Ge t (if ut = v for some t ∈
NG(Ge)). In particular, NG(Ge) is generated by those of its elements g for
which e and eg are adjacent.

Let T be a tree and let d be the edge metric on V T (so if u and v are
vertices of T , d(u, v) is the number of edges in the geodesic [u, v] from u to
v).

Lemma 2.1 If G is a group and T is a simplicial G-tree, then any element of
G which inverts an edge e neither fixes a vertex nor inverts any edge distinct
from e.

Proof. This is an easy consequence of the d-isometric action of G on T .

The thrust of the next lemma is that if G is a group of automorphisms of a
tree T , then (even without the hypothesis of local edge-transitivity) elements
of NSym(V T )(G) map edge stabilizers to edge stabilizers.

Lemma 2.2 Let T be a simplicial tree, G ⊆ AutT and α ∈ NSym(V T )(G).
Suppose that e ∈ ET with incident vertices p and q, and let pα = u and
qα = v. Then (Ge)

α = Gf for some edge f in the geodesic [u, v]. Moreover,
if g ∈ G such that g inverts the edge e, then f may be chosen so that gα

inverts f .

Proof. We have

(Ge)
α = (Gp ∩Gq)

α = Gu ∩Gv ⊆ Gb

for every edge b in the geodesic [u, v]. Since p and q lie in different connected
components of T\{e}, there is an edge f in [u, v] with incident vertices x
and y, say, such that α−1 maps x and y respectively to vertices z and w
in different components of T\{e}. Then e lies in the geodesic [z, w] and so
Gz ∩Gw ⊆ Ge. It follows that

Gf = Gx ∩Gy = (Gz ∩Gw)α ⊆ (Ge)
α,

whence (Ge)
α = Gf .

If g inverts the edge e (so pg = q and qg = p), then

ugα

= pαgα

= (pg)α = qα = v.

By a similar argument, vgα
= u. By Lemma 2.1, g does not stabilize any

vertex of T and so neither does gα. Since gα interchanges u and v, it follows
that it must invert some edge f in [u, v]. Let x and y be the vertices incident
with f (so gα interchanges x and y) and let xα−1

= z and yα−1
= w. Then

zg = xα−1g = xgαα−1

= yα−1

= w.
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Similarly, wg = z. Since g fixes no vertex of T , it must invert an edge in
the geodesic [z, w] and so by Lemma 2.1, e is an edge in [z, w]. Thus, z and
w lie in different components of T\{e} and, as in the previous paragraph,
(Ge)

α = Gf .
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Lemma 2.3 Let G be a group and T be a G-tree. Let {u1, u2, . . . un} be a
set of vertices of T and let p also be a vertex of T . If g ∈ 〈Gu1 , Gu2 , . . . Gun〉,
then d(p, pg) ≡ 0 (mod 2).

Proof. First, observe that if x, y, z are any three vertices of T , then

d(x, y) + d(y, z) ≡ d(x, z) (mod 2).

We induct on the minimum length m of an expression of g as a product
g1g2 . . . gm with consecutive terms belonging to distinct Guj

’s. If m = 1,
then g ∈ Gui

for some i and so

d(p, pg) ≡ d(p, ui) + d(ui, p
g) ≡ 0 (mod 2)

because d(ui, p
g) = d((ui)

g, pg) = d(ui, p). If m > 1, write g = ha, where
a ∈ Gui

for some i and h has minimum length m − 1. If q = ph, then
d(p, q) ≡ 0 (mod 2) by the inductive hypothesis and so

d(p, pg) ≡ d(p, q) + d(q, pg) ≡ d(q, qa) ≡ 0 (mod 2).

Lemma 2.4 Let T be a simplicial G-tree with no inversions. If p and q
are adjacent vertices of T sharing a common edge e, then 〈Gp, Gq〉 is an
amalgamated free product Gp ∗Ge Gq. If, in addition, pg = q for some g ∈ G,
then 〈Gp, g〉 = 〈Gq, g〉 is an HNN extension Gq ∗Ge g.

