
Linear Algebra (Math 2890) Solution to Final Review Problems

1. Let A =


−1 6 6
3 −8 3
1 −2 6
1 −4 −3

.

(a) What is the column space of A?

(b) Describe the subspace col(A)⊥ and find an basis for col(A)⊥.

(c) Use Gram-Schmidt process to find an orthogonal basis for the
column of the matrix A.

(d) Find an orthonormal basis for the column of the matrix A.

(e) Find the orthogonal projection of y =


−1

8

−6

4

 onto the column

space of A and write y = ŷ + z where ŷ ∈ col(A) and z ∈ col(A)⊥.
Also find the shortest distance from y to Col(A).

Solution: (a) The column space is the subspace spanned by the

column vectors. So Col(A) = span{


−1
3
1
1

 ,


6
−8
−2
−4

 ,


6
3
6
−3

}.
(b) col(A)⊥ = {x|x · y = 0 for all y ∈ col(A)}

= {


x1

x2

x3

x4

 |


x1

x2

x3

x4

 ·

−1
3
1
1

 = 0,


x1

x2

x3

x4

 ·


6
−8
−2
−4

 = 0,


x1

x2

x3

x4

 ·


6
3
6
−3

 = 0}

= {


x1

x2

x3

x4

 | − x1 + 3x2 + x3 + x4 = 0, 6x1 − 8x2 − 2x3 − 4x4 =

0, 6x1 + 3x2 + 6x3 − 3x4 = 0}

Consider

 −1 3 1 1 0

6 −8 −2 −4 0
6 3 6 −3 0

 ˜6r1 + r2, 6r1 + r3

 −1 3 1 1 0
0 10 4 2 0
0 21 12 3 0


1



˜−21
10

r2 + r3

 −1 3 1 1 0
0 10 4 2 0
0 0 18

5
−6/5 0


˜−20

18
r3 + r2,− 5

18
r3 + r1

 −1 3 0 4/3 0
0 10 0 10/3 0
0 0 18

5
−6/5 0


˜−21

10
r2 + r3

 −1 3 1 1 0
0 10 4 2 0
0 0 18

5
−6/5 0


˜− 3

10
r2 + r1

 −1 0 0 1/3 0
0 10 0 10/3 0
0 0 18

5
−6/5 0


˜−r1,

1
10

r2,
5
18

r3

 1 0 0 −1/3 0
0 1 0 1/3 0
0 0 1 −1/3 0


So x1 − 1

3
x4 = 0, x2 + 1

3
x4 = 0 and x3 − 1

3
x4 = 0. This implies

that x1 = 1
3
x4, x2 = −1

3
x4 , x3 = 1

3
x4 and x =

[
x1
x2
x3
x4

]
=

 1
3
x4

− 1
3
x4

1
3
x4

x4

 =

x4

 1
3

− 1
3

1
3
1

. Hence col(A)⊥ = span{

 1
3

− 1
3

1
3
1

} and {

 1
3

− 1
3

1
3
1

} is a basis

for col(A)⊥.

Let w1 =

 −1

3

1

1

, w2 =

 6

−8

−2

−4

 and w3 =

 6

3

6

−3

.

Gram-Schmidt process is
v1 = w1, v2 = w2 − w2·v1

v1·v1
v1 and v3 = w3 − w3·v1

v1·v1
v1 − w3·v2

v2·v2
v2.

So v1 =

 −1

3

1

1

 . Compute w2 · v1 =

 6

−8

−2

−4

 ·
 −1

3

1

1

 = −36, v1 · v1 =

 −1

3

1

1

 ·

 −1

3

1

1

 = 12 and v2 =

 6

−8

−2

−4

− (−36)
12

 −1

3

1

1

 =

 3

1

1

−1

 .

