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CURVATURE DECAY ESTIMATES OF GRAPHICAL

MEAN CURVATURE FLOW IN HIGHER

CODIMENSIONS

KNUT SMOCZYK∗, MAO-PEI TSUI∗∗, AND MU-TAO WANG∗∗∗

Abstract. We derive pointwise curvature estimates for graphi-
cal mean curvature flows in higher codimensions. To the best of
our knowledge, this is the first such estimates without assuming
smallness of first derivatives of the defining map. An immediate
application is a convergence theorem of the mean curvature flow
of the graph of an area decreasing map between flat Riemann sur-
faces.

1. Introduction

Let Σ1 and Σ2 be two compact Riemannian manifolds andM = Σ1×Σ2

be the product manifold. We consider a smooth map f : Σ1 → Σ2 and
denote the graph of f by Σ; Σ is a submanifold of M by the embedding
id×f . We study the deformation of f by the mean curvature flow. The
idea is to deform Σ along its mean curvature vector field in M with
the hope that Σ will remain a graph. This is the negative gradient flow
of the volume functional and a stationary point is a “minimal map”
introduced by Schoen in [RS].

To describe previous results, we recall the differential of f , df , at each
point of Σ1 is a linear map between the tangent spaces. The Riemann-
ian structures enable us to define the adjoint of df . Let {λi} denote

the eigenvalues of
√

(df)Tdf , or the singular values of df , where (df)T

is the adjoint of df . Note that λi is always nonnegative. We say f is
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an area decreasing map if λiλj < 1 for any i 6= j at each point. In
particular, f is area-decreasing if df has rank one everywhere.

In [TW] it was proved that the area decreasing condition is preserved
along the mean curvature flow and that the following global existence
and convergence theorem holds.

Theorem ([TW], 2004).Let Σ1 and Σ2 be compact Riemannian man-

ifolds of constant sectional curvatures k1 and k2 respectively. Suppose

k1 ≥ |k2|, k1 + k2 ≥ 0 and dim(Σ1) ≥ 2. If f is a smooth area de-

creasing map from Σ1 to Σ2, the mean curvature flow of the graph of

f remains the graph of an area decreasing map and exists for all time.

Moreover, if k1 + k2 > 0 then it converges smoothly to the graph of a

constant map.

This result has been generalized to allow more general curvature condi-
tions [LL,SHS]. For example, the convergence part can be established
when k1 + k2 = 0 and k1 ≥ |k2| > 0 in [LL]. An important ingredient
of these proofs is to use the positivity of k1 to show that the gradient
of f approaches zero as t → ∞. In [SHS] the convergence follows, if
the sectional curvatures secΣ1

, secΣ2
of Σ1 and Σ2 are not necessarily

constant and satisfy

secΣ1
> −σ, RicΣ1

≥ (n− 1)σ ≥ (n− 1) secΣ2

for some positive constant σ, where n = dim(Σ1). In this case the
positivity of RicΣ1

is important to get the convergence. However, in all
cases mentioned above the convergence part in the case k1 = k2 = 0
remains an open standing problem.

In general, the global existence and convergence of a mean curvature
flow relies on the boundedness of the second fundamental form. In the
above theorem, the boundedness of the second fundamental form is ob-
tained by an indirect blow-up argument, see [W,W3,TW]. While the
idea of the proof of convergence is to use the positivity of k1+k2 (or k1
resp. RicΣ1

) to show that the gradient of f is approaching zero, which
in turn gives the boundedness of the second fundamental form when
the flow exists for sufficiently long time. In [SHS2] mean curvature
estimates are shown in case of length decreasing maps (λi < 1). Other
curvature estimates for higher co-dimensional graphical mean curva-
ture flows have been obtained under various conditions [CCH,CCY].
However, to the best of our knowledge, there is no direct pointwise cur-
vature estimate for higher codimensional mean curvature flow without
assuming smallness conditions on first derivatives. In this paper, we
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prove pointwise estimates without making any smallness assumption
on the gradient of f . As a result, the convergence of the flow can be
established in dimension two when k1 = k2 = 0.

