Review Problems for Midterm I

Midterm I: 2pm - 2:50 pm Friday, September 21 at UH1000 Newton
Lab
Topics: 1.1 and 1.2
Office Hours before the midterm: Thursday 4:30-5:30 pm, F 10-11 am at UH2080B.

1.

Given a figure above and a triangle $\triangle A B C$ which have the following properties.
(i) $\overline{D E} \cong \overline{D F}$
(ii) $\overline{D E} \perp \overline{A B}$ and $\overline{D F} \perp \overline{B C}$
(iii) $\overline{M A} \cong \overline{M C}$
(iv) O is the midpoint of $\overline{A C}$.
(v) N is the midpoint of $\overline{B C}$.
(vi) B, C and K lie on the line.
(vii) There is exactly one median, angle bisector and perpendicular bisector in the above figure.
Answer the following questions.
(a) What is the exterior angle of $\angle B C A$?

Solution: $\angle A C K$
(b) What is the angle that make a linear pair with $\angle E D G$?

Solution: $\angle G D H$ or $\angle E D F$
(c) What is the angle vertical to $\angle E D G$?

Solution: $\angle F D H$
(d) Which triangle is $\triangle B D E$ congruent to? Justify your answer. Solution: $\triangle B D E \cong \triangle B D F$.
Note that $\triangle B D E$ and $\triangle B D F$ are right triangles. Because $\overline{D E} \cong$ $\overline{D F}$ and $\overline{B D} \cong \overline{B D}$. We can use the hypotenuse-leg condition for right triangle to conclude that $\triangle B D E \cong \triangle B D F$.

MATH 3440: page 1 of 7
(e) Which segment is an angle bisector? Justify your answer.

Solution: $\overline{B D}$ is the angle bisector of $\angle E B H$. From previous question, we know that $\triangle B D E \cong \triangle B D F$ which implies $\angle E B D \cong$ $\angle F B D$. Thus $\overline{B D}$ is the angle bisector of $\angle E B H$.
(f) Which segment is an perpendicular bisector? Justify your answer.
Solution: $\overline{M Q}$ is the perpendicular bisector of $\overline{C A}$. Since $\overline{O A} \cong$ $\overline{O C}, \overline{A M} \cong \overline{C M}$ and $\overline{M O} \cong \overline{M O}$, we have $\triangle M O A \cong \triangle M O C$ by SSS. So $\angle M O A \cong \angle M O C$. Also $m(\angle M O A)+m(\angle M O C)=180^{\circ}$. Then $m(\angle M O A)=m(\angle M O C)=90^{\circ}$. Thus $\overline{M Q}$ is the perpendicular bisector of $\overline{C A}$.
(g) Which segment is an median of $\triangle A B C$? Why?

Solution: $\overline{A N}$ is the median of the triangle $\triangle A B C$ because N is the midpoint of $\overline{B C}$.
(h) Which triangle is $\triangle E D G$ congruent to? Justify your answer. Solution: $\triangle E D G \cong \triangle F D H$. Note that $\triangle E D G$ and $\triangle F D H$ are right triangles. Since $\angle G E D \cong \angle H F D$ (right angle), $\overline{D E} \cong \overline{D F}$ and $\angle E D G \cong \angle F D H$, we have $\triangle E D G \cong \triangle F D H$ by ASA.
(i) Which of the following angle is bigger? $\angle A C K$ or $\angle B A C$. Why? Solution: $m(\angle A C K)>m(\angle B A C)$ because $\angle A C K$ is the exterior angle of $\angle B A C$ and $\angle B A C$ is the remote angle of $\angle B A C$. .
(j) Which of the following angle is bigger? $\angle A C K$ or $\angle E B D$. Why? Solution: $m(\angle A C K)>m(\angle E B D)$. Because $\angle A C K$ is the exterior angle of $\angle B A C, \angle A B C$ is the remote angle of $\angle B A C$ and $\overline{B D}$ is the angle bisector of $\angle A B C$. We have $m(\angle A C K)>m(\angle A B C)=$ $2 m(\angle E B D)>m(\angle E B D)$.

Given a hexagon above which satisfies the following properties.
(i) $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{D E} \cong \overline{E F} \cong \overline{F A}$
(ii) $\angle A \cong \angle B \cong \angle C \cong \angle D \cong \angle E \cong \angle F$

Answer the following questions.
(a) Prove that $\triangle A B C \cong \triangle A E F$ (there is a typo in the original problem).
Solution: Since $\overline{A B} \cong \overline{A F}, \angle A B C \cong \angle A F E$ and $\overline{B C} \cong \overline{F E}$, we have

2. $\triangle A B C \cong \triangle A E F$ by SAS.
(b) Prove that $\triangle A C E$ is a equilateral triangle.

