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Abstract

Let f be a smooth map between unit spheres of possibly different dimensions.
We prove the global existence and convergence of the mean curvature flow of the
graph of f under various conditions. A corollary is that any area-decreasing map
between unit spheres (of possibly different dimensions) is isotopic to a constant
map. © 2004 Wiley Periodicals, Inc.

1 Introduction

Let ¥, and X, be two compact Riemannian manifolds and M = X, x X, be the
product manifold. We consider a smooth map f : ¥; — X, and denote the graph
of f by X; X is a submanifold of M by the embedding id x f. In [13, 14, 15] the
second author studied the deformation of f by the mean curvature flow (see also
the work of Chen, Li, and Tian [3]). The idea is to deform X along the direction
of its mean curvature vector in M with the hope that ¥ will remain a graph. This
is the negative gradient flow of the volume functional, and a stationary point is a
“minimal map" introduced by Schoen in [10]. In [15] the second author proved
various long-time existence and convergence results of graphical mean curvature
flows in arbitrary codimensions under assumptions on the Jacobian of the projec-
tion from X to X;. This quantity is denoted by %2 in [15] and *© > O if and
only if ¥ is a graph over X; by the implicit function theorem. A crucial observa-
tion in [15] is that €2 is a monotone quantity under the mean curvature flow when
*Q > 1 /«/5. The case when ¥; = R" and ¥, = R corresponds to the mean
curvature flow of the graph of f : R" — R and was studied extensively by Ecker
and Huisken in [4, 5]. In this case *Q = 1/(y/1 + |V f|?) plays an important role
in their estimates.

In this paper we discover new positive geometric quantities preserved by the
graphical mean curvature flow. To describe these results, we recall that the differ-
ential of f, df, at each point of X, is a linear map between the tangent spaces.
The Riemannian structures enables us to define the adjoint of df. Let {A;} denote
the eigenvalues of +/(df)T df, or the singular values of df, where (df)" is the
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adjoint of df. Note that A; is always nonnegative. We say f is an area-decreasing
map if A;A; < 1for any i # j at each point. In particular, f is area decreasing
if the df has rank 1 everywhere. Under this condition, the second author proves
the Bernstein-type theorem [17] and interior gradient estimates [19] for solutions
of the minimal surface system. It is also proven in [18] that the set of graphs
of area-decreasing linear transformations forms a convex subset of the Grassman-
nian. We prove that this condition is preserved along the mean curvature flow and
the following global existence and convergence theorem:

THEOREM 1.1 Let X and ¥, be compact Riemannian manifolds of constant cur-
vature k\ and k;, respectively. Suppose ki > |ks|, ki + ko, > 0, and dim(Z,) > 2.
If f is a smooth, area-decreasing map from X, to ¥,, the mean curvature flow of
the graph of f remains the graph of an area-decreasing map, exists for all time,

and converges smoothly to the graph of a constant map.

We remark that the condition k; > |ky| is enough to prove the long-time exis-
tence of the flow. The following is an application to determine when a map between
spheres is homotopically trivial:

COROLLARY 1.2 Any area-decreasing map from S" to S™ withn > 2 is homotopi-
cally trivial.

When m = 1, the area-decreasing condition always holds and the above state-
ment follows from the fact that m,(S!) is trivial for n > 2. We remark that the
result when m = 2 is proven by the second author in [16] using a somewhat dif-
ferent method. The higher homotopy groups 7, (S™) have been computed in many
cases, and it is known that homotopically nontrivial maps do exist when n > m.
Since an area-decreasing map may still be surjective when n > m, we do not know
any topological method that would imply such a conclusion. The famous work of
Eells and Sampson [6] uses the harmonic map heat flow to deform maps between
Riemannian manifolds. The flow exists for all time and converges nicely when
the curvature of the target space is nonpositive. However, the flow may develop
singularities for positively curved target spaces.

2 Preliminaries

In this section, we recall notation and formulae for mean curvature flows. Let
f : X1 — X, be a smooth map between Riemannian manifolds. The graph of f
is an embedded submanifold ¥ in M = ¥ x ¥,. At any point of X, the tangent
space of M, T M, splits into the direct sum of the tangent space of X, T X, and the
normal space N X, the orthogonal complement of the tangent space 7% in T M.
There are isomorphisms 73y — TX by X > X +df(X)and TY, — NX by
Y — Y — (df)"(Y) where (df)" : T, — TX is the adjoint of df.