Proof. The set of all edges of T which are conjugate to e by an element
of 〈Gp, Gq〉 is the edge set of a 〈Gp, Gq〉-subtree of T . Since 〈Gp, Gq〉 is edge
transitive but (by Lemma 2.3) not vertex transitive on this subtree, the first
conclusion follows from the Bass-Serre theory. If pg = q, then the set of all
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edges of T which are conjugate to e by an element of 〈Gp, g〉 is a tree on
which 〈Gq, g〉 is both edge and vertex transitive and again, the Bass-Serre
theory yields the desired conclusion.

The next lemma (and its proof) is a slight variation on the key first step
in [1].

Lemma 2.5 Let G = H ∗U K. If g ∈ NG(U) such that 〈H, Kg〉 = G and
H ∩Kg = U , then Kg = Kh for some h ∈ NH(U).

Proof. This is trivial if H = U or K = U . If H 6= U 6= K, let X and Y be
right transversals for U in H and K respectively and assume that each con-
tains 1. It is sufficient to prove that g = kh for some h ∈ H and k ∈ K (for if
so, Uh = (H ∩K)h = H ∩Kh = H ∩Kg = U , whence h ∈ NH(U)). If this is
not so, then without loss of generality we may assume that for some n ≥ 1,
g = x1y1x2y2 . . . xnyn where xi ∈ X\{1} and yi ∈ Y \{1} for 1 ≤ i ≤ n.
But if hj ∈ X\{1} and kj ∈ Y \{1} for 1 ≤ j ≤ m, then h1k

g
1h2k

g
2 . . . hmkg

m

is reduced and in particular, no such element belongs to K. It follows that
〈H, Kg〉 ∩K = U which contradicts the assumption that 〈H, Kg〉 = G.

Finally in this section, we prove a result analogous to Lemma 2.5 for HNN
extensions. Similar results (and proofs) appear in [3] and in [5].

Lemma 2.6 Let G be an HNN extension H ∗U t, where t normalizes the
subgroup U . If G = 〈H, s〉 for some s ∈ NG(U), then s = atεb for some
a, b ∈ H and ε ∈ {−1, 1}.

Proof. Let X be a right transversal for U in H which contains the identity,
whence s has a unique t-reduced representation htε1x1 . . . tεnxn where h ∈ H
and where for 1 ≤ i ≤ n, the xi’s are elements of X and the εi’s are ±1. The
claim of the lemma is that n = 1 so assume otherwise, that n > 1. Clearly,
it is no loss to assume that h = xn = 1 and so s = tε1h1 . . . tεn . If N is
the normal closure of H in G, then G/N is infinite cyclic with both tN and
sN being generators and so s ≡ t±1 (mod N). Thus,

∑n
i=1 εi = ±1 and in

particular, n is odd.
Computing a t-reduced expression for a positive power of s (or any el-

ement of G) involves eliminating t’s and t−1’s in pairs and hence, at most
(n− 1)/2 t-reductions can occur between consecutive occurrences of the ex-
pression for s in such a power. In other words, the power of t in the exact
middle of each occurrence of the expression for s cannot be absorbed into
any t-reductions. Since n > 1, it follows that the t-reduced expression for
any non-trivial power of s has the form utε1x1wxn−1t

εn , where u ∈ U and w
involves at least one non-trivial power of t.

Because G = 〈H, s〉 and s ∈ NG(U), we may write t = gse1y1 . . . semym

where g ∈ H, the yi’s are non-identity elements of X and the ei’s are non-
zero integers for 1 ≤ i ≤ m. From the conclusion obtained in the preceding
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paragraph about the reduced form of each non-trivial power of s, it follows
that non-trivial powers of t must occur at least 3m times in the t-reduced form
of gse1y1 . . . semym. This obviously contradicts the fact that this expression
represents t itself.

3 Locally edge-transitive actions

A concisely formulated technical lemma represents the crux of the argument.