Theorem 1. Let (Σ1, g1) and (Σ2, g2) be complete flat Riemann sur-

faces, Σ1 being compact. Suppose Σ ⊂ (Σ1 × Σ2, g1 × g2) is the graph

of an area decreasing map f : Σ1 → Σ2 and let Σt denote its mean

curvature flow with initial surface Σ0 = Σ. Then Σt remains the graph

of an area decreasing map ft along the mean curvature flow. The flow

exists smoothly for all time and Σt converges smoothly to a totally ge-

odesic submanifold as t → ∞. Moreover, we have the following mean

curvature decay estimate

t|H|2 ≤ 2

α

where α = infΣ0

2(1−λ2
1
λ2
2
)

(1+λ2
1
)(1+λ2

2
)
> 0 and λ1 and λ2 are the singular values

of df .

Remark 1.1. Let f : Σ1 → Σ2 be an arbitrary smooth map between

flat Riemann surfaces (Σ1, g1), (Σ2, g2) and suppose Σ1 is compact.

Then there exists a constant c > 0 such that all singular values of

f satisfy λiλj < c2. The map f : (Σ1, g1) → (Σ2, c
−2g2) becomes area

decreasing and we can apply Theorem 1 to this case since the new metric

g̃2 = c−2g2 is still flat.

As in [SW], consider the symplectic structure dx1 ∧ dy1 + dx2 ∧ dy2

on (T 2, {xi}i=1,2) × (T 2, {yj}j=1,2) and suppose Σ is Lagrangian with
respect to this symplectic structure. A stronger decay estimate on the
second fundamental can be obtained in this case:

Theorem 2. Let f : T 2 → T 2 be an area decreasing map such that

its graph Σ is a Lagrangian submanifold in T 2 × T 2 with respect to the

above symplectic structure, then the same conclusion as in Theorem 1

holds and

t|A|2 ≤ Cα,

where Cα is a positive constant that only depends on α.

We first revisit the curvature estimates in codimension one by Ecker
and Huisken [EH]. A direct generalization of their estimate only works
in the higher codimensional case when the gradient of the defining
function is small enough. However, we were able to reformulate their
estimates in a different way that can be adapted to the higher codimen-
sional case. It turns out in higher codimensions a more sophisticated
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approach has to be developed to accommodate the complexity of the
normal bundle.

Acknowledgements. Part of this paper was completed while the au-
thors were visiting Taida Institute of Mathematical Sciences, National
Center for Theoretical Sciences, Taipei Office in National Taiwan Uni-
versity, Taipei, Taiwan and Riemann Center for Geometry and Physics
in Leibniz Universität Hannover. The authors wish to express their
gratitude for the excellent support they received during their stay.

2. Ecker and Huisken’s estimates in codimension one

In this section, we slightly rewrite the estimate in [EH] so it can be
adapted to the higher codimensional situation in later sections. Con-
sider the mean curvature flow of the graph of a function f : Rn → R

and let v =
√

1 + |Df |2. Recall that the evolution equations of v and
|A|2 are

(
d

dt
−∆)v =− |A|2v − 2

|∇v|2
v

and

(
d

dt
−∆)|A|2 =− 2|∇A|2 + 2|A|4.

We obtain the evolution equation of ln v2 as

(
d

dt
−∆) ln(v2) = −2|A|2 − 1

2
|∇ ln(v2)|2. (2.1)

Using |∇A|2 ≥ |∇|A||2 = |A|2
4
|∇ ln |A|2|2, we have ( d

dt
− ∆)|A|2 ≤

− |A|2
2
|∇ ln |A|2|2 + 2|A|4. Taking ln of |A|2, we obtain

(
d

dt
−∆) ln(|A|2) ≤ 2|A|2 + 1

2
|∇ ln |A|2|2. (2.2)

As in [EH], equations (2.1) and (2.2) together imply a sup norm bound
for |A|2v2.

The following differential inequality for ln(δt|A|2 + ǫ), which is similar
to equation (2.2), gives a decay estimate of |A|2.

