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ABSTRACT
Camera response function (CRF) is a form of camera signa-
tures which can be extracted from a single image and pro-
vides a natural basis for image forensics. CRF extraction
from a single-image is in theory ill-posed. It relies on specific
structures in an image that offer glimpses of the CRF. There-
fore, the challenges in CRF extraction are first in identifying
structures of such property, second in locating such structures
in an image, and third in extracting the CRF attributes from
the selected structures. In our past work, we proposed that
CRF attributes can be found on linear structures in an image
and extracted using linear geometric invariants. In this paper,
we show additional properties on linear geometric invariants,
propose a more robust way to select linear structures in an
image, and provide a model-based method to extract CRF at-
tributes from the linear structures. This paper is divided into
two parts. Part I is devoted to the theory of linear geometric
invariants and the robust selection of linear structures. The
linear structure candidates obtained from the method in Part
I are used to instantiate the edge profiles for CRF extraction
in Part II. The paper as a whole presents a reliable method for
CRF extraction, together with rigorous analysis which gives
useful insights into the method.

In the first half of Part I, a simpler proof that links the
equality of linear geometric invariants to a linear-isophote sur-
face is given. As a by-product, the proof leads to an addi-
tional way to detect linear-isophote surfaces which uses only
the first-order partial derivatives and improves detection re-
liability. In the second half of Part I, the variance of linear
geometric invariants is shown to have a structure which can
be used to improve the robustness in detecting linear-isophote
surfaces.

Index Terms— Camera response function, image foren-
sics, geometric invariants, linear-isophote surfaces

1. INTRODUCTION

A major goal of image forensics is to evaluate the authentic-
ity of an image. The camera signatures inherent in an image
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Fig. 1. A curved surface that carries the imprint of the CRF.

provide a natural basis for image content authenticity. Ex-
amples of camera signatures are such as the attributes of the
color filter array [1], sensor noise or irregularity [2], and the
non-linear response function [3] in a camera. Therefore, im-
age forensics based on camera signatures in general is divided
into two steps: (1) Extraction of camera signatures from a
single image or its segments, (2) Image authenticity assess-
ment based on a set of rules or criteria. The rules could be
the consistency of signatures across different segments [3],
the irregularities of the signatures on segment boundaries [4],
or the disappearance of the typical signatures [1]. To draw
a parallel with the distinction between low-level and high-
level vision [5], the two steps above can be called low-level
and high-level forensics. Low-level forensics is completely
physics-based, while the high-level forensics varies with how
users tamper with images (including the post-processing). In
this paper, we focus only on low-level forensics for camera
response function (CRF).

A CRF describes how the output of a camera (image in-
tensity) responds to the radiant energy incident to and mea-
sured by its image sensor (image irradiance). A CRF is spe-
cific for a model of camera and in general non-linear in order
to compress the radiometric dynamic range for keeping the
output image visually pleasing. Apart from image forensics,
CRF signatures extracted from an image can also be used for
CRF estimation. Once the CRF is known, an image can be
calibrated such that it becomes radiometrically linear. Such
linear image is important for many computer vision methods
such as shape from shading, photometric stereo, Helmholtz
stereopsis, color constancy, diffuse-specular separation and
camera-shake removal [6, 7].

CRF extraction from a single-image is challenging and
in theory ill-posed. It relies on specific structures in an im-
age that offer glimpses of the CRF. Therefore, the challenges
in CRF extraction are in (1) identifying structures that carry
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CRF attributes, (2) locating such structures in an image, and
(3) extracting the CRF attributes from the selected structures.
Structures with CRF attributes being proposed include local
image patches with little quadratic phase coupling [8], im-
age edges with linearly blended colors [9], image edges with
uniform grayscale histogram [10], linear local surfaces on an
image [11], and image regions with symmetric noise distri-
bution [12]. In general, little attention has been given to the
localization of these structures. A set of heuristic rules is de-
fined for locating the underlying image edges with linearly
blended colors [4] while an equality condition for linear ge-
ometric invariants is used for locating locally linear surfaces
on an irradiance image [11]. Finally, except for [11], CRF
signature is not explicitly extracted as CRF is directly esti-
mated by evaluating its capability in linearizing the data. A
host of questions remain unanswered by the prior works. For
example: How the underlying structures can be effectively
and robustly located in an image? How to show that the CRF
methods are general and work consistently on almost all typ-
ical natural-scene images?