Lemma 3.1 Let T be an undirected simplicial tree and suppose that G is a
locally edge-transitive subgroup of AutT . Then NSym(V T )(G) ⊆ AutT .

Proof. First we argue that it is sufficient to restrict our attention to the
case that the action of G on T involves no edge inversions.

Let T ∗ be the G-tree obtained from T by subdividing each inverted edge
(and only these edges). The action of G on T ∗ is still faithful and locally
edge-transitive (since the set of edge-stabilizers is not changed) and there
are, of course, no edge inversions. Let A = NSym(V T )(G). With G identified
as a subgroup of AutT ∗, we must now show that A can be identified with a
subgroup of NSym(V T ∗)(G).

If w is the mid-point of an edge e ∈ ET such that e is inverted by g ∈ G
(so g ∈ NG(Ge)), then Gw = Ge〈g〉. If α ∈ A, Lemma 2.2 implies that there
is an edge f such that (Ge)

α = Gf and gα inverts f , whence

(Gw)α = (Ge)
α〈gα〉 = Gf〈gα〉 = Gz,

where z is the midpoint of f . This vertex z of T ∗ is uniquely determined by
w and α, for if Gz = Gx with x ∈ V T ∗, then gα fixes x but fixes no vertex
of T (Lemma 2.1), whence x is the mid-point of an edge b of T . Then gα

must either invert or fix b, which is only possible if b = f and x = z (again
by Lemma 2.1). Thus, if w is the mid-point of an edge which is inverted by
g ∈ G, we may define wα to be the mid-point of the unique edge of T which
is inverted by gα. It is routine to check that this defines an action of A on
the set of mid-points of inverted edges of T and so A may be identified as a
subgroup of NSym(V T ∗)(G).

The upshot of this is that if we can show that NSym(V T ∗)(G) ⊆ AutT ∗,
then A ⊆ AutT ∗ and, because V T is A-invariant, it will follow that A ⊆ AutT
as required. Therefore, we may assume for the remainder of the proof that
T = T ∗ (that is, that G acts without inversion on T ).

We must show that for any α ∈ A and any pair p, q of adjacent vertices
of T , the images pα and qα are also adjacent. Suppose that p and q are such
a pair of vertices sharing a common edge e. Let u = pα and v = qα and let f
be the first edge in the geodesic [u, v] and w be the first vertex out of u in this
geodesic (so f is incident with u and w). Then (Ge)

α = (Gp∩Gq)
α = Gu∩Gv

is an edge stabilizer (Lemma 2.2) which fixes every edge in [u, v]. Therefore,

8



local edge-transitivity yields that all edges in [u, v] are conjugate to f under
NG(Gf ) (and hence, have stabilizer Gf ). In particular, (Ge)

α = Gu ∩ Gv =
Gf . We now consider two cases:

d
q

dp
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v = qα

du = pα
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Case 1. p and q are not NG(Ge)-conjugate.
In this case, u is certainly not NG(Gf )-conjugate to v and so, since all

edges in [u, v] are NG(Gf )-conjugate, w must be NG(Gf )-conjugate to v (and
not to u). Let g be an element of NG(Gf ) such that wg = v. Since u and w are
adjacent but not conjugate in NG(Gf ), local edge-transitivity implies that
NG(Gf ) = NGu(Gf )∗Gf

NGw(Gf ) and in particular, g ∈ NG(Gf ) ⊆ 〈Gu, Gw〉.
Thus,

〈Gu, Gv〉 = 〈Gu, (Gw)g〉 ⊆ 〈Gu, Gw〉.
On the other hand, g−1 = xα for some x in NG(Ge). Again by local

edge-transitivity, NG(Ge) ⊆ 〈Gp, Gq〉 and in particular, x ∈ 〈Gp, Gq〉. Thus,

〈Gu, Gw〉 = 〈Gp, (Gq)
x〉α ⊆ 〈Gp, Gq〉α = 〈Gu, Gv〉.

