Lecture note on August 29, 2012

Remark 1 We denote $\angle A \cong \angle B$ if $\angle A$ is congruent to $\angle B$. We denote $\overline{AB} \cong \overline{CD}$ if \overline{AB} is congruent to \overline{CD} (i.e they have the same length). We will denote the measure of an angle A by $m(\angle A)$

Example 8 1. $m(\angle A) = ? m(\angle B) = ? m(\angle D) = ?$. 2. $\overline{BD} \cong ? \angle D \cong ?$

After introducing preceding definitions, we can state the following theorems.

Theorem 0.1 1. Supplementary of congruent angles are congruent.

- 2. Complementary of congruent angles are congruent.
- 3. The sum of the measure of two angles in a linear pair is 180° (π).

We will prove the first statement. The proofs of the other two results are similar. *Proof.* Let A, B, C, D be four angles such that $\angle A \cong \angle C, \angle B$ is supplementary to $\angle A$ and $\angle D$ is supplementary to $\angle C$. By definition, we have $m(\angle A) =$ $m(\angle C), m(\angle B) + m(\angle A) = 180^{\circ}$ and $m(\angle C) + m(\angle D) = 180^{\circ}$. Thus we have $m(\angle B) + m(\angle A) = m(\angle C) + m(\angle D)$. Using $m(\angle A) = m(\angle C)$, we get $m(\angle B) = m(\angle D)$. Thus $\angle B \cong \angle D$.

Theorem 0.2 Vertical angles are congruent.

Proof. In the above figure, we want to show that $\alpha = \beta$ and $\gamma = \delta$. Note that α and δ form a linear pair and β and δ form a linear pair. We have $\alpha + \delta = 180^{\circ}$. $\beta + \delta = 180^{\circ}$. This gives $\alpha + \delta = \beta + \delta$ and implies that $\alpha = \beta$. Similarly, we can show that $\gamma = \delta$.

Definition 9 Two lines l and m are perpendicular if there exists a point A that lies on both l and m and there exists points $B \in l$ and $C \in m$ such that $\angle BAC$ is a right angle. We denote it by $l \perp m$ if l and m are perpendicular. We also denote it by \neg in the figure.

Definition 10 A perpendicular bisector of a segment is a line intersect a segment at its midpoint and is perpendicular to the segment.

Example 9 In the above figure, which segment is the perpendicular bisector of \overline{AB} ?

Figure 12:

Example 10 In the above figure, $\angle BCD$ and $\angle DCA$ form a linear pair. The rays \overrightarrow{CF} and \overrightarrow{CE} are their angle bisectors, respectively. Prove that $\overrightarrow{CF} \perp \overrightarrow{CE}$.

Proof. Since $\angle BCD$ and $\angle DCA$ form a linear pair, we have $m(\angle BCD) + m(\angle DCA) = 180^{\circ}$. Because rays \overrightarrow{CF} and \overrightarrow{CE} are angle bisectors, we get $m(\angle BCD) = 2\alpha$ and $m(\angle DCA) = 2\beta$. This implies that $2\alpha + 2\beta = 180^{\circ}$ and $\alpha + \beta = 90^{\circ}$. Thus $m(\angle FCE) = 90^{\circ}$ and $\overrightarrow{CF} \perp \overrightarrow{CE}$.