1.1 Angles and Their Measurement

August 27, 2012
Definition 1 Two angles are adjacent if they lie in the same plane, they share a common side, and the interiors of the angles have no point in common.

Figure 1:

Example 1 (a) What is the angle that $\angle B A C$ is adjacent to?
(b) Is $\angle B A D$ adjacent to $\angle C A E$?

Answer: $\angle B A C$ is adjacent to $\angle C A D$.
$\angle B A D$ is not adjacent to $\angle C A E$ because the interiors of these two angles overlap.

Definition 2 The common side of two adjacent angles of equal measure (angle) is called an angle bisector.

Figure 2:

Example 2 What is the angle bisector of the above figure?
Definition 3 Two angles form a linear pair if they are adjacent and the non common sides are opposite rays.

Figure 3:
Definition 4 Two angles are vertical if their sides form two pair of opposite rays.

Example 3 (a) $\angle C E A$ and $\angle _$form a linear pair.
(b) $\angle C E A$ and \angle \qquad are vertical.

Definition 5 Two angles are supplementary if the sum of their measures is $180^{\circ}($ or $\pi)$; each angle is called the supplement of the other.

Remark Two angles that form a linear pair are supplementary. But two angles that are supplementary may not form a linear pair.

Figure 4:

Example 4 (a) Find all the angles in the above figure that are supplementary to $\angle A G E$. Note that $\overline{A B}$ and $\overline{C D}$ are parallel.
(b) Find all the angles in the above figure that are supplementary to $\angle A G E$ and don't form a linear pair with $\angle A G E$.

Definition 6 Two angles are complementary if the sum of their measures is 90° (or $\left.\frac{\pi}{2}\right)$; each angle is called the complement of the other.

Figure 5:

Example 5 (a) Find all the angles in the above figure that are complementary to $\angle C B A$.
Note that $\overline{C A}$ and $\overline{D E}$ are parallel.

Definition 7 An angle measuring less than 90° is called acute.
An angle measuring more than 90° is called obtuse.
An 90° angle is called a right angle.
An 180° angle is called a straight angle.

Figure 6:

Example $6 \angle F A B, \angle C D E$ and $\angle D E G$ are obtuse. $\angle B C D$ and $\angle G F A$ are acute. $\angle A B C$ is a right angle. $\angle E G F$ is a straight angle.

Definition 8 Two angles are congruent if they have the same measure. Two line segments are congruent if they have the same length.

Figure 7:
Example 7 In the figure above, $\overline{B E}$ is parallel to $\overline{A D}$ and $\overline{B C}$ is parallel to $\overline{E F} . \angle B A G, \angle C A D, \angle E D A$ and $\angle F D H$ are congruent in the above picture.
$\overline{A B}$ and $\overline{D E}$ are congruent. $\overline{G A}$ and $\overline{D H}$ are not congruent.

Lecture note on August 29, 2012

Remark 1 We denote $\angle \alpha \cong \angle \beta$ if $\angle \alpha$ is congruent to $\angle \beta$.
After introducing preceeding definitions, we can derive the following theorems.

Theorem 0.1 1. Supplementary of congruent angles are congruent. 2. complementary of congruent angles are congruent.
3. The sum of the measure of two angles in a linear pair is 180° (π).

Theorem 0.2 Vertical angles are congruent.

Example 8 When two lines intersect, they form four angles if they don't overlap. If one of the angles is a right angle, then all four angles are right angles. We say these two lines are perpendicular and is denoted by the symbol \urcorner