Lemma 2.1. Given any ǫ > 0 and δ < 2ǫ. Then

(
d

dt
−∆) ln(δt|A|2 + ǫ) ≤ 2|A|2 + 1

2
|∇ ln(δt|A|2 + ǫ)|2.
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Proof. Using △ ln(δt|A|2 + ǫ) = δt△|A|2
δt|A|2+ǫ

− δ2t2|∇|A|2|2
(δt|A|2+ǫ)2

, we compute the

evolution equation of ln(δt|A|2 + ǫ):

(
d

dt
−∆) ln(δt|A|2 + ǫ)

=
1

δt|A|2 + ǫ
(
d

dt
−∆)(δt|A|2 + ǫ) + |∇ ln(δt|A|2 + ǫ)|2

≤ 1

δt|A|2 + ǫ

(

δ|A|2 + δt(2|A|4 − |∇|A|2|2
2|A|2 )

)

+ |∇ ln(δt|A|2 + ǫ)|2

≤ δ|A|2 + 2[δt|A|2 + ǫ]|A|2 − 2ǫ|A|2
δt|A|2 + ǫ

− 1

2

δt|∇|A|2|2
(δt|A|2 + ǫ)|A|2

+|∇ ln(δt|A|2 + ǫ)|2

≤ 2|A|2 + δ|A|2 − 2ǫ|A|2
δt|A|2 + ǫ

− 1

2

δt|∇|A|2|2
(δt|A|2 + ǫ)|A|2 + |∇ ln(δt|A|2 + ǫ)|2

≤ 2|A|2 + 1

2
|∇ ln(δt|A|2 + ǫ)|2.

Here we use δ − 2ǫ < 0 and

−1

2

δt|∇|A|2|2
(δt|A|2 + ǫ)|A|2 +

1

2
|∇ ln(δt|A|2 + ǫ)|2 ≤ 0.

�

Theorem 3. supΣt
(t|A|2) ≤ v20 where v0 = supΣ0

v > 0.

Proof. From the evolution equation of v, we have supΣt
v2 ≤ v20. Choos-

ing ε = 1 and δ = 1 in the previous Lemma and combining with equa-
tion (2.1), we derive

(
d

dt
−∆) ln((t|A|2 + 1)v2) ≤ 1

2
|∇ ln(t|A|2 + 1)|2 − 1

2
|∇ ln(v2)|2

≤ 1

2
∇ ln(

t|A|2 + 1

v2
) · ∇ ln((t|A|2 + 1)v2).

The maximum principle implies

supΣt

(

(t|A|2 + 1)v2
)

≤ supΣ0
v2.

Therefore t|A|2 ≤ (t|A|2 + 1)v2 ≤ v20. �

3. Estimates in higher codimensions

Our basic set-up here is a mean curvature flow F : Σ × [0, T ) → M

of an n dimensional submanifold Σ inside an n + m dimensional flat
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Riemannian manifold M . Given any tensor on M , we may consider
the pull-back tensor by Ft and consider the evolution equation with
respect to the time-dependent induced metric on Ft(Σ) = Σt. For the
purpose of applying the maximum principle, it suffices to derive the
equation at a space-time point. We write all geometric quantities in
terms of orthonormal frames, keeping in mind all quantities are defined
independent of choices of frames. At any point p ∈ Σt, we choose any
orthonormal frames {ei}i=1,··· ,n for TpΣt and {eα}α=n+1,··· ,n+m for the
normal space NpΣt. The second fundamental form hαij is denoted
by hαij = 〈∇M

ei
ej , eα〉 and the mean curvature vector is denoted by

Hα =
∑

i hαii. For any j, k, we pretend

hn+i,jk = 0

if i > m. Also we denote |A|2 =
∑

α,i,j h
2
αij and |H|2 =

∑

αH
2
α.

First, we recall the evolution equations for |H|2 and |A|2. The following
proposition is taken from Corollary 3.8 and Corollary 3.9 from the
survey paper [S2]. Here we assume the ambient manifold M is flat.