2



Compute w3 ·v1 =

 6

3

6

−3

 ·
 −1

3

1

1

 = 6, w3 ·v2 =

 6

3

6

−3

 ·
 3

1

1

−1

 = 30,

v2 · v2 =

 3

1

1

−1

 ·

 3

1

1

−1

 = 12 and

v3 = w3− w3·v1

v1·v1
v1− w3·v2

v2·v2
v2 =

 6

3

6

−3

− 6
12

 −1

3

1

1

− 30
12

 3

1

1

−1

 =

 −1

−1

3

−1

.

Hence {

 −1

3

1

1

 ,

 3

1

1

−1

 ,

 −1

−1

3

−1

} is an orthogonal basis for Col(A).

{ v1

||v1|| ,
v2

||v2|| ,
v3

||v3||} = {


− 1√

12

3√
12

1√
12

1√
12

 ,


3√
12

1√
12

1√
12

− 1√
12

 ,


− 1√

12

− 1√
12

3√
12

− 1√
12

} is an orthonor-

mal basis for Col(A).

(e) y =


−1

8

−6

4

.

Since {v1 =

 −1

3

1

1

 , v2 =

 3

1

1

−1

 , v3 =

 −1

−1

3

−1

} is an orthogonal

basis for Col(A), y = ŷ + z where ŷ = y·v1

v1·v1
v1 + y·v2

v2·v2
v2 + y·v3

v3·v3
v3 ∈

Col(A) and z = y−ŷ ∈ Col(A)⊥. Compute y·v1 =

 −1

8

−6

4

·
 −1

3

1

1

 =

1 + 24− 6 + 4 = 23, v1 · v1 =

 −1

3

1

1

 ·

 −1

3

1

1

 = 1 + 9 + 1 + 1 = 12,

y·v2 =

 −1

8

−6

4

·
 3

1

1

−1

 = −3+8−6−4 = −5, v2·v2 =

 3

1

1

−1

·
 3

1

1

−1

 =

3



9 + 1 + 1 + 1 = 12,

y·v3 =

 −1

8

−6

4

·
 −1

−1

3

−1

 = 1−8−18−4 = −29, v3·v3 =

 −1

−1

3

−1

·
 −1

−1

3

−1

 =

1 + 1 + 9 + 1 = 12.

So ŷ = 23
12

 −1

3

1

1

 + (−5)
12

 3

1

1

−1

 + (−29)
12

 −1

−1

3

−1

 =

[ −3/4
31/4
−23/4
19/4

]
and z =

y − ŷ =

 −1

8

−6

4

−

[ −3/4
31/4
−23/4
19/4

]
=

[ −1/4
1/4
−1/4
−3/4

]
.

The shortest distance from y to Col(A) = ||y − ŷ|| = ||z|| =√
(−1/4)2 + (1/4)2 + (−1/4)2 + (−3/4)2 =

√
12/16 =

√
3/4

2. (a) Show that the set of vectors

B =

{
u1 =

(
−3

5
,
4

5
, 0

)
, u2 =

(
4

5
,
3

5
, 0

)
, u3 = (0, 0, 1)

}
is an orthonormal basis of R3.

Solution: Compute u1 · u2 =
(
−3

5
, 4

5
, 0

)
·
(

4
5
, 3

5
, 0

)
= −12

5
+ 12

5
= 0,

u1 · u3 =
(
−3

5
, 4

5
, 0

)
· (0, 0, 1) = 0, u2 · u3 =

(
4
5
, 3

5
, 0

)
· (0, 0, 1) = 0,

u1 ·u1 =
(
−3

5
, 4

5
, 0

)
·
(
−3

5
, 4

5
, 0

)
= 9

25
+ 16

25
= 1, u3 ·u3 = (0, 0, 1)·(0, 0, 1) =

1, u2 · u2 =
(

4
5
, 3

5
, 0

)
·
(

4
5
, 3

5
, 0

)
= 16

25
+ 9

25
= 1

(b) Find the coordinates of the vector (1,−1, 2) with respect to the
basis in (a).