It follows from Lemma 2.4 that

Gu ∗Gf
Gw = 〈Gu, Gw〉 = 〈Gu, Gv〉 = 〈Gu, (Gw)g〉.

Because
Gf = Gu ∩Gv = Gu ∩ (Gw)g,

Lemma 2.5 yields that Gv = (Gw)g = (Gw)h for some h ∈ NGu(Gf ). Since
wh is adjacent to uh = u, the geodesic [w, v] is contained in [wh, v]. Because
each edge in [u, v] (and hence, in [w, v]) has stabilizer Gf , we conclude that
if v 6= w (or wh 6= w), then

Gv = (Gw)h ∩Gv ⊆ Gf ⊆ Gu.

But if Gv ⊆ Gu, then

g ∈ 〈Gu, Gw〉 = 〈Gu, Gv〉 = Gu

whence, d(u, v) = d(ug, wg) = d(u,w) = 1 and so v = w. Thus, we are forced
to the conclusion that v = w in all cases, whence u and v are adjacent in T .

Case 2. p and q are NG(Ge)-conjugate.
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Let p = qt where t ∈ NG(Ge). Then NG(Ge) = NGp(Ge) ∗Ge t and so
NG(Gf ) = NG(Ge)

α = NGu(Gf ) ∗Gf
tα. Also,

utα = (pα)tα = (pt)α = qα = v.

We claim first that u and w are NG(Gf )-conjugate. For if not, then the
action of NG(Gf ) on Fix(Gf ) is not vertex-transitive and so

tα ∈ NG(Gf ) = NGu(Gf ) ∗Gf
NGw(Gf ) ⊆ 〈Gu, Gw〉.

Applying α−1, we conclude that t ∈ 〈Gp, Gr〉, where rα = w, which contra-
dicts Lemma 2.3 since d(p, pt) = d(p, q) = 1.

Let s ∈ NG(Gf ) such that u = ws (and so by Lemma 2.4, NG(Gf ) is an
HNN extension NGu(Gf ) ∗Gf

s). Then tα ∈ NG(Gf ) = 〈NGu(Gf ), s〉 and so
〈Gu, t

α〉 ⊆ 〈Gu, s〉. But

sα−1 ∈ NG(Gf )
α−1

= NG(Ge) = NGp(Ge) ∗Ge t ⊆ 〈Gp, t〉.

Therefore,
s ∈ 〈Gp, t〉α = 〈Gu, t

α〉
and so 〈Gu, s〉 ⊆ 〈Gu, t

α〉. Hence, 〈Gu, s〉 = 〈Gu, t
α〉.

Since, by Lemma 2.4, 〈Gu, s〉 = Gu ∗Gf
s, it follows from Lemma 2.6 that

tα = asεb, where a, b ∈ Gu and ε ∈ {1,−1}. Therefore,

d(u, v) = d(u, utα) = d(u, uasεb) = d(u, usε

).

If ε = −1, then
d(u, v) = d(u, us−1

) = d(u,w) = 1

and if ε = 1, then

d(u, v) = d(u, us) = d(us−1

, u) = d(w, u) = 1,

so in either case, u and v are adjacent. This completes the proof that α is
actually a d-isometry of the (unoriented) tree T and hence, that A ⊆ AutT .
Of course, in considering the implications of this conclusion for the structure
of A, we must allow for the possibility that the action of A involves edge
inversions, even if that of G is inversion-free.

The following observation about local transitivity is stated in somewhat
greater generality than is strictly necessary for the proof of Theorem 1 but
the price is only a short induction argument.

Lemma 3.2 Let A ⊆ Sym(X) for some set X. If A contains a locally
transitive ascendant subgroup G, then A itself is locally transitive.

10



Proof. Let G = G1 £ G2 £ . . . £ Gβ = A be an ascending series. If
the lemma is false, let δ be the smallest ordinal for which Gδ is not locally
transitive. Let K = Gδ.