Proposition 3.1. For a mean curvature flow F : Σ × [0, T ) → M

of any dimension, the quantities |A|2 and |H|2 satisfy the following

equations along the mean curvature flow:

d

dt
|A|2 = ∆|A|2 − 2|∇⊥A|2

+2
∑

α,γ,i,m

(
∑

k

hαikhγmk − hαmkhγik)
2 + 2

∑

i,j,m,k

(
∑

α

hαijhαmk)
2

(3.1)

and

d

dt
|H|2 = ∆|H|2 − 2|∇⊥H|2 + 2

∑

i,k

(
∑

α

Hαhαik)
2. (3.2)

Using Theorem 1 from [LL2], we have

2
∑

α,γ,i,m

(
∑

k

hαikhγmk − hαmkhγik)
2 + 2

∑

i,j,m,k

(
∑

α

hαijhαmk)
2 ≤ 3|A|4.

(This improves the prior bound of 4|A|4 used in [W]). Using

2
∑

i,k

(
∑

α

Hαhαik)
2 ≤ 2|A|2|H|2,

we obtain the next lemma.
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Lemma 3.1. We have the following differential inequalities for |A|2
and |H|2 if the ambient manifold M is flat.

(
d

dt
−∆)|A|2 ≤ −2|∇⊥A|2 + 3|A|4,

(
d

dt
−∆)|H|2 ≤ −2|∇⊥H|2 + 2|A|2|H|2.

(3.3)

We note that the term 3|A|4 in the first equation is different from the
term 2|A|4 in the codimension one case. It cannot be improved unless
the normal bundle is flat. This creates a major difficulty in attempting
to generalize the codimension one estimate to the higher codimension
case.

In the following, we derive differential inequalities for various geometric
quantities which will be used for curvature decay estimates in §4.

Lemma 3.2. Given any ǫ > 0 and 0 < δ ≤ 2ǫ
n
, we have the following

differential inequalities

(
d

dt
−∆) ln(δt|H|2 + ǫ) ≤ 2|A|2 + |∇ ln(δt|H|2 + ǫ)|2

2
,

(
d

dt
−∆) ln(δt|A|2 + ǫ) ≤ 3|A|2 + |∇ ln(δt|A|2 + ǫ)|2

2
.

(3.4)

Proof. From Lemma 3.1, we have

(
d

dt
−∆) ln(|H|2) = 1

|H|2 (
d

dt
−∆)|H|2 + |∇ ln |H|2|2

≤ 1

|H|2
(

2|A|2|H|2 − 2|∇|H||2
)

+ |∇ ln |H|2|2

≤2|A|2 + 1

2
|∇ ln |H|2|2.

In the last step, we have used −2|∇|H||2
|H|2 = − |∇ ln |H|2|2

2
.
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Using ( d
dt
−∆)(δt|H|2 + ǫ) = δ|H|2 + δt( d

dt
−∆)|H|2 and Lemma 3.1,

we compute the evolution equation of ln(δt|H|2 + ǫ) to obtain

(
d

dt
−∆) ln(δt|H|2 + ǫ)

=
1

δt|H|2 + ǫ
(
d

dt
−∆)(δt|H|2 + ǫ) + |∇ ln(δt|H|2 + ǫ)|2

≤ 1

δt|H|2 + ǫ

(

δ|H|2 + δt(2|A|2|H|2 − 2|∇|H||2)
)

+ |∇ ln(δt|H|2 + ǫ)|2

=
δ|H|2 + 2(δt|H|2 + ǫ)|A|2 − 2ǫ|A|2

δt|H|2 + ǫ
− 2δt|∇|H||2

δt|H|2 + ǫ
+ |∇ ln(δt|H|2 + ǫ)|2

=2|A|2 + δ|H|2 − 2ǫ|A|2
δt|H|2 + ǫ

− δt|∇|H|2|2
2(δt|H|2 + ǫ)|H|2 + |∇ ln(δt|H|2 + ǫ)|2.

In the last step, we have used |∇|H||2 = |∇|H|2|2
4|H|2 . Since |H|2 ≤ n|A|2

and − δt|∇|H||2
2(δt|H|2+ǫ)|H|2 + 1

2
|∇ ln(δt|H|2 + ǫ)|2 ≤ 0 , we can choose δ ≤ 2ǫ

n

and get

(
d

dt
−∆) ln(δt|H|2 + ǫ) ≤ 2|A|2 + 1

2
|∇ ln(δt|H|2 + ǫ)|2.