Solution: Let y = (1,−1, 2). So y = y·u1

u1·u1
u1 + y·u2

u2·u2
u2 + y·u3

u3·u3
u3 =

(y ·u1)u1+(y ·u2)u2+(y ·u3)u3. Compute y ·u1 = (1,−1, 2)·
(
−3

5
, 4

5
, 0

)
=

−3
5
− 4

5
= −7

5
, y · u2 = (1,−1, 2) ·

(
4
5
, 3

5
, 0

)
= 4

5
− 3

5
= 1

5
, y · u3 =

(1,−1, 2) · (0, 0, 1) = 2.

So the coordinate of y with respect to the basis in (a) is (−7
5
, 1

5
, 2).
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3. Let A =


1 3 4 0
−3 −6 −7 2
3 3 0 −4
−5 −3 2 9


(a) Find an LU decomposition of A.

Solution: A =


1 3 4 0
−3 −6 −7 2
3 3 0 −4
−5 −3 2 9



˜3r1 + r2,−3r1 + r2, 5r1 + r4


1 3 4 0

0 3 5 2

0 −6 −12 −4

0 12 22 9



˜2r2 + r3,−4r2 + r4


1 3 4 0

0 3 5 2

0 0 −2 0

0 0 2 1



r̃3 + r4


1 3 4 0

0 3 5 2

0 0 −2 0

0 0 0 1

.

So U =


1 3 4 0

0 3 5 2

0 0 −2 0

0 0 0 1

.

Consider the matrix


1 0 0 0
−3 3 0 0
3 −6 −2 0
−5︸︷︷︸

divide by 1

12︸︷︷︸
divide by 3

2︸︷︷︸
divide by −2

1︸︷︷︸
divide by 1

.

5



We get L =


1 0 0 0
−3 1 0 0
3 −2 1 0
−5 4 −1 1

 with A = LU

(b) Use LU factorization to solve Ax =

[
1
−2
−1
2

]
Solution: Ax = b ⇔ L Ux︸︷︷︸

y

= b ⇔ Ly = b and Ux = y.

So we have to solve Ly =


1 0 0 0
−3 1 0 0
3 −2 1 0
−5 4 −1 1




y1

y2

y3

y4

 =

[
1
−2
−1
2

]
first,

that is
y1 = 1, −3y1+y2 = −2, 3y1−2y2+y3 = −1, −5y1+4y2−y3+y4 =
2.
Thus y1 = 1, y2 = −2 + 3y1 = −2 + 3 = 1, y3 = −1− 3y1 + 2y2 =
−1− 3 + 2 = −2 and y4 = 2 + 5y1 − 4y2 + y3 = 2 + 5− 4− 2 = 1.

Now we solve Ux = y, i.e


1 3 4 0

0 3 5 2

0 0 −2 0

0 0 0 1




x1

x2

x3

x4

 =


1
1
−2
1

. So

x4 = 1, −2x3 = −2, 3x2 + 5x3 + 2x4 = 1 and x1 + 3x2 + 4x3 = 1.
Finally, we get x4 = 1, x3 = −2/−2 = 1, x2 = (1−5x3−2x4)/3 =
(1− 5− 2)/3 = −2 and x1 = 1− 3x2 − 4x3 = 1− 3(−2)− 4 = 3.

So x =

[
3
−2
1
1

]
(c) Find the inverse matrix of A if possible.