This paper seeks to address these questions. In Part I,
we show an additional way to detect linear-isophote surfaces
which uses only the first-order partial derivatives, and model
the variance of linear geometric invariants for improving the
robustness of linear-isophote surface detection. In part II, we
show how the selected points on linear-isophote surfaces can
be used to instantiate the edge profiles where their interactions
effectively point to the desired underlying linear structures.
This method requires no learning from data and works on
both simulation and real camera images.

2. GEOMETRY-INVARIANT FOR CRF SIGNATURE
EXTRACTION: FOUNDATION AND ASSUMPTION

In our prior work [11], we identified that local surfaces corre-
sponding to linear surfaces in an irradiance image reveal the
local shape of the CRF (see Fig. 1). However, locally lin-
ear surfaces are not everywhere in the underlying irradiance
image which is unobserved. This leads to a question of how
to detect these underlying linear surfaces. Before answering
this question, let us introduce a set of differential quantities
which we called linear geometric invariants, Rxx

R2
x

, Rxy

RxRy
, and

Ryy

R2
y

, where R = R(x, y) representing a two dimensional in-
tensity image while Ra and Rab are respectively the first and
second-order partial derivatives ∂R

∂a and ∂2R
∂a∂b .

It was shown that when the underlying irradiance sur-
face is linear, the linear geometric invariants form an equality
which is a functional of the CRF, f :

Rxx

R2
x

=
Rxy

RxRy
=

Ryy

R2
y

=
f ′′(f−1(R))

(f ′(f−1(R)))2
. (1)

The equality relationship in Eq. 1 gives us a natural equa-
tion to detect the underlying linear surfaces. However, it was
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Fig. 2. The equality relationship of linear geometric invariants de-
tects the set of points on linear-isophote surface.
shown that the equality relationship implies surfaces with lin-
ear isophotes (i.e., equal intensity contours). Unfortunately,
the observation of linear-isophote surfaces is a necessary but
not a sufficient indicator from underlying linear surface be-
cause any linear-isophote surface (for which a linear surface is
a special case) remains a linear-isophote surface after a CRF
transformation. As a result, if there exists locally linear sur-
faces in image irradiance, the equality relationship in Eq. 1
will detect points on these surfaces together with points on
the underlying linear-isophote surfaces. Such detection ambi-
guity is shown in the Venn diagram in Fig. 2.

The proof that links the equality relationship in Eq. 1 to
linear-isophote surfaces given in [11] was complicated. We
give a simpler proof for the relationship as stated in Proposi-
tion 2 which uses Proposition 1.

Proposition 1. In the neighborhood about a point p, the re-
lationship Rxx

R2
x

= Rxy

RxRy
= Ryy

R2
y

for a surface R(x, y) implies
that the orientation of the gradient vectors in the neighbor-
hood is uniform, up to a sign.

Proof. We assume that Rx 6= 0 and Ry 6= 0 in a neighbor-
hood about the point p. If the relationship Rxx

R2
x

= Rxy

RxRy
=

Ryy

R2
y

holds in the neighborhood, then so do the relationships
RxxRy = RxyRx and RyyRx = RxyRy . This implies that
the partial derivatives of Rx

Ry
are zero in the neighborhood as

shown below:

∂

∂x

(
Rx

Ry

)
=

RxxRy −RxyRx

R2
y

= 0 (2)

∂

∂y

(
Rx

Ry

)
=

RxyRy −RyyRx

R2
y

= 0 (3)

This implies that Rx

Ry
= constant and the gradient direction

(not magnitude) in the neighborhood of R(x, y) is constant
up to a sign.