The rest of the Lemma can be proved in a similar fashion to Lemma
2.1. �

To derive an a priori curvature estimate, we need to find the right
geometric quantity to counteract the quadratic growth of the second
fundamental forms in Lemma 3.2. When n = 2, we are able to find the
right quantity to establish the a prioi mean curvature estimate.

In [TW], a parallel symmetric two tensor S is introduced to study
the area decreasing map. We first recall some basic notations and
definitions from Section 3 and Section 4 in [TW].

When M = Σ1 × Σ2 is the product of Σ1 and Σ2, we denote the
projections by π1 : M → Σ1 and π2 : M → Σ2. By abusing notations,
we also denote the differentials by π1 : TpM → Tπ1(p)Σ1 and π1 :
TpM → Tπ2(p)Σ2 at any point p ∈ M .

When Σ is the graph of f : Σ1 → Σ2, the equation at each point can be
written in terms of the singular values of df and special bases adapted
to df . Denote the singular values of df , or eigenvalues of

√

(df)Tdf , by
{λi}i=1,··· ,n. Let r denote the rank of df . We can rearrange them so that
λi = 0 when i is greater than r. By singular value decomposition, there
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exist orthonormal bases {ai}i=1,··· ,n for Tπ1(p)Σ1 and {aα}α=n+1,··· ,n+m

for Tπ2(p)Σ2 such that

df(ai) = λian+i

for i less than or equal to r and df(ai) = 0 for i greater than r. More-
over,

ei =

{

1√
1+λ2

i

(ai + λian+i) if 1 ≤ i ≤ r

ai if r + 1 ≤ i ≤ n
(3.5)

becomes an orthonormal basis for TpΣ and

en+p =

{

1√
1+λ2

p

(an+p − λpap) if 1 ≤ p ≤ r

an+p if r + 1 ≤ p ≤ m
(3.6)

becomes an orthonormal basis for NpΣ.

The tangent space of M = Σ1 × Σ2 is identified with TΣ1 ⊕ TΣ2. Let
π1 and π2 denote the projection onto the first and second summand in
the splitting. We define the parallel symmetric two-tensor S by

S(X, Y ) = 〈π1(X), π1(Y )〉 − 〈π2(X), π2(Y )〉 (3.7)

for any X, Y ∈ TM .

Let Σ be the graph of f : Σ1 → Σ1 × Σ2. S restricts to a symmetric
two-tensor on Σ and we can represent S in terms of the orthonormal
basis (3.5).

Let r denote the rank of df . By (3.5), it is not hard to check

π1(ei) =
ai

√

1 + λi
2
, π2(ei) =

λian+i
√

1 + λi
2

for 1 ≤ i ≤ r ,

and π1(ei) = ai , π2(ei) = 0 for r + 1 ≤ i ≤ n.

(3.8)

Similarly, by (3.6) we have

π1(en+p) =
−λpap

√

1 + λp
2
, π2(en+p) =

an+p
√

1 + λp
2
for 1 ≤ p ≤ r ,

and π1(en+p) = 0 , π2(en+p) = an+p for r + 1 ≤ p ≤ m .

(3.9)

From the definition of S, we have

S(ei, ej) =
1− λ2

i

1 + λi
2 δij . (3.10)
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In particular, the eigenvalues of S are

1− λi
2

1 + λi
2 , i = 1, · · · , n. (3.11)

Now, at each point we express S in terms of the orthonormal basis
{ei}i=1,··· ,n and {eα}α=n+1,··· ,n+m. Let Ik×k denote a k by k identity
matrix. Then S can be written in the block form

S =
(

S(ek, el)
)

1≤k,l≤n+m
=









B 0 D 0
0 In−r×n−r 0 0
D 0 −B 0
0 0 0 −Im−r×m−r









(3.12)

where B and D are r by r matrices with Bij = S(ei, ej) =
1−λ2

i

1+λ2
i

δij and

Dij = S(ei, en+j) =
−2λi

1+λ2
i

δij for 1 ≤ i, j ≤ r.

Next we recall the evolution equation of parallel two-tensors from [SW].
Given a parallel two-tensor S on M , we consider the evolution of S
restricted to Σt. This is a family of time-dependent symmetric two
tensors on Σt.