Suppose δ is a limit ordinal. If x, y ∈ X with Kx ⊆ Ky, then for every
γ < δ, Gγ is locally transitive and so (Gγ)x = (Gγ)y. Since K is the union of
all such Gγ’s, it follows that Kx = Ky, and this contradicts the assumption
that K is not locally transitive.

Assume now that δ is not a limit ordinal and let H = Gδ−1. If x, y ∈ X
with Kx ⊆ Ky, then Hx ⊆ Hy and hence, by the local transitivity of H,
Hx = Hy and y = xg for some g ∈ NH(Hx) (so xK = yK). But Ky ⊆ KxH,
for if α ∈ Ky = (Kx)

g then

α = βg = β[g, β]−1 ∈ KxH

for some β ∈ Kx. Therefore,

Ky = KxH ∩Ky = Kx(H ∩Ky) = Kx.

This again contradicts the assumption that K = Gδ is not locally transitive.

Lemma 3.2 suggests the following slight refinement of Lemma 3.1 which
follows from it by transfinite induction:

Corollary 3.3 Let T be a simplicial tree and suppose that G is a locally edge-
transitive subgroup of AutT . If α ∈ Sym(V T ) such that G is an ascendant
subgroup of 〈G,α〉, then α ∈ AutT.

4 The main results

Lemma 4.1 Let (G(−), D) be a proper graph of groups which satisfies the
EGI hypothesis and is not a degenerate loop. Let T be the corresponding
standard G-tree. If u, v ∈ V T such that Gu ⊆ Gv then u = v.

Proof. Let e be the first edge out of u in the geodesic from u to v and let w
be the first vertex. If f is any edge incident with u then

Gf ⊆ Gu = Gu ∩Gv ⊆ Ge ⊆ Gw.

By the EGI hypothesis, f is G-conjugate to e and Gf = Ge = Gu. If u and
e are the projections of u and e in D, then because (G(−), D) is proper, e
is a loop at u and e is the only edge of D which is incident with u. Because
D is connected, e must be the only edge in D and (G(−), D) is a degenerate
loop, a contradiction.

Proof of Theorem 1. Let (G(−), D), G, T and A satisfy the hypotheses of
Theorem 1. By Lemma 4.1, the G-map v 7→ Gv is a bijection between the
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vertex set V T and the set of vertex stabilizers in G. In particular, elements
of the center of G must act trivially on V T . Thus, T0 is an InnG-tree (with
every inner automorphism ig having the same action as g ∈ G) and the
bijection induces an action of A on V T which extends the action of InnG.
Of course, the EGI hypothesis is equivalent to the assumption that G (and
hence, InnG) acts locally edge-transitively on T .

Thus, Lemma 3.1 implies that A induces a group of automorphisms of
the undirected tree T0 and so, by the Bass-Serre theory, A also admits a pre-
sentation as the fundamental group of a certain graph of groups (A(−), D∗).
The graph D∗ in this presentation may be taken to be the quotient T ∗/A,
where T ∗ is the directed A-tree obtained from T by subdividing each inverted
edge of T and orienting both newly created edges as outgoing from the new
vertex.

Indeed, A induces a group of automorphisms of the undirected quotient
graph D0 = T0/G and, because A contains the group InnG of inner auto-
morphisms of G, an edge of T0 is inverted by an element of A if and only if
the projection of this edge in D0 is inverted by some element of A. For if
e is an edge of T0 incident with vertices u and v and if α ∈ A inverts the
projection eG of e in D0, then the ordered pair (uα, vα) is G-conjugate to
the pair (v, u). Thus, αig inverts e for some g ∈ G. It follows that D∗

0 can
be described in terms of D0 (that is, without reference to T ) as the graph
obtained by subdividing the edges of D0 that are inverted by elements of
A (to get an inversion-free A-graph) and then forming the quotient graph
modulo A.