Consider [A|I] =


1 3 4 0 1 0 0 0

−3 −6 −7 2 0 1 0 0

3 3 0 −4 0 0 1 0

−5 −3 2 9 0 0 0 1



6



˜3r1 + r2,−3r1 + r3, 5r1 + r4


1 3 4 0 1 0 0 0

0 3 5 2 3 1 0 0

0 −6 −12 −4 −3 0 1 0

0 12 22 9 5 0 0 1



˜2r2 + r3,−4r2 + r4


1 3 4 0 1 0 0 0

0 3 5 2 3 1 0 0

0 0 −2 0 3 2 1 0

0 0 2 1 −7 −4 0 1



r̃3 + r4


1 3 4 0 1 0 0 0

0 3 5 2 3 1 0 0

0 0 −2 0 3 2 1 0

0 0 0 1 −4 −2 1 1



˜(−1/2)r3


1 3 4 0 1 0 0 0

0 3 5 0 11 5 −2 −2

0 0 1 0 −3/2 −1 −1/2 0

0 0 0 1 −4 −2 1 1



˜−5r3 + r2,−4r3 + r1


1 3 0 0 7 4 2 0

0 3 0 0 37
2

10 1/2 −2

0 0 1 0 −3/2 −1 −1/2 0

0 0 0 1 −4 −2 1 1



˜(1/3)r2


1 3 0 0 7 4 2 0

0 1 0 0 37
6

10/3 1/6 −2/3

0 0 1 0 −3/2 −1 −1/2 0

0 0 0 1 −4 −2 1 1



˜−3r2 + r1


1 0 0 0 −23/2 −6 3/2 2

0 1 0 0 37
6

10/3 1/6 −2/3

0 0 1 0 −3/2 −1 −1/2 0

0 0 0 1 −4 −2 1 1

 .
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So A−1 =


−23/2 −6 3/2 2

37
6

10/3 1/6 −2/3

−3/2 −1 −1/2 0

−4 −2 1 1


(d) Use the inverse of A to solve Ax =

[
1
−2
−1
2

]
.

Solution: We get x = A−1

[
1
−2
−1
2

]

=


−23/2 −6 3/2 2

37
6

10/3 1/6 −2/3

−3/2 −1 −1/2 0

−4 −2 1 1




1
−2
−1
2

 =


3
−2
1
1

.

4. Let A be the matrix

A =

2 1 1
1 2 1
1 1 2

 .

Suppose the characteristic polynomial of det(A− λ) is (λ− 1)2(λ− 4).

(a) Orthogonally diagonalizes the matrix A, giving an orthogonal ma-
trix P and a diagonal matrix D such that A = PDP t

Solution: We know that the eigenvalues are 1 ,1 and 4.

When λ = 1, A− (1)I =


1 1 1

1 1 1

1 1 1

̃


1 1 1

0 0 0

0 0 0


x ∈ Null(A− I) if x1 + x2 + x3 = 0. So x1 = −x2 − x3 and

x =

−x2 − x3

x2

x3

 = x2

−1
1
0

+x3

−1
0
1

. Thus {w1 =

−1
1
0

 , w2 =−1
0
1

} is a basis for Null(A− (−1)I).
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Now we use Gram-Schmidt process to find an orthogonal basis for
Null(A− I).

Let v1 = w1 =

−1
1
0

 and v2 = w2 − w2·v1

v1·v1
v1. Compute w2 · v1 =−1

0
1

 ·

−1
1
0

 = 1 and v1 · v1 =

−1
1
0

 ·

−1
1
0

 = 2.

So v2 =

−1
0
1

− (1
2
)

−1
1
0

 =

−1
2

−1
2

1

.

Hence {v1 =

−1
1
0

 , v2 =

−1
2

−1
2

1

}is an orthogonal basis for Null(A−

I).

When λ = 4, A− 4I =


−2 1 1

1 −2 1

1 1 −2

 ˜interchange r1 and r2,


1 −2 1

−2 1 1

1 1 −2


˜−2 r1 + r2,−r1 + r3


1 −2 1

0 −3 3

0 3 −3


˜r2 + r3, r2/(−3)


1 −2 1

0 1 −1

0 0 0

 ˜2r2 + r1


1 0 −1

0 1 −1

0 0 0

 x ∈ Null(A−

4I) if x1 − x3 = 0 and x2 − x3 = 0. So x =

x3

x3

x3

 = x3

1
1
1

. Thus

{v3 =

1
1
1

} is a basis for Null(A− 4I).
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So {v1 =

−1
1
0

 , v2 =

−1
2

−1
2

1

 , v3 =

1
1
1

} is an orthogonal basis

for R3 which are eigenvectors corresponding to λ = 1, λ = 1 and

λ = 4. Compute ||v1|| =
√

2, ||v2|| =
√

1
4

+ 1
4

+ 1 =
√

6
4

=
√

3
2

and ||v3|| =
√

3.