Proposition 3.2. Let S be a parallel two-tensor on M . Then the

pull-back of S to Σt satisfies the following equation.

(
d

dt
−∆)Sij = −hαilHαSlj − hαjlHαSli

+RkikαSαj +RkjkαSαi

+ hαklhαkiSlj + hαklhαkjSli − 2hαkihβkjSαβ

(3.13)

where ∆ is the rough Laplacian on two-tensors over Σt and Sαi =
S(eα, ei), Sαβ = S(eα, eβ), and Rkikα = R(ek, ei, ek, eα) is the curvature

of M .

The evolution equations (3.13) of S can be written in terms of evolving
orthonormal frames as in Hamilton [H]. If the orthonormal frames

F = {F1, · · · , Fa, · · · , Fn} (3.14)

are given in local coordinates by

Fa = F i
a

∂

∂xi

.

To keep them orthonormal, i.e. gijF
i
aF

j
b = δab, we evolve F by the

formula
∂

∂t
F i
a = gijgαβhαjlHβF

l
a .
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Let Sab = SijF
i
aF

j
b be the components of S in F . Then Sab satisfies the

following equation

(
d

dt
−∆)Sab = RcacαSαb +RcbcαSαa

+ hαcdhαcaSdb + hαcdhαcbSda

− 2hαcahβcbSαβ .

(3.15)

In the following, we will compute the evolution of Tr(S) =
∑

i,j g
ijSij

in the case Σ1,Σ2 are flat Riemann surfaces, i.e. where the curvature

tensor R = 0. By equation (3.10), Tr(S) =
1−λ2

1

1+λ2
1

+
1−λ2

2

1+λ2
2

=
2(1−λ2

1λ
2
2)

(1+λ2
1
)(1+λ2

2
)
.

The next proposition gives a new proof that the area decreasing condi-
tion is preserved along the mean curvature. In addition, the equation
satisfied by lnTr(S) plays a critical role in next section’s curvature
estimates.

Proposition 3.3. The quantity Tr(S) satisfies the following equation

(
d

dt
−∆) lnTr(S)

=2|A|2 + |∇ ln(TrS)|2
2

+
2
∑2

c=1(T11h4c2 + T22h3c1)
2

Tr(S)2
,

(3.16)

where T11 =
2λ1

(1+λ2
1
)
and T22 =

2λ2

(1+λ2
2
)
.

Proof. Using the evolution equation of S (with respect to an orthonor-
mal frame) in equation (3.15) and S(e2+i, e2+j) = −Sij , we derive

(
d

dt
−∆)Tr(S)

=
∑

a,b

δab(
∑

α,c,d

hαcdhαcaSdb + hαcdhαcbSda − 2hαcahβcbSαβ)

=
∑

a

(
∑

α,c

2h2
αcaSaa − 2h2

αcaSαα)

=
∑

a

(
∑

p,c

2h2
2+p caSaa + 2h2

2+p caSpp)

=
∑

p,c

[

2h2
2+p c1S11 + 2h2

2+p c1Spp + 2h2
2+p c2S22 + 2h2

2+p c2Spp

]

=
∑

c

[

(2h2
4c1 + 2h2

3c2)(S11 + S22) + 4h2
3c1S11 + 4h2

4c2S22

]
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Using |A|2 = ∑2
c=1(h

2
4c1 + h2

3c2 + h2
3c1 + h2

4c2), we obtain

(
d

dt
−∆)Tr(S) = 2|A|2Tr(S) + 2(S11 − S22)

2
∑

c=1

(h2
3c1 − h2

4c2). (3.17)

We claim the following relation holds:

4Tr(S)(S11 − S22)
2

∑

c=1

(h2
3c1 − h2

4c2) + |∇Tr(S)|2

= 4
2

∑

c=1

(T11h4c2 + T22h3c1)
2. (3.18)

Equation (3.16) follows from equations (3.17) and (3.18).

In the rest of the proof, we verify equation (3.18). The covariant de-
rivative of the restriction of S on Σ can be computed by

(∇ekS)(ei, ej)

= ek(S(ei, ej))− S(∇ekei, ej)− S(ei,∇ekej)

= S(∇M
ek
ei −∇ekei, ej)− S(ei,∇M

ek
ej −∇ekej)

= hαkiSαj + hβkjSβi.