We assume the mean curvature flow of ¥ can be written as a graph of f; for
t € [0, €) and derive the equation satisfied by f;. The mean curvature flow is given



1112 M.-P. TSUI AND M.-T. WANG

by a smooth family of immersions F; of X into M that satisfies

(5)
i - H
ot

where H is the mean curvature vector in M and (-)* denotes the projection onto
the normal space N 2. Notice that we do not require % to be in the normal direc-
tion since the difference is only a tangential diffeomorphism (see, e.g., White [20]
for the issue of parametrization). By the definition of the mean curvature vector,
this equation is equivalent to

1 1
IFN" _ ATVM F
ot OF/ g xi

where A/ is the inverse to the induced metric A;; = = (2E 9y on .

axi’ 9xJ
In terms of coordinates {yA}Azl,me on M, we have
2 A B qpC
AlTgM 8F: ij 0°F +8F oFt _ 4 i
OF[9x) g xi axioxs  9xi 9xi BC)aya

where "4 - is the Christoffel symbol of M and thus

w OF\T L 9PFA 9FBAFC . L 9F4\ 9
AV, = At T —TF— ) —
F[0) §xi dx'ox/  ox' Ox/ Y axk ) ay4

where f‘fj is the Christoffel symbol of the induced metric on X.
By assumption, the embedding is given by the graph of f;. We fix a coordinate
system {x'} on ¥; and consider F : ¥; x [0, T) — M given by

Fxl, oo xm o=@l oo x®, o ey,

We shall use i, j,k,I,... = 1,...,nand o, B,y = n+1,...,n + m for the
indices. Ofcourse f% = fo(x',...,x",t)is time dependent.
Therefore 2£ a = d({ - 3;’ and

o 0°FA  QFBQFC 3
ANt ——— T | =
axidxi | 9xi axi BC)ayA

O PfY D o offafr )
A’-’( / r! S o )

dxidxJ dy“ UB_yI axi dxi PV gy«
Thus the mean curvature flow equation is equivalent to the normal part of

af” 0P fY AfP afY B D
f — AW f : f f Flg —A”Ff»—
ot oxiox/  oxi axi PV ) [dy* Tyt

being 0.
Given any vector a' =% + b“- 'a, the equation with the normal part being O is
equivalent to

OfY
2.1) b“—a’i:O
ox!
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for each . Therefore we obtain the evolution equation for f

af” o 02 f° aff afr c 0f¢
22 _— Al] i i A—.Fa F— — 0
( ) Jat (8)6'3)(/ + dxi 9xJ By + i gk
ij ; afe aff
where AY is the inverse to g;; + hop aj;i 31”7 and

a 9 i & a 0
i =\, — an =\, —>
8ij ay' dy/ o ay* dyP
are the Riemannian metrics on X; and X,, respectively. Ffl. and I'g,, are the
Christoffel symbols of g;; and hg, respectively.

(2.2) is a nonlinear parabolic system and the usual derivative estimates do not
apply to these equations. However, the second author in [15] identifies a geometric
quantity in terms of the derivatives of f* that satisfies the maximum principle; this
quantity and its evolution equation are recalled in the next section.

3 Two Evolution Equations

In this section, we recall two evolution equations along the mean curvature
flow. The basic setup is a mean curvature flow F : ¥ x [0,T) — M of an n
dimensional submanifold ¥ inside an (n 4 m)—dimensional Riemannian manifold
M. Given any parallel tensor on M, we may consider the pullback tensor by F; and
consider the evolution equation with respect to the time-dependent induced metric
on F;(X¥) = X,. For the purpose of applying the maximum principle, it suffices to
derive the equation at a space-time point. We write all geometric quantities in terms
of orthonormal frames keeping in mind that all quantities are defined independently
of choice of frame. At any point p € %;, we choose any orthonormal frame
{ei}iz1,...n for T, %, and {ey}a=n+1,....n+m fOr N, %,. The second fundamental form
hyij s denoted by hy;; = (fo ej, ey), and the mean curvature vector is denoted by
H, =), hyi;. For any j, k, we pretend

hn+i,jk =0
ifi > m.