Thus { v1

||v1|| =

−1√
2

1√
2

0

 , v2

||v2|| =

−
1√
6

− 1√
6

2√
6

 , v3

||v3|| =


1√
3

1√
3

1√
3

} is an or-

thonormal basis for R3 which are eigenvectors corresponding to
λ = 1, λ = 1 and λ = 4.

Finally, we have A = P

1 0 0
0 1 0
0 0 4

P T where P = [ v1

||v1||
v2

||v2||
v3

||v3|| ] =
−1√

2
− 1√

6
1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

.

(b) Find A10 and eA.

So A10 = P

1 0 0
0 1 0
0 0 410

P T and eA = P

e 0 0
0 e 0
0 0 e4

P T

10



5. Classify the quadratic forms for the following quadratic forms. Make
a change of variable x = Py, that transforms the quadratic form into
one with no cross term. Also write the new quadratic form.

(a) 9x2
1 − 8x1x2 + 3x2

2.

Let Q(x1, x2) = 9x2
1−8x1x2+3x2

2 = xT
[

9 −4
−4 3

]
x and A =

[
9 −4
−4 3

]
.

We want to orthogonally diagonalizes A.

Compute A− λI =
[

9−λ −4
−4 3−λ

]
and det(A− λI) = (9− λ)(3− λ)−

16 = λ2 − 12λ + 27 − 16 = λ2 − 12λ + 11 = (λ − 1)(λ − 11). So
λ = 1 or λ = 11. Since the eigenvalues of A are all positive, we
know that the quadratic form is positive definite.

Now we diagonalize A.

λ = 1: A−1·I =
[

9−1 −4
−4 3−1

]
=

[
8 −4
−4 2

]̃
[ 2 −1
0 0 ]. So x ∈ Null(A−1·I)

iff 2x1 − x2 = 0. So x2 = 2x1 and x = [ x1
2x1

] = x1 [ 1
2 ]. So [ 1

2 ] is an
eigenvector corresponding to eigenvalue λ = 1.

λ = 11: A−11 ·I =
[

9−11 −4
−4 3−11

]
=

[ −2 −4
−4 −8

]̃
[ 1 2
0 0 ]. So x ∈ Null(A−

11 · I) iff x1 + 2x2 = 0. So x1 = −2x2 and x = [ −2x2
x2

] = x2 [ −2
1 ].

So [ −2
1 ] is an eigenvector corresponding to eigenvalue λ = 11.

Now {v1 = [ 1
2 ] , v2 = [ −2

1 ]} is an orthogonal basis. Compute

||v1|| =
√

5 and ||v2|| =
√

5. Thus { v1

||v1|| =

[
1√
5

2√
5

]
, v2

||v2|| =

[
−2√

5
1√
5

]
} is

an orthonormal basis of eigenvectors. So we have A = Q [ 1 0
0 11 ] QT

where Q =

[
1√
5
−2√

5
2√
5

1√
5

]
.

Now Q(x) = xT Ax = xT Q [ 1 0
0 11 ] QT x = yT [ 1 0

0 11 ] y = y1
1 + 11y2

2 if

y = QT x. So Qy = QQT x, x = Qy and P = Q =

[
1√
5

2√
5

−2√
5

1√
5

]
. Note

that we have used the fact that QQT = I.

(b) −5x2
1 + 4x1x2 − 2x2

2.

Let Q(x1, x2) = −5x2
1 + 4x1x2 − 2x2

2 = xT
[ −5 2

2 −2

]
x and A =[ −5 2

2 −2

]
. We want to orthogonally diagonalizes A.