Proposition 2. If the relationship Rxx

R2
x

= Rxy

RxRy
= Ryy

R2
y

holds
for a surface R(x, y) in a neighborhood about a point p, then
R(x, y) is a local surface with linear isophotes (i.e., equal
intensity contours) at p.

In addition, there exists an invertible and differentiable
function h : R 7→ R, such that h−1(R(x, y)) is a locally
linear surface in the neighborhood of p, and we can write

Rxx

R2
x

=
Rxy

RxRy
=

Ryy

R2
y

=
h′′(h−1(R))

(h′(h−1(R)))2
at p. (4)
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Fig. 3. The computational steps for the method in [11].

Proof. From Proposition 1, we know that if the relationship
Rxx

R2
x

= Rxy

RxRy
= Ryy

R2
y

holds for a surface R(x, y) in a neigh-

borhood about p, then we have Rx

Ry
= c and Rx = cRy in the

neighborhood, where c is a constant.
The constant coefficient 1st-order partial differential

equation (PDE) of the form Rx = cRy or−Rx+cRy = 0 has
a solution R(x, y) = h(cx + y) [13] for some differentiable
and invertible function h : R 7→ R.

Since cx + y is linear and the function h preserves the
linear isophote of cx + y, then R(x, y) is a local surface with
linear isophotes at the neighborhood of p. Furthermore, we
can write Eq. 4.

3. CANDIDATE POINT SELECTION

Fig. 3 shows how a CRF signature was obtained in [11].
Given a grayscale input image R(x, y), the derivatives were
computed by fitting the image function with a smoothing
cubic spline. Then, an initial set of candidate points was
selected using the error function E which measures how
well the equality in Eq. 1 is satisfied and produces a binary
location map of the selected points. As shown Fig. 2, the
selected points include the unwanted points on non-linear
surfaces with linear isophotes in image irradiance. In [11],
Naive bayes inference was performed to weigh down the un-
wanted points with a fitness score. The inference was based

on six features, as shown in Fig. 3, which include local spatial
moments m0−2 from the binary map b(x, y), error function
value E, gradient magnitude |grad(R)|, and the normalized
second-order derivative in the gradient direction λ. The prior
distribution of the features was obtained from a set of training
images. Finally, the CRF signature was given by the his-
togram of the fitness scores in R-Q̄ space where Q̄ is defined
below:

Q̄(R) =
√

3√
3− 1

(
1−

√
1

2Q(R) + 1

)
, (5)

where Q(R) =
1

1− 1
3 (Rxx

R2
x

+ Rxy

RxRy
+ Ryy

R2
y

)R
. (6)

Q̄ is obtained by linearizing Q(R) with respect to the differ-
ential change of the gamma curve parameter, γ.

The error function E shown in Fig. 3 depends signifi-
cantly on the accuracy of the second-order derivative estima-
tion and has not taken the variance of the invariant difference
into account. In Sec. 3.1 and 3.2 of this Part I, we address the
above-mentioned issues. The issue of distilling the underly-
ing linear surfaces from the candidate set and forming CRF
signature will be addressed in Part II of this paper.

3.1. Candidate Point Selection using First-order Deriva-
tives

The error function E shown in Fig. 3 depends significantly
on the accuracy in estimating the second-order derivatives of
R(x, y). Estimation of second-order derivatives is definitely
noisier than that of first-order derivatives. Proposition 1 sug-
gests a solution to the problem: the equality relationship can
be equivalently evaluated by examining how well the gradi-
ent field in a neighborhood is aligned. Note that only the
first-order derivatives are needed. The alignment of a local
gradient field about a point p can be measured as below:

S1 = 1−
∣∣∣∣∣∣

∑

(x,y)∈Np

wp(x, y)
grad(R)
|grad(R)|

∣∣∣∣∣∣
(7)

where wp(x, y) is a gaussian function center at p and S1 = 0
when the gradients are fully aligned. Eq. 7 also imposes a
monotonicity condition (the sign counts) which is a stronger
statement than that of Proposition 1. The constraint is reason-
able as most of the CRF’s are monotonic and its action on a
linear surface results in a monotonic surface.