Solution: From previous question, we know that $\triangle A B C \cong \triangle A E F$ which implies $\overline{A C} \cong \overline{A E}$. Similarly, we can also prove that $\triangle A B C \cong$ $\triangle C D E$ which implies $\overline{A C} \cong \overline{C E}$. Thus we have $\overline{A C} \cong \overline{A E} \cong \overline{C E}$ and $\triangle A C E$ is a equilateral triangle.
(c) Which triangle is $\triangle A C D$ congruent to? Justify your answer. Solution: $\triangle A C D \cong \triangle A E D$. Since $\overline{A C} \cong \overline{A E}$ (from a), $\overline{C D} \cong \overline{E D}$ and $\overline{A D} \cong \overline{A D}$, we have $\triangle A C D \cong \triangle A D E$ by SSS.
(d) Prove that $\overline{A D} \perp \overline{C E}$.

Solution: Method 1: Since $\overline{A C} \cong \overline{A E}$ (from a) and $\overline{D C} \cong \overline{D E}$, so the quadrilateral $A C D E$ is a kite. Thus the diagonal $\overline{A D} \perp \overline{C E}$.

Method 2: Let P be the intersection between $\overline{A D}$ and $\overline{C E}$. Since $\overline{A C} \cong \overline{A E}, \angle C A P \cong \angle E A P$ (from c) and $\overline{A P} \cong \overline{A P}$, we have $\triangle A C P \cong \triangle A E P$ by SAS. So $\angle C P A \cong \angle E P A$. Note that $\angle C P A$ and $\angle E P A$ form a linear pair. So $\angle C P A$ is a right angle and $\overline{A D} \perp \overline{C E}$.
(e) Why is $\overline{A D}$ the angle bisector of $\angle B A F$?

Solution: Look at $\triangle A B D$ and $\triangle A F D$. Since $\overline{A B} \cong \overline{A F}, \overline{B D} \cong \overline{F D}$ (b/c $\triangle B C D \cong \triangle F E D$) and $\overline{A D} \cong \overline{A D}$, we have $\triangle A B D \cong \triangle A F D$ by SSS . Then $\angle B A D \cong \angle F A D$ and $\overline{A D}$ the angle bisector of $\angle B A F$.
3. Which of the following constructions can be achieved by Euclidean construction? Please justify your answer and use GeoGebra to construct it if it is an Euclidean construction.
(a) Construct a triangle whose sides are 2 inch, 1.5 inch and 1 inch. Solution: This is not an Euclidean construction. Because Euclidean construction can not involve specific length.
(b) Given a segment $\overline{A B}$ with $m(\overline{A B})>0$. Construct a triangle whose sides are $3 m(\overline{A B}), 1.5 m(\overline{A B})$ and $2 m(\overline{A B})$ (there is a typo in the original problem. It should be $2 m(\overline{A B})$).

Solution: This is an Euclidean construction. Note that finding a midpoint is an Euclidean construction as explained in class.
We start with a line $\overleftrightarrow{A B}$. 1. Construct a circle whose center is A with radius $m(\overline{A B})$. This circle intersects with the line $\overleftrightarrow{A B}$ at D and B. 2. Construct a circle whose center is B with radius $m(\overline{A B})$. This circle intersects with the line $\overleftrightarrow{A B}$ at G and $A .3$. Now $m(\overline{D G})=3 m(\overline{A B})$. Let H be the midpoint of D and G. Then $m(\overline{H G})=1.5 m(\overline{A B}) .4$. Now construct a circle whose center is D with radius $m(\overline{D B})=2 m(\overline{A B})$ and construct a circle whose center is G with radius $m(\overline{G H})=1.5 m(\overline{A B})$. These two circles intersect at two points J and K.
Then $\triangle J D G$ is a triangle with $m(\overline{D G})=3 m(\overline{A B}), m(\overline{G J})=1.5 m(\overline{A B})$ and $m(\overline{J D})=2 m(\overline{A B})$.
(c) Construct an equilateral triangle whose sides are all 1 inch long.

Solution: This is not an Euclidean construction. Because Euclidean construction can not involve specific length.