Compute A−λI =
[ −5−λ 2

2 −2−λ

]
and det(A−λI) = (−5−λ)(−2−

λ) − 4 = λ2 + 7λ + 10 − 4 = λ2 + 7λ + 6 = (λ + 1)(λ + 6). So
λ = −1 or λ = −6. Since the eigenvalues of A are all negative, we
know that the quadratic form is negative definite.

Now we diagonalize A.
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λ = −1: A−(−1)·I =
[
−5−(−1) 2

2 −2−(−1)

]
=

[ −4 2
2 −1

]̃
[ 2 −1
0 0 ]. So x ∈

Null(A−1·I) iff 2x1−x2 = 0. So x2 = 2x1 and x = [ x1
2x1

] = x1 [ 1
2 ].

So [ 1
2 ] is an eigenvector corresponding to eigenvalue λ = −1.

λ = −6: A − (−6) · I =
[
−5−(−6) 2

2 (−2)−(−6)

]
= [ 1 2

2 4 ]̃ [ 1 2
0 0 ]. So x ∈

Null(A− 11 · I) iff x1 + 2x2 = 0. So x1 = −2x2 and x = [ −2x2
x2

] =
x2 [ −2

1 ]. So [ −2
1 ] is an eigenvector corresponding to eigenvalue

λ = −6.

Now {v1 = [ 1
2 ] , v2 = [ −2

1 ]} is an orthogonal basis. Compute

||v1|| =
√

5 and ||v2|| =
√

5. Thus { v1

||v1|| =

[
1√
5

2√
5

]
, v2

||v2|| =

[
−2√

5
1√
5

]
} is

an orthonormal basis of eigenvectors. So we have A = Q
[ −1 0

0 −6

]
QT

where Q =

[
1√
5
−2√

5
2√
5

1√
5

]
.

Now Q(x) = xT Ax = xT Q
[ −1 0

0 −6

]
QT x = yT [ 1 0

0 11 ] y = −y1
1 − 6y2

2

if y = QT x. So Qy = QQT x, x = Qy and P = Q =

[
1√
5

2√
5

−2√
5

1√
5

]
.

(c) 8x2
1 + 6x1x2.

Let Q(x1, x2) = 8x2
1 + 6x1x2 = xT [ 8 3

3 0 ] x and A = [ 8 3
3 0 ]. We want

to orthogonally diagonalizes A.

Compute A−λI =
[

8−λ 3
3 0−λ

]
and det(A−λI) = (8−λ)−λ−9 =

λ2 − 8λ − 9 = (λ + 1)(λ − 9). So λ = −1 or λ = 8. Since A
has positive and negative eigenvalues, we know that the quadratic
form is indefinite.

Now we diagonalize A.

λ = −1 A − (−1) · I =
[

8−(−1) 3
3 0−(−1)

]
= [ 9 3

3 1 ]̃ [ 3 1
0 0 ]. So x ∈

Null(A− 1 · I) iff 3x1 + x2 = 0. So x2 = −3x1 and x = [ x1
−3x1

] =
x1 [ 1

−3 ]. So [ 1
−3 ] is an eigenvector corresponding to eigenvalue

λ = −1.

λ = 9: A−9·I =
[

8−9 3
3 0−9

]
=

[ −1 3
3 −9

]̃
[ 1 −3
0 0 ]. So x ∈ Null(A−9·I)

iff x1 − 3x2 = 0. So x1 = 3x2 and x = [ 3x2
x2

] = x2 [ 3
1 ]. So [ 3

1 ] is an
eigenvector corresponding to eigenvalue λ = 9.

Now {v1 = [ 1
−3 ] , v2 = [ 3

1 ]} is an orthogonal basis. Compute

||v1|| =
√

10 and ||v2|| =
√

10. Thus { v1

||v1|| =

[
1√
10
−3√
10

]
, v2

||v2|| =

12



[
3√
10
1√
10

]
} is an orthonormal basis of eigenvectors. So we have A =

Q [ −1 0
0 9 ] QT where Q =

[
1√
10

−3√
10

3√
10

1√
10

]
.