Having S1, candidate point selection would become less
sensitive to the accuracy of the second-order derivatives. As
a result, we can use a fast derivative estimator [14] without
worrying too much about its higher-order accuracy.
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3.2. Considering Error Function Variance

If the geometric invariants are multiplied by a scalar factor,
the error function E in Fig. 3 will be scaled by the same fac-
tor. Ideally, the scaling factor is immaterial as E on a local
surface with linear isophotes is always zero. However, due to
computational errors and imperfect local surfaces, E would
be small but non-zero in this case. Hence, the scaling factor
has an effect.

From Eq. 1, the value of the invariants depends on the
CRF f which is a function of R. To model such variance, we
study the scaling effect using gamma curves R = rγ . In a
neighborhood of linear r(x, y), the invariants are as below:

Rxx

R2
x

=
Rxy

RxRy
=

Ryy

R2
y

=
γ − 1
γR

=
Q− 1
QR

, (8)

where in the special case of gamma curves, we have γ =
Q(R) (see Eq. 6). Eq. 8 indicates that the scale of the in-
variants depends on both Q(R) and R, and we can infer that
the invariant difference would have a similar scaling property.
Hence, we can redefine the error function in the form of Ma-
halanobis distance [15] which takes the invariant variance into
account:

S2 =
√

dtC−1d, (9)

where d = (Ryy

R2
y
− Rxy

RxRy
, Rxx

R2
x
− Ryy

R2
y

,
Rxy

RxRy
− Rxx

R2
x

) and C =
1

1+18.5Q
1

R2 I , with I being the identity matrix. In Eq. 9, we
approximate the variance with 1

1+18.5Q
1

R2 where 1
1+18.5Q has

a similar shape as (Q−1
Q )2 (see Eq. 8), as shown in Fig. 4.

Only the general trend of the function needs to be modeled.
With S1 in Eq. 7 and S2 in Eq. 9, we select candidate

points as below:

wg = G(S1;σS1)G(S2; σS2) > wthres (10)

where G(·;σ) = 1√
2πσ2 exp

(
− (·)2

2σ2

)
is a zero-mean gaussian

function, and the maximum possible value for wg is wgmax =
G(0; σS1)G(0; σS2).

4. EXPERIMENTS ON GAMMA IMAGES

In this Section, we seek to verify our method through sim-
ulation using linear images transformed by gamma curves
R = f(r) = rγ . Using gamma images makes evaluation
easy as their ground-truth CRF is definite. The linear images
are of natural scenes, captured using a Canon G3 camera in
RAW format from which the uncompressed TIFF format im-
ages are extracted using the Canon software. We have verified

using a Macbeth color checker that images obtained this way
are radiometrically linear.

With a more robust candidate point selection method, we
can afford to use a faster local polynomial derivative estima-
tor [14] which unlike B-spline derivative estimator it does not
ensure spatial continuity in the estimated derivatives. In Mat-
lab, the former takes only 5 seconds to compute the first and
second-order derivatives on one image, while the latter takes
240 seconds.

Fig. 5 shows the candidate point distributions from two
images in R-Q̄ space. The top image has more straight edges
of various intensity compared to the bottom one. This ex-
plains why the distributions for the top image span a larger
extent in R axis as compared to those for the bottom im-
age. Fig. 5 shows that without considering the variance of
invariant difference in candidate point selection a lot of high
R-value points are selected. From Eq. 8, the invariant magni-
tude scales with 1/R, hence with a fixed selection threshold,
more high R-value points are selected as these points tend to
have a lower variance. It can be seen that after considering
the variance in point selection, less high R-value points are
selected and the distributions become more balanced.