When M = %; x X, is the product of ¥; and ¥,, we denote the projections
bym : M - ¥, and mp, : M — %,. By abusing notation, we also denote
the differentials by 7y : T,M — T %1 and 7y : T,M — T, X, at any
point p € M. The volume form 2 of ¥; can be extended to a parallel n-form
on M. For an oriented orthonormal basis ey, ...,e, of T,X, Q(ey,...,e,) =
Q(mi(er), ..., m(e,)) is the Jacobian of the projection from 7, % to T, () ;. This
can also be considered as the pairing between the n-form €2 and the n-vector e; A
-+ A e, representing T, X. We use *2 to denote this function as p varies along X.
By the implicit function theorem, % > 0 at p if and only if X is locally a graph
over X at p. The evolution equation of *€2 is calculated in [15, prop. 3.2].

When X is the graph of f : ¥; — X, the equation at each point can be written
in terms of singular values of df and special bases adapted to df. Denote the
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,,,,,

the rank of df. We can rearrange them so that A; = 0 when i > r. By singular
value decomposition, there exist orthonormal bases {a;};—1,. ., for T X and
{ao}a=n+1,...n4m fOr Ty () X2 such that

df(a;) = Miapy,

fori <randdf(a;) = 0fori > r. Moreover,

{ L_(a; + M) ifl1<i<r
e =

.....

N 1422

a; ifr+1<i<n

3.1

becomes an orthonormal basis for 7, ¥ and

1 .
————(Ap1p —Apa,) fl1<p<r
(3.2) PR VT
Qntp ifr+1<p=<m

becomes an orthonormal basis for N, .
In terms of the singular values A;,
1

VT (142D .

With all the notation understood, the following result is essentially derived in [15,
prop. 3.2] by noting that (In %), = —(Q_; Ailniix)-

(3.3) *Q =

PROPOSITION 3.1 Suppose M = ¥; x ¥, and ¥ and ¥, are compact Riemann-
ian manifolds of constant curvature ki and kj, respectively. With respect to the
particular bases given by the singular value decomposition of df, In %<2 satisfies
the following equation:

d 2 2712
FRI LD SAED WIS SRV

a,ik ki<j

+Y- fﬂ [t + 0 (X ﬁ) Fha(l—n)].
; i j

34)

Next we recall the evolution equation of parallel 2-tensors from [12]. The cal-
culation indeed already appears in [14]. The equation will be used later to obtain
more refined information. Given a parallel 2-tensor S on M, we consider the evo-
lution of S restricted to X;. This is a family of time-dependent symmetric 2-tensors
on %,.

PROPOSITION 3.2 Let S be a parallel 2-tensor on M. Then the pullback of S to %,
satisfies the following equation:

d
(3.5) (E - A) Sij = —haitHySij — hajiHySii + RiikaSaj + RijkaSai

+ haiithaki Sij + haxihakjSii — 2hakihgrj Sap
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where A is the rough Laplacian on 2-tensors over ¥, and Sy; = S(eq, €;), Sap =
S(eq, eg), and Ry = R(ex, e;, e, eq) is the curvature of M.

The evolution equations (3.5) of S can be written in terms of evolving orthonor-
mal frames as in Hamilton [8] if the orthonormal frames

(3.6) F={F,....F, ..., F}

are given in local coordinates by

;9
Fo=Fyo—.
l

To keep them orthonormal, i.e,. g;; F, ‘i th = 8,4, We evolve F by the formula

0 . ..

o Fa=8"8"haj HyF

Let Sop = S F, ; Fbj be the components of S in F. Then S, satisfies the following
equation:

d
<_ - A) Sab = RcacaSotb + RcbcaSaa + hotcdhozcasdh

3.7 dt

+ hotcdhozchda - 2hacahﬁcbsa/3 .

4 Preserving the Distance-Decreasing Condition

In this section we show that the distance-decreasing condition |df| < 1, or
each singular value A; < 1, is preserved by the mean curvature flow. This result
will not be used in the proof of Theorem 1.1. But the proof of Theorem 1.1 depends
on the computation in this section. The tangent space of M = ¥, x X, is identified
with TX, @ T X,. Let m; and 7, denote the projection onto the first and second
summand in the splitting. We define the parallel symmetric 2-tensor S by

4.1 S(X,Y) = (m(X), m(Y)) — (m(X), ma(Y))

forany X,Y e TM.