Because (G(−), D) is proper, the G-stabilizer of each edge of T0 is prop-
erly contained in the G-stabilizer of both incident vertices unless those ver-
tices are G-conjugate. Since InnG ⊆ A, a similar statement holds for the
action of A on T0. It remains true for the action of A on T ∗ and so (A(−), D∗)
is proper. That (A(−), D∗) also satisfies the EGI hypothesis is immediate
from Lemma 3.2.

Statement (ii) of Theorem 1 is implicit in the proof above and the edge
number inequality of (iii) follows because the “new” edges produced by sub-
division of an A-inverted edge are A-conjugate. It only remains to verify the
second statement in (iii).

Suppose H is a group acting as isometries of a finite directed tree X
(with no edge inversions). Arguing by induction on |V X|, we claim that the
quotient graph X/H is also a tree. For because X is finite, H fixes some
vertex v of X and the subtree star(v) spanned by {u ∈ V X : d(u, v) = 1} is
then H-invariant. If X0 is the H-tree obtained from X by contracting this
subtree, then X0/H is a tree by the inductive hypothesis and thus, X/H is
also a tree. This observation applied in the case X = D and H = A implies
that D∗ is a tree if D is a finite tree, thus completing the proof of Theorem 1.

Theorem 1 applied to the case of a proper HNN extension yields an analog
of the Karrass-Pietrowski-Solitar theorem. (See also Theorem 3.3 of [5].)
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Theorem 2 Let G = H ∗U t be an HNN extension with H 6= U and assume
that the subgroup U is conjugate maximal in H. Let A be the subgroup of
AutG consisting of all automorphisms which map H to a conjugate of itself.
If B = NAutG(H) ∩NAutG(H t−1

), then either

(i) |NAutG(H) : B| = |H : U | and A is an HNN extension NAutG(H) ∗B it
(where it is the inner automorphism of G induced by t) or

(ii) |NAutG(H) : B| = 2|H : U | and A is an amalgamated free product
NAutG(H) ∗B D where D = B〈δ〉 and δ interchanges H and H t−1

(whence
|D : B| = 2).

The latter case occurs if and only if H admits an automorphism β with
Uβ = U t such that the map ttβ : U → H (where tβ = β−1tβ) is the restriction
to U of an inner automorphism of H.

Proof. Assume that G is an HNN extension H ∗U t with H 6= U and U
conjugate maximal. Here, D is a loop and A is the group of automorphisms
of G which map H to a conjugate of itself. Again the hypotheses of Theorem 1
are satisfied. The action of G on T is both vertex and edge-transitive and
so, since A ⊇ InnG, this is certainly true of the action of A. Therefore, if
the action of A on T is free of inversions and if p ∈ V T with H = Gp then
|Ap : B| = |H : U | and A is an HNN-extension Ap ∗B it, where it is the

inner automorphism induced by t and B = Ap ∩ (Ap)
i−1
t . On the other hand,

if there is an inversion then the action of A on the barycentric subdivision
T ∗ of T yields the decomposition A = Ap ∗B Ar, where r is the mid-point
of the edge [p, pt−1

]. Note that each vertex p of T has |H : U | outgoing
edges (all conjugate in Gp) and the same number of incoming edges (again
all conjugate in Gp). However, in T ∗ all the (new) edges incident at p have
the same orientation relative to p and, because A inverts an edge of T , they
are all conjugate in Ap. Thus, in this case |Ap : Bp| = 2|H : U |.

Finally, we claim that the action of A contains an inversion if and only
if H admits an automorphism β such that Uβ = U t and, for some a ∈ H,
utβ−1tβ = ua for all u ∈ U . For with such an automorphism we can define
α ∈ A by setting hα = (hβ−1

)t for all h ∈ H and tα = t−1aβ−1
. Since α

interchanges H and H t, it inverts the edge [p, pt] in T . Conversely, if α is an
automorphism of G which inverts [p, pt], then it interchanges H and H t, and
so if γ = itα

−1, then γ|H ∈ AutH and H t−1γ = Hα−1
= H t. If β = γ|H then,

because U = H ∩H t−1
, it follows that Uβ = Uγ = U t. If a = ttα

−1
, then

Ha = H tαtα−1

= H

and so a ∈ NG(H) = H. Moreover, for any u ∈ U ,

uttβ = utβ−1tβ = utγ−1tγ = utαtα−1

= ua
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and so the proof of Theorem 2 is complete.