(d) Given a segment $\overline{A B}$ with $m(\overline{A B})>0$. Construct an equilateral triangle $\triangle A B C$
Solution: Start with a segment $\overline{A B}$. 1. Construct a circle whose center is A with radius $m(\overline{A B})$ and another circle whose center is B with radius $m(\overline{A B})$. 2. These two circles intersect at C and D. Then $\triangle A B C$ is an equilateral triangle.
(e) Construct a triangles whose interior angles are $25^{\circ}, 85^{\circ}$ and 70°. Solution: This is not an Euclidean construction. Because Euclidean construction can not be used construct this specific angle. (Euclidean construction can be to used construct some special triangle like $30^{\circ}-60^{\circ}-90^{\circ}$ or $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.)
(f) The angle bisector of a nonzero angle.

Solution: Start with a angle $\angle A$ whose sides are $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Construct a circle whose center is A with radius $m(\overline{A B}) .2$. This circle intersect the line $\overrightarrow{A B}$ at B and intersect the line $\overrightarrow{A C}$ at D. 3. Construct a circle whose center is B with radius $m(\overline{A B})$ and another circle whose center is D with radius $m(\overline{A D})$. These two circles at A and E. Then $\overline{A E}$ is the angle bisector of $\angle A$.
(g) The perpendicular bisector of a segment $\overline{A B}$.

Solution:Start with a segment $\overline{A B}$. 1. Construct a circle whose center is A with radius $m(\overline{A B})$ and another circle whose center is B with radius $m(\overline{A B}) .2$. These two circles intersect at C and D. Then $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$.
(h) Given a line l and a segment $\overline{A B}$ where $\overline{A B}$ doesn't intersect with the line l. See the picture. Construct the reflection of $\overline{A B}$ with respect to l.

Solution: Recall that constructing a line through a point that

is perpendicular to a line is an Euclidean construction. 1. Construct a line through A that is perpendicular to the line l. This perpendicular line intersects the line l at C. Now construct a circle whose center is at C and radius is $\overline{C A}$. This circle with intersect the perpendicular line $\overleftrightarrow{A C}$ at C and D. 2. Construct a line through B that is perpendicular to the line l. This perpendicular line intersects the line l at E. Now construct a circle whose center is at E and radius is $\overline{E B}$. This circle with intersect the perpendicular line $\overleftarrow{E B}$ at B and F. 3. The segment $\overline{D F}$ is the reflection of the segment $\overline{A B}$ with respect to l.
4.

Given a triangles $\triangle A B C$ in the above figure which satisfies the following properties.
(i) $\overline{E F}$ is the perpendicular bisector of $\overline{A C}$.
(ii) $\overline{F D}$ is the perpendicular bisector of $\overline{B C}$.

Prove that $\overline{F A} \cong \overline{F B} \cong \overline{F C}$.
Solution: Let us first look at the triangle $\triangle F A C$. Because $\overline{F E}$ is the perpendicular bisector of $\overline{A C}$. We have $\overline{F A} \cong \overline{F C}(\triangle F C E \cong F A E$ by SAS b/c $\overline{E A} \cong \overline{E C}, \angle F E A \cong \angle F E C$ (right angle) and $\overline{F E} \cong \overline{F E}$.).

Now let us look at the triangle $\triangle F B C$. Because $\overline{F D}$ is the perpendicular bisector of $\overline{B C}$. We have $\overline{F B} \cong \overline{F C}$ (the proof is similar to the proof $\overline{F A} \cong \overline{F C}$. Thus we have $\overline{F A} \cong \overline{F B} \cong \overline{F C}$.
5. Given a triangles $\triangle G H I$ in the above figure which satisfies the following properties.
(i) $H J$ is the angle bisector of $\angle H$.
(ii) $\overline{I J}$ is the angle bisector of $\angle I$.
(iii) $\overline{J Q} \perp \overline{H I}, \overline{J R} \perp \overline{H G}$ and $\overline{J S} \perp \overline{G I}$.

Prove that $\overline{J R} \cong \overline{J Q} \cong \overline{J S}$.
Solution: Let us first look at the triangle $\triangle J R H$ and $\triangle J Q H$. We have $\triangle J R H \cong J Q H$ by acute angle-hypotenuse condition for right triangle $\mathrm{b} / \mathrm{c} \overline{H J}$ is the angle bisector of $\angle H$. So $\angle R H J \cong \angle Q J H$. Also we have $\overline{H J} \cong \overline{H J}$. Thus we get $\overline{J R} \cong \overline{J Q}$.

Now let us look at the triangle $\triangle J Q I$ and $\triangle J S I$. We have $\triangle J Q I \cong$ $\triangle J S I$ by similar argument. This implies $\overline{J S} \cong \overline{J Q}$. Therefore $\overline{J R} \cong$ $\overline{J Q} \cong \overline{J S}$.