Since S2+p l = − 2λpδpl
(1+λ2

p)
, we derive

Sij,k =− 2h2+p kiλpδpj

(1 + λ2
p)

− 2h2+p kjλpδpi

(1 + λ2
p)

=− h2+p kiTppδpj − h2+p kjTppδpi

=− h2+j kiTjj − h2+i kjTii.

(3.19)

In particular, ∇k(Sii) = −2Tiih2+i ki and

|∇Tr(S)|2 = 4
2

∑

k=1

(T 2
11h

2
3k1 + 2T11T22h3k1h4k2 + T 2

22h
2
4k2).



CURVATURE DECAY ESTIMATES OF MCF IN HIGHER CODIMENSIONS 13

We compute

4(S2
11 − S2

22)
2

∑

k=1

(h2
3k1 − h2

4k2) + |∇Tr(S)|2

= 4(S2
11 − S2

22)

2
∑

k=1

(h2
3k1 − h2

4k2)

+ 4

2
∑

k=1

(T 2
11h

2
3k1 + 2T11T22h3k1h4k2 + T 2

22h
2
4k2)

= 4

2
∑

k=1

(T11h4k2 + T22h3k1)
2,

where we use the fact that S2
11 + T 2

11 = S2
22 + T 2

22 = 1 to complete the
square in the last equality. This verifies (3.18). �

4. Proof of Theorems

4.1. Proof of Theorem 1. Since Tr(S) =
2(1−λ2

1
λ2
2
)

(1+λ2
1
)(1+λ2

2
)
, by Proposition

3.3 and the maximum principle, we deduce that the area decreasing
condition is preserved by the mean curvature flow and infΣt

Tr(S) ≥ α,
where α = infΣ0

Tr(S). On any Σt, t > 0, Tr(S) ≥ α > 0 and
(1+λ2

1)(1+λ2
2) <

2
α
. Thus Σt remains as the graph of an area decreasing

map.

Next we derive the mean curvature decay estimate. Combining the
first equation in Lemma 3.2 (with δ = ǫ = 1) and Proposition 3.3, we
obtain

(
d

dt
−∆) ln

(t|H|2 + 1)

Tr(S)
≤ 1

2
∇ ln

(t|H|2 + 1)

Tr(S)
· ∇ ln

[

(t|H|2 + 1)Tr(S)
]

.

By the maximum principle, we have

supΣt
ln

(t|H|2 + 1)

Tr(S)
≤ supΣ0

ln
1

Tr(S)
.

Note that ft remains area decreasing and

Tr(S) =
2(1− λ2

1λ
2
2)

(1 + λ2
1)(1 + λ2

2)
< 2.

This implies that t|H|2 ≤ Tr(S)supΣ0

1
Tr(S)

≤ supΣ0

2
Tr(S)

= 2
α
. If

Σ2 is compact we already have longtime existence of the flow by the
methods in [W,W3,TW]. In case Σ2 is complete and non-compact we
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can use the mean curvature estimate to obtain a C0-estimate on finite
time intervals and then we may proceed as in [SHS2] to get longtime
existence.

Now we can prove the C∞ convergence using the mean curvature de-
cay estimate. By the Gauss formula,

∫

Σt
|A|2dµt =

∫

Σt
|H|2dµt → 0.

Therefore
∫

Σt
|A|2dµt is sufficiently small when t is large enough, the ǫ

regularity theorem in [TI] (see also [E]) implies supΣt
|A|2 is uniformly

bounded. The general convergence theorem of Simon [LS] implies C∞

convergence of Σt to a minimal submanifold Σ∞, which is totally geo-
desic by the Gauss formula again.

4.2. Proof of Theorem 2. Now we prove a decay estimate for the
second fundamental form in the case when Σ is a Lagrangian subman-
ifold. It is well known that Σt remains as a Lagrangian submanifold in
T 2×T 2 from [S]. Using the first equation in Lemma 3.1 and Proposition
3.3, we derive

(
d

dt
−∆) ln(

|A|2
Tr(S)2

)

≤|∇ ln(|A|2)|2
2

− |∇ lnTr(S)|2 − |A|2 − 4

Tr(S)2

2
∑

c=1

(T11h4c2 + T22h3c1)
2.