Now Q(x) = xT Ax = xT Q [ −1 0
0 9 ] QT x = yT [ −1 0

0 9 ] y = −y2
1 + 9y2

2 if

y = QT x. So Qy = QQT x, x = Qy and P = Q =

[
1√
10

−3√
10

3√
10

1√
10

]
.
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6. Find an SVD of A =

[
2 3
0 2

]
. This problem is not covered. This will

not be in the final exam.

7. Let A =


1 −3 4 −2 5
2 −6 9 −1 8
2 −6 9 −1 9
−1 3 −4 2 −5

.

(a) Find a basis for the column space of A
(b) Find a basis for the nullspace of A
(c) Find the rank of the matrix A
(d) Find the dimension of the nullspace of A.

(e) Is


1
4
3
1

 in the range of A?

(e) Does Ax =


0
3
2
0

 have any solution? Find a solution if it’s solvable.

Solution: Consider the matrix


1 −3 4 −2 5 1 0

2 −6 9 −1 8 4 3

2 −6 9 −1 9 3 2

−1 3 −4 2 −5 1 0


˜−2r1 + r2,−2r1 + r3, r1 + r4

1 −3 4 −2 5 1 0

0 0 1 3 −2 2 3

0 0 1 3 −1 1 2

0 0 0 0 0 2 0


˜−r2 + r3
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
1 −3 4 −2 5 1 0

0 0 1 3 −2 2 3

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0


˜2r3 + r2,−5r3 + r1

1 −3 4 −2 0 6 5

0 0 1 3 0 0 1

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0


˜−4r2 + r1
1 −3 0 −14 0 6 1

0 0 1 3 0 0 1

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0

.

So the first, third and fifth vector forms a basis for Col(A), i.e {

1 4 5

2 9 8

2 9 9

−1 −4 −5

}

is a basis for Col(A). The rank of A is 3 and the dimension of the null
space is 5− 3 = 2.
x ∈ Null(A) if x1 − 3x2 − 14x4 = 0, x3 + 3x4 = 0 and x5 = 0. So

x =


3x2 + 14x4

x2

−x4

x4

0

 = x2


3
1
0
0
0

 + x4


14
0
−1
1
0

. Thus{


3
1
0
0
0

 ,


14
0
−1
1
0

 is a basis

for NULL(A).

From the result of row reduction, we can see that Ax =


1
4
3
1

 is incon-
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sistent (not solvable) and


1
4
3
1

 is not in the range of A.

From the result of row reduction, we can see that Ax =


0
3
2
0

 is solvable.

8. Determine if the columns of the matrix form a linearly independent set.
Justify your answer.

0 1 3 0
0 0 1 4
0 0 0 1
2 0 0 0

 ,


−4 −3 0
0 −1 4
1 0 3
5 4 6

 ,


−4 −3 1 5 1
2 −1 4 −1 2
1 2 3 6 −3
5 4 6 −3 2

.

Solution:


0 1 3 0
0 0 1 4
0 0 0 1
2 0 0 0

 ˜move the last row to the first row


2 0 0 0
0 1 3 0
0 0 1 4
0 0 0 1


This matrix has four pivot vectors. So the columns of the matrix form
a linearly independent set.
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
−4 −3 0
0 −1 4
1 0 3
5 4 6

 ˜interchange first and third row


1 0 3
0 −1 4
−4 −3 0
5 4 6


˜r3 + 4r1, r4 + (−5)r1


1 0 3
0 −1 4
0 −3 12
0 4 −9

 (̃−1)r2


1 0 3
0 1 −4
0 −3 12
0 4 −9


˜r3 + 3r2, r4 + (−4)r2


1 0 3
0 1 −4
0 0 0
0 0 7

 ˜
interchange 3rd and 4th row,

1

7
r4


1 0 3
0 1 −4
0 0 1
0 0 0


This matrix has three pivot vectors. So the columns of the matrix form
a linearly independent set.