In general, while Theorem 1 specifically identifies the vertex groups of
(A(−), D∗) as subgroups of A, in the absence of further hypotheses about
(G(−), D) it seems difficult to obtain structural information about these
groups. However, additional assumptions about the (G(−), D) may make
such information accessible and yield useful conclusions about the structure
of A. The remarks in Section 5 provide one illustration of this. In a different
vein, if the vertex groups of (G(−), D) in Theorem 1 are all finite then
Corollary 5.12 of [3] implies that those of (A(−), D∗) are also finite and
so, if D is a finite graph (or more generally, if the orders of the vertex groups
are bounded) then A (that is, AutG) is virtually free. (See Theorem IV.1.6
of [2].) D. Varsos has kindly brought to our attention his recent work (with
E. Raptis and O. Talelli) on automorphism groups of graph products and, in
particular, to [5] which concerns automorphism groups of amalgamated free
products and HNN extensions of polycyclic-by-finite groups. Using results
from [6] and [3], the proof of the main result of [5] is easily adapted to yield
the following generalization:

Theorem 3 Let G and D be as in Theorem 1 and suppose that D is finite.
Assume that for any vertex v of D, the vertex group G(v) is polycyclic-by-
finite and that each v-incident edge group has finite index in G(v). If G is
Z-linear, then AutG is abelian-by-Z-linear. If G is Z-linear and in addition,
in each vertex group the extraction of roots is unique (e.g. if each vertex
group is torsion-free nilpotent), then AutG is Z-linear.

Proof. Except for the use of Corollary 5.12 of [3], the proof is identical to
that of Corollary 3.5 of [5] which it generalizes. By Theorem 1.3 of [6], the
Z-linearity of G implies that the kernel K of the action of G on the standard
tree has finite index in each edge group. G/K is, therefore, the fundamental
group of a finite graph of finite groups and in particular, is finitely generated
and virtually free. But this graph of finite groups satisfies the hypotheses
of Corollary 5.12 of [3] and so Out(G/K) is finite and Aut(G/K) is finitely
generated and virtually free. In particular, Aut(G/K) is Z-linear. AutK is
also Z-linear because K is polycyclic-by-finite. But K is characteristic in
G (by Corollary 2.4 of [5]) and so there is a homomorphism from AutG to
the Z-linear group Aut(G/K) × AutK. Since the kernel is abelian (see, for
example, Proposition 2.5 of [5]), the first conclusion of the theorem holds.
As in the proof of Corollary 3.6 of [5], if the extraction of roots in the vertex
groups is unique, then this kernel is trivial and the second conclusion follows.

5 On a class of HNN extensions

Let U be a proper subgroup of H and let G = H ∗U t where we assume that
ut = u for all u ∈ U . As before, let A be the group of automorphisms of G
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which map H to a conjugate of itself. Here, using Theorem 2 and a lemma
from Section 2, we record a complete description of the structure of A (in
terms of H and U). (It seems very unlikely that these observations are new
but we are not aware of a convenient reference, even for the case U = {1}.)

Since t centralizes U , the final statement of Theorem 2 (with β = idH)
implies that A is an amalgamated free product NAutG(H) ∗B D where B =
NAutG(H)∩NAutG(H t−1

) and D = B〈δ〉 for some δ. In fact, for δ we may take
the automorphism of order 2 defined by h 7→ ht−1

(∀h ∈ H) and t 7→ t−1. If
a ∈ G, let ia be the inner automorphism of G induced by (conjugation by)
a and if a ∈ NG(H), let ja = ia|H ∈ AutH. If X ≤ G, let InnX(G) = {ix :
x ∈ X}. Also, let θ be the automorphism of G which fixes elements of H and
inverts t.