It is likely that the difference of invariants at a point is
small in magnitude but the local gradients are not aligned. It
can be due to inaccurate second-order derivative estimation
and the invariants at some of the non-linear isophote surfaces
have unusually low value. These points are picked up by the
gradient uniformity measure in Eq. 7 and shown to be outliers
in Fig. 6.

It is also observed in Fig. 5 that the distributions are
slanted to the left, and after accounting for the variance the
distributions are shifted upward slightly and becomes more
centered on the ground-truth line for the gamma curves. Hav-
ing a selection function in Eq. 10 alone, despite the 1/R
scaling compensation, cannot explain for the upward shifting.
We will show in Part II of this paper that the candidate points
do not just scatter randomly in the spatial domain of an im-
age. In fact, the candidate points gather in the neighborhood
of straight edges and can be grouped into edge profiles where
the gradient of the points in an edge profile is aligned. The
R-Q̄ profiles derived from the edge profile are of a shape
slanted to the left. This explains why the distributions are
slanted to the left. Having this structure, compensating for
the 1/R scaling in Eq. 10, the R-Q̄ profiles would appear to
shift upward. More details about the edge profile structure
are given in Part II of this paper.

5. COMMENTS ON PART I

We began by presenting the idea of extracting the CRF sig-
nature from surfaces linear in image irradiance using linear
geometric invariants. We gave a simpler proof showing that
linear geometric invariants only enable us to detect linear-
isophote surfaces. From the proof we show that the equality
relationship of the invariants can be equivalently evaluated us-



Q_

0 0.5 1
0

0.2

0.4

0.6

0.8

1

γ = 0.20

0 0.5 1
0

0.2

0.4

0.6

0.8

1

γ  = 0.40

10 0.5
0

0.2

0.4

0.6

0.8

1

γ = 1.00

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q_
Q_

Q_

Q_
Q_

Q_
Q_

R R

R R

R R

R R

Without Considering 

Data Variance

Considering 

Data Variance

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

R R

R R

R R

R R

Q_
Q_

Q_
Q_

Q_
Q_

Q_
Q_

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q QQ_

Data Variance

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q QQ_

R
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q QQ_

R
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q QQ_

R

R
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q QQ_

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q QQ_

R
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Q QQ_

R
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

R

Q QQ_

R
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Without Considering 

Data Variance

Considering 

Data Variance

0 0.5 1
0

0.2

0.4

0.6

0.8

1

γ = 0.20

0 0.5 1
0

0.2

0.4

0.6

0.8

1

γ  = 0.40

10 0.5
0

0.2

0.4

0.6

0.8

1

γ = 1.00

0 0.5 1
0

0.2

0.4

0.6

0.8

1

γ  = 0.60

0 0.5 1
0

0.2

0.4

0.6

0.8

1

γ  = 0.60

Fig. 5. Distributions of candidate points selected without consider-
ing the variance of invariant difference (left column) and after con-
sidering the variance (right column). The horizontal lines are the
ground-truth R-Q̄ lines corresponding to the gamma curves.
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Fig. 6. Right column shows points that pass the invariant equality
threshold but not the gradient uniformity threshold. The horizontal
lines are the ground-truth R-Q̄ curves corresponding to the respec-
tive gamma curves.

ing only first-order derivatives. This reduces our dependency
on second-order derivatives for selecting points on linear-
isophote surfaces and enables the use of fast local-derivative
estimators.

We also showed that evaluating the equality relationship
of the invariants without considering their variance would
make the candidate point selection biased towards points
with small variance. In experiments, we showed that by in-
corporating the variance into point selection help producing a
point distribution which is more balanced and well-centered
on the ground-truth curves.

To understand the consistently left-slanted distributions in
R-Q̄ space, we need to introduce the edge profile structure
within the candidate point set in Part II. We will show how
the edge profile structure could help in identifying the points
on the underlying linear surface, given the candidate point set.
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