The column vectors of 
−4 −3 1 5 1
2 −1 4 −1 2
1 2 3 6 −3
5 4 6 −3 2


form a dependent set since we have five column vectors in R4.

9. Circle True or False:
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T F The matrix
[

3 5 1
0 2 3
0 0 4

]
is diagonalizable

T Because
[

3 5 1
0 2 3
0 0 4

]
has three distinct eigenvalues.

T F The matrix
[

3 5 1
0 2 3
0 0 4

]
is orthogonally diagonalizable

F Because
[

3 5 1
0 2 3
0 0 4

]
is not symmetric. Recall that a matrix

is orthogonally diagonalizable if and only if it’s symmetric.

T F An orthogonal n× n matrix times an orthogonal n× n matrix is orthogonal

T Suppose A and B are orthogonal. Then AAT = AT A = I,

BBT = BT B = I, (AB) · (AB)T = ABBT AT = AIAT = AAT = I.

Similarly, we have (AB)T AB = BT AT AB = I. Not that we have used the

fact that (AB)T = BT AT .

T F A 5× 5 orthogonally diagonalizable matrix has an orthonormal set of
5 eigenvectors

T A is orthogonally diagonalizable if A = PDP T . Recall that the column

vectors of P are eigenvectors and it is an orthornormal basis.

T F A square matrix that has the zero eigenvalue is not invertible

T A matrix A has the zero eigenvalue if there exists a nonzero vector x

such that Ax = 0x = 0. So Ax = 0 has nonzero solution and A is not

invertible.

T F A subspace of dimension 3 can not have a spanning set of
4 vectors

F Let S = Span{
[

1
0
0

]
,
[

0
1
0

]
,
[

0
0
1

]
,
[

1
1
0

]
} Then dim(S) = 3 and

it is spanned by 4 vectors.

18



T F A subspace of dimension 3 can not have a linearly independent set of
4 vectors

T A subspace of dimension 3 have at most three linearly independent set of

vectors

T F The characteristic polynomial of a 2× 2 matrix is always
a polynomial of degree 2

T The characteristic polynomial of a n× n matrix is always
a polynomial of degree n.

T F If the characteristic polynomial of a matrix is (λ− 4)3(λ− 1)2

and the eigenspace associated to λ = 4 has dimension 3, than the matrix
is diagonalizable

F Because the eigenspace associated to λ = 4 has dimension 3 and the

eigenspace associated to λ = 1 could have dimension 1, then we may not

have five independent eigenvectors. So the matrix is not necessarily

diagonizable.

T F If the characteristic polynomial of a matrix is (λ− 4)3(λ− 1)λ− 2)
and the eigenspace associated to λ = 4 has dimension 3, than the matrix
is diagonalizable

T Because the eigenspace associated to λ = 4 has dimension 3, the eigenspace

associated to λ = 1 have dimension 1 and the eigenspace associated

to λ = 2 have dimension 1, then we

may not have five independent eigenvectors. So the matrix is diagonizable.

T F The columns of an orthogonal matrix are orthonormal vectors

T This is true by the definition of an orthogonal matrix.
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T F AB = BA for any n× n matrices A and B

F The matrix multiplication is not necessarily commutative.

T F det(A + B) = det A + det B for any n× n matrices A and B

F This is false. For example, A = [ 1 0
0 0 ] , B = [ 0 0

0 1 ]. Then A + B =
[ 1 0
0 1 ],

det(A) = det(B) = 0 and det(A + B) = det(I) = 1.

T F Any upper triangular matrix is always diagonalizable.

F It may not have enough eigenvectors. For example, [ 1 1
0 1 ] is upper

triangular matrix. But it has only one eigenvector. So it is not diago-
nizable.
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