We first analyze the factor NAutG(H).
If α is any element of NAutG(H) then by Lemma 2.6, tα = a−1tεb for some

a, b ∈ H and ε ∈ {−1, 1} and hence, for some β ∈ 〈θ〉, tαβ = a−1tb. Then

uα = uαβ = (ut)αβ = (uαβ)tαβ

= (uα)a−1tb

and so (uα)a−1 ∈ H ∩ H t−1
= U for any u ∈ U . Thus, (Uα)a−1 ⊆ U . A

similar argument using (αβ)−1 instead of αβ yields that (Ua)α−1 ⊆ U and so
αi−1

a ∈ NAutG(U). Moreover, since t centralizes U , (uα)a−1tb = (uα)a−1b and
so a−1b ∈ CH(Uα) = CH(Ua), whence c = ab−1 ∈ CH(U).

If γ = (αi−1
a )|H ∈ NAutH(U), let φ(γ,c) be the automorphism of G which

maps h to hγ for all h ∈ H and sends t to tc−1. Then α = φ(γ,c)iaβ = φ(γ,c)βia.
This motivates the following construction:

Let E0 be the semidirect product NAutH(U)[CH(U)] (using the obvious
action). Elements (γ, c) of E0 are identified with automorphisms φ(γ,c) as
above and this defines a homomorphism from E0 to NAutG(H) ∩ NAutG(U).
By virtue of this homomorphism, E0 acts on InnH(G). (In fact, under this
action, CH(U) centralizes InnH(G) while NAutH(U) acts in the obvious way.)
Thus, we may form a second semidirect product E1 = E0[InnH(G)]. A simple
computation yields that

θ−1(φ(γ,c)ia)θ = φ(γjc,c−1)ic−1a

and we may lift this to an action of 〈θ〉 on E1 (which is trivial on InnH(G))
and construct a corresponding third semidirect product E = [E1]〈θ〉.

As observed above, the homomorphism E → NAutG(H) defined by

(γ, c, ia, β) 7→ φ(γ,c)iaβ

is surjective. If (γ, c, ia, β) is in the kernel, then a−1tβc−1a = t. If β = θ,
then (ta)2 = c−1a2 ∈ H which is false. Thus, β = idG, whence

at = c−1a ∈ H ∩H t = U t

and so a ∈ U , γ = j−1
a and c = 1. We conclude that

NAutG(U) = Eφ ∼= E/K
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where K = {(j−1
a , 1, ia, idG) : a ∈ U}.

Next we consider the amalgamated subgroup B = NA(H) ∩ NA(H t−1
).

Certainly B ⊆ NAutG(H ∩H t−1
) = NAutG(U) and so if α ∈ B then

tα ∈ CG(Uα) = CG(U)

. But also, H t−1
= (H t−1

)α = H t−α
and so

t−1tα ∈ NG(H) ∩ CG(U) = CH(U)

. Therefore, if γ = α|H ∈ NAutH(U) and t−1tα = c−1, then

α = φ(γ,c) ∈ E0

. It follows that B = (E0)
φ ∼= NAut(H)(U)[CH(U)].

It is easily checked that δ centralizes each φ(γ,1) and if c ∈ CH(U), then

δ−1φ(idH ,c)δ = φ(jc,c−1).

This determines the structure of D as a semidirect product [B]〈θ〉.
Thus, the structure of the factors of A and of the amalgamated subgroup

are completely specified in terms of H and U .
Because H ∩ Z(G) ⊆ CH(t) = U , H ∩ Z(G) = U ∩ Z(G) and so

|InnH(G) : InnU(G)| = |H : U |
. Since K ∼= InnU(G), it follows that if H is finite, then A (which is all of
AutG in this case) is an amalgamated free product of finite groups of order
2|NAutH(U)||CH(U)||H : U | and 2|NAutH(U)||CH(U)| with the amalgamated
subgroup of order |NAutH(U)||CH(U)|.
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