Let X be the graph of f : ¥; — X; x X,. § restricts to a symmetric 2-tensor
on X, and we can represent S in terms of the orthonormal basis (3.1).

Let r denote the rank of df. By (3.1), it is not hard to check

a Ailp i

“2) mi(e) = Ve e mo(e) = T Ek

m(e) =a;, my(e;) =0, forr+1<i <n.

forl <i<r,

Similarly, by (3.2) we have

—Ana a
pYp n+p
T (en+p) =

T 772(en+p) =
4.3) J1+A,72 J1+ 2,2

mi(ensp) =0, 2 (entp) = Anyp forr4+1<p<m.

forl <p<r,
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From the definition of S, we have

4.4) S(ei,ej) = ﬂ& .
. T+ a200
In particular, the eigenvalues of S are
4.5) LA
1422 Y
Notice that S is positive definite if and only if

)»,'<1

for any singular value A; of df.

Now, at each point we express S in terms of the orthonormal basis {e;};—1... »
and {ey}o=n-+1...n+m- Let Iyxx denote a k x k identity matrix. Then § can be written
in the block form

B 0 D 0
0 In—r n—r 0 0
(4.6) S = (Sexs eDskiznim = | OX _B 0
O 0 0 _Im—rxm—r
where B and D are r x r matrices with
1 — 22 —2X
Bij = S(ei, ¢j) = H_—25ij and D;; = S(e;, epqj) = m&j

for 1 < i, j < r. We show that the positivity of S is preserved by the mean curva-
ture flow. We remark that a similar positive definite tensor has been considered for
the Lagrangian mean curvature flow in Smoczyk [11] and Smoczyk and Wang [12].
The following lemma shows that the distance-decreasing condition is preserved by
the mean curvature flow if k; > |k;|.

LEMMA 4.1 The condition
“4.7) T;; = Sij —€gij >0 forsomee >0
is preserved by the mean curvature flow if ki > |k;|.

PROOF: We compute the evolution equation for 7;;. From Proposition 3.2 and

0
5,80 = —2hgijHy ,
we have

d
<d—t - A)E = _hcu'lHale - hocleolei + RkikaSaj + RkjkocSai
(4.8) + hakihaki Tij + harihar; Tii + 2€hgrihak;

— Zhakihﬁkj Sozﬂ .

To apply Hamilton’s maximum principle, it suffices to prove that N;; V'V’ > 0
for any null eigenvector V of T;;, where N;; is the right-hand side of (4.8). Since V
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is a null eigenvector of T;;, it satisfies Y, T;;V/ = 0 for any i, and thus N;; V' V/
is equal to

4.9) 2€hariha; V' V! + 2RiikaSej V'V — 2harihipr;Sep V' V7

Obviously, the first term of (4.9) is nonnegative. Applying the relation in (4.6) to
the last term of (4.9), we obtain

~2hakihpiiSpV' VI =Y 2y pritinsqriSpg V'V
I=p.g=r

+ Z 2hyi pihnsqi VIV

r+1<p,qg<m

Since T,, > 0 implies that S,, > €g,,, we obtain —2hy;hpyjSes V'V > 0. In the
next lemma we show that Ry, Se; 1s nonnegative definite whenever S;; is under
the curvature assumption k; > |k;|. O

LEMMA 4.2
2

Ry otSoz' = T 7
(4.10) kike Oarj (1+k2)2

[(kl ko) (n = 1) + (ky + k2) Z

e
P 1+ A

PROOF: We follow the calculation of the curvature terms in [15]:

Z R(ea, €y €k, ei)
k
= Z Ry (mi(eq), mi(ex), mi(ex), wi(e;)) + Ra(ma(ey), maler), maler), male;))
X
= Zkl[(m(ea), mi(er))(mi(er), mi(e;)) — (mi(eq), mi(e))(mi(ex), mi(ex))]
k

+ ko[ (ma(eq), ma(ex)) (malex), ma(e;)) — (maleq), malei)) (maler), malex))] .

Notice that (5 (X), m2(Y)) = (X, Y) — (m(X), 71 (Y)) since TX; L TX,. There-
fore

ZR(eOlveka €k, ei)
k

= Z(lq + k) [(1(ea), m1(en)) (1 (er), i () — (71 (eq), 71 () |1 (ex) ]

k
+ ka(n — D)(mi(eq), m1(ei)) -

Now using this equation,
2h8jp

7i(ea) = —Apmi(€p)anty and ey, ensp) = =1 A’
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in (4.6), we can express

E RiikaSaj = — E Ry p ki Sntp.j
ok p.k

as

202 ij
T {(1 z)[(1H2)2—1H22|n1(ek)|]+kz<n—1> A,}'

Recalling that | (e)]*> = 1/(1 + A2 i), we obtain

2128, 1
RuiaSey = 5y |k + k) Zm + k(1 —n)|.

ki
This can be further simplified by noting
1 (ki —ky)(n — 1)
ki +k —— | +k(l—n)=
(ky 2)(;1+A§) 2(1 —n) >
4.11) 2
+ (ki + ko) Z ik S
T a1 42))

where we use the following identity for each i:

3 1 n—l_Z 1 1 _Zl v
1+ 22 2 _k#i 1+22 2 201+ 23

ki

5 Preserving the Area-Decreasing Condition

In this section we show that the area-decreasing condition is preserved along
the mean curvature flow. In the following, we require that n = dim(X;) > 2. By
(4.5), the sum of any two eigenvalues of S is

122 1= B 2(1 = A7A9)

5.1 = .
G- T+47 144 A+2)A+4)

Therefore the area-decreasing condition A;A; < 1 for i # j is equivalent to the
two-positivity of S, i.e., the sum of any two eigenvalues is positive. We remark
that the curvature operator being two-positive is preserved by the Ricci flow; see
Chen [2] or Hamilton [8] for details.

The two-positivity of a symmetric 2-tensor P can be related to the convexity
of another tensor P!> associated with P. The following notation is adopted from
Caffarelli, Nirenberg, and Spruck [1]. Let P be a self-adjoint operator on an n-
dimensional inner product space. From P we can construct a new self-adjoint
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operator

acting on the exterior powers AX by
k
PU@i A Ao =D o1 A AP@) A Ay
i=1

With the definition of P™*I, we have the following lemma:

LEMMA 5.1 Let uy < pp < --- < u, be the eigenvalues of P with corresponding
eigenvectors vy, .. ., v,. Then P! has eigenvalues Wi, +- - -+ w;, and eigenvectors
Uiy A A, 0 < e < g

Recall that the Riemannian metric g and § are both in TX © T X, the space of
symmetric 2-tensors on X. We can identify S with a self-adjoint operator on the
tangent bundle through the metric g. Therefore S™®! and g/ are both sections of
(AX(TX))* © A*(T%) associated to S and g, respectively. We shall use orthonor-
mal frames in the following calculation; this has the advantage that g is the identity
matrix, and we will not distinguish between the lower index and the upper index.
With the above interpretation and (5.1), we have the following lemma:

LEMMA 5.2 The area-decreasing condition is equivalent to the convexity of S,

To show that the area-decreasing condition is preserved, it suffices to prove that
the convexity of S?! is preserved. In fact, we prove the stronger result that the
convexity of S?! — eg!?! for € > 0 is preserved.

We compute the evolution equation of S1?! — €g?! in terms of the evolving
orthonormal frames {F,},—;, , introduced earlier in (3.6). We will use indices
a,b, ..., todenote components in the evolving frames. Denote S,, = S(F,, Fp)
and gu, = g(F,, F) = 8ap. Since {F, A F}},-; form a basis for A>T X, we have

SCUF, A Fy) = S(F)) A Fy+ Fy A S(Fp)

= SpcFe NFpy 4+ Fyu A Soc F,

(5.2)
= (SucBha + Spabac — Saadbe — Svebaa) Fe A Fy,

c<d

gPN(Fu A Fy) =Y (28ac8pa — 28aa0pc) Fe A Fa .