=
1

2
∇ ln(

|A|2
Tr(S)2

) · ∇ ln(|A|2Tr(S)2)− |A|2

+|∇ lnTr(S)|2 − 4

Tr(S)2

2
∑

c=1

(T11h4c2 + T22h3c1)
2.

We estimate the last two terms on the right hand side. From equation
(3.18), we obtain

|∇ lnTr(S)|2 − 4

Tr(S)2

2
∑

c=1

(T11h4c2 + T22h3c1)
2

= −4(S11 − S22)

Tr(S)

2
∑

c=1

(h2
3c1 − h2

4c2).

Let J be the standard almost complex structure on (T 2, {xi}i=1,2) ×
(T 2, {yj}j=1,2) that maps from the tangent space of the first compo-
nent to the tangent space of the second one, and vice versa. Suppose
f is the defining map of a Lagrangian surface Σ in (T 2, {xi}i=1,2) ×
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(T 2, {yj}j=1,2) with respect to dx1 ∧ dy1 + dx2 ∧ dy2. By the La-
grangian condition, Jdf is a self-adjoint map on the tangent space of
(T 2, {xi}i=1,2). Therefore, there exists an orthonormal basis {ai}i=1,2

such that

df(ai) = λiJ(ai), i = 1, 2.

We can then choose a2+i = J(ai) in equations (3.5) and (3.6) such that

ei =
1

√

1 + λ2
i

(ai + λiJ(ai))

and

e2+i =
1

√

1 + λ2
i

(J(ai)− λiai), i = 1, 2.

From these expressions, it is easy to check that e3 = J(e1) and e4 =
J(e2). Since Σt remains Lagrangian, such orthonormal frames can be
picked at any point on Σt. Because J is parallel,

〈∇M
ec
e2, e3〉 = 〈∇M

ec
e1, e4〉

and we have h2
3c2 = h2

4c1 for c = 1, 2. Therefore,

∣

∣

∣

2
∑

c=1

(h2
3c1 − h2

4c2)
∣

∣

∣
≤ |h311 − h322||H3|+ |h411 − h422||H4| ≤ 2

√
2|A||H|

and

||∇ lnTr(S)|2 − 4

Tr(S)2

2
∑

c=1

(T11h4c2 + T22h3c1)
2| ≤ C|A||H|,

where C depends only on α = infΣ0

2(1−λ2
1
λ2
2
)

(1+λ2
1
)(1+λ2

2
)
> 0 on the initial

surface. For example, C = 16
√
2

α
suffices. To this end,

(
d

dt
−∆) ln(

|A|2
Tr(S)2

) ≤ 1

2
∇ ln(

|A|2
Tr(S)2

) · ∇ ln(|A|2Tr(S)2)

−|A|2 + C|A||H|.

Note that −|A|2 ≤ −α2 |A|2
Tr(S)2

and |H|2 ≤ 2
tα

from Theorem 1, we derive

−|A|2 + C|A||H| ≤ −1

2
|A|2 + C2

2
|H|2 ≤ − α2|A|2

2Tr(S)2
+

C2

αt
.
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Therefore, the quantity |A|2
Tr(S)2

satisfies the following differential inequal-

ity:

(
d

dt
−∆)(

|A|2
Tr(S)2

)

≤1

2
∇(

|A|2
Tr(S)2

) · ∇ ln(|A|2Tr(S)2) + (− α2|A|2
2Tr(S)2

+
C2

αt
)

|A|2
Tr(S)2

.

Consider the ODE u′ = (−α2

2
u + C2

αt
)u. Note that w =

2(1+C2

α
)

α2t
is a

solution to u′ = (−α2

2
u + C2

αt
)u and limt→0+ w(t) = ∞. Thus we have

supΣt
( |A|2
Tr(S)2

) ≤ 2(1+C2

α
)

α2t
and |A|2 ≤ 8(1+C2

α
)

α2t
.
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