Lecture note on August 29, 2012
Remark 1 We denote $\angle A \cong \angle B$ if $\angle A$ is congruent to $\angle B$.
We denote $\overline{A B} \cong \overline{C D}$ if $\overline{A B}$ is congruent to $\overline{C D}$ (i.e they have the same length).
We will denote the measure of an angle A by $m(\angle A)$

Figure 8:

Example 8 1. $m(\angle A)=$? $m(\angle B)=$? $m(\angle D)=$?
2. $\overline{B D} \cong$? $\angle D \cong$?

After introducing preceding definitions, we can state the following theorems.
Theorem 0.1 1. Supplementary of congruent angles are congruent.
2. Complementary of congruent angles are congruent.
3. The sum of the measure of two angles in a linear pair is $180^{\circ} \quad(\pi)$.

We will prove the first statement. The proofs of the other two results are similar. Proof. Let A, B, C, D be four angles such that $\angle A \cong \angle C, \angle B$ is supplementary to $\angle A$ and $\angle D$ is supplementary to $\angle C$. By definition, we have $m(\angle A)=$ $m(\angle C), m(\angle B)+m(\angle A)=180^{\circ}$ and $m(\angle C)+m(\angle D)=180^{\circ}$. Thus we have $m(\angle B)+m(\angle A)=m(\angle C)+m(\angle D)$. Using $m(\angle A)=m(\angle C)$, we get $m(\angle B)=m(\angle D)$. Thus $\angle B \cong \angle D$.

Theorem 0.2 Vertical angles are congruent.

Figure 9:
Proof. In the above figure, we want to show that $\alpha=\beta$ and $\gamma=\delta$. Note that α and δ form a linear pair and β and δ form a linear pair. We have $\alpha+\delta=180^{\circ}$. $\beta+\delta=180^{\circ}$. This gives $\alpha+\delta=\beta+\delta$ and implies that $\alpha=\beta$. Similarly, we can show that $\gamma=\delta$.

Definition 9 Two lines l and m are perpendicular if there exists a point A that lies on both l and m and there exists points $B \in l$ and $C \in m$ such that $\angle B A C$ is a right angle. We denote it by $l \perp m$ if l and m are perpendicular. We also denote it by \urcorner in the figure.

Figure 10:

Definition 10 A perpendicular bisector of a segment is a line intersect a segment at its midpoint and is perpendicular to the segment.

Figure 11:

Example 9 In the above figure, which segment is the perpendicular bisector of $\overline{A B}$?

Figure 12:

Example 10 In the above figure, $\angle B C D$ and $\angle D C A$ form a linear pair. The rays $\overrightarrow{C F}$ and $\overrightarrow{C E}$ are their angle bisectors, respectively. Prove that $\overrightarrow{C F} \perp \overrightarrow{C E}$.

Proof. Since $\angle B C D$ and $\angle D C A$ form a linear pair, we have $m(\angle B C D)+$ $m(\angle D C A)=180^{\circ}$. Because rays $\overrightarrow{C F}$ and $\overrightarrow{C E}$ are angle bisectors, we get $m(\angle B C D)=2 \alpha$ and $m(\angle D C A)=2 \beta$. This implies that $2 \alpha+2 \beta=180^{\circ}$ and $\alpha+\beta=90^{\circ}$. Thus $m(\angle F C E)=90^{\circ}$ and $\overrightarrow{C F} \perp \overrightarrow{C E}$.