c<d
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2 2
We denote S{z}) .y = (Sacba + SbaSac — Saabe — Sheaa) and gy o) = 28ac8pa —
284485c. Thus the evolution equation of S?! — €g!?! in terms of the evolving or-
thonormal frames is

(% - A) (SacOba + Spabac — SadSbe — Sbedaa — 2€84¢0pa + 2€8448pc)
= ReaeaSacObd + ReceaSaadbd + Revea Saddac + Redea Sabdac

— ReaeaSaddpe — RedeaSaadbe — ReveaSacdad — Recea Sabbad

+ haerhaeaSteOpa + haefhaee Stadpa

+ haerhaenSradac + haefhaea Sypdac

— haerhaeaSradpe — NaefhaedSradpe

5.3)

- haefhozehsfcéad - haefhozechbSad
- 2haeahﬁecSaﬁ5bd - 2haebhﬁedSaﬁ5ac
+ Zhaeahﬂed Saﬂahc + Zhaehhﬂecsaﬂaad .

Now, we are ready to prove that the area-decreasing condition is preserved
along the mean curvature flow.

LEMMA 5.3 Under the assumption of Theorem 1.1, with S defined in (4.1) and S'*!
defined in (5.2), suppose there exists an € > 0 such that

(5.4) S _egl? >0

holds on the initial graph. Then this is preserved along the mean curvature flow.

PROOF: Set
M, = S — eg? 4 prgl?
Suppose the mean curvature flow exists on [0, 7). Consider any 77 < T'; it suffices
to prove that M, > 0 on [0, T1] for all n < €/(2T}). If not, there will be a first
time 0 < #y < T, where M, = S — €gl?! + nrgl?! is nonnegative definite and
has a null eigenvector V = V®F, A F, at some point xo € %,. We extend V4
to a parallel tensor in a neighborhood of x( along a geodesic emanating out of x,
and define V’ on [0, T) independent of 7. Define f = ) _ d vab pm yed,
then by the equations in (5.2),

f = Z (Sacgbd + degac - Sadghc - Shcgad

a<b,c<d

a<b,c< N(ab)(cd)

+ 2t — €)(Sacbd — 8aa8be)) VIV

At (x0, 1), we have f = 0, Vf = 0, and (£ — A) f < 0 where V denotes the
covariant derivative and A denotes the Laplacian on X;,.

We may assume that at (xg, #p) the orthonormal frames {F,} are given by {e;}
in (3.1). In the following, we use the orthonormal basis {e;} to write down the
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condition f = 0 and Vf = 0 at (xg, #p). The basis {e;} diagonalizes S with
eigenvalues {A;}, and we order {A;} such that

2 2 2
A=Ay == A
and

(5.5) S_1—x3> R L B b
. nn_1+)\’%_ _22_1+)“%_11_1+}\’%'

It follows from Lemma 5.1 that {e; A e;};-; are the eigenvectors of M,. Thus we
may assume that

(56) V=e Ne.

At (xg, ty), the condition f = 0 is the same as
5.7) Si1 4+ S» =2 —2nty > 0.

This is equivalent to

2(1 — A3A3)
5 5 =2(e —nty) > 0.
(I +ADA +A35)
Thus
(5.8) Ml <1 and A; <1 fori > 3.

Next, we compute the covariant derivative of the restriction of S on X:
(Ve S) (e, ex) = ei(S(ej, e)) — S(Veej, ex) — S(ej, Ve ex)
= S(V)'ej — Veej. ) + Sej, Ve — Ve,er)
= hgijSak + hpikSpj
SO
Sik,i = haijSax + hgixSg; -
Recall that V,; is parallel at (xo, o) , V!> = 1, and all other components of V¢
are 0. Because

f= Subji+ Spdu — Sudjx — Siudi
i<jk<l

+2(nt — €) (88 — €8:8)) VIVH

at (xo, fp), Ve, f = 0 is equivalent to
VepS“ + Ve,,SZZ = 2h0{pISotl + 2hﬂp2Sﬁ2 =0.

2)q8q1
142>

Since S,441 = — we have

1 A2
59 —h, + —h, =0
( ) 1+)\‘% +1,pl 1+)\‘% +2,p2

for any p.
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By (5.3), at (xo, ty), we have

d

(5.10) <E - A) f =204 2RkikaSat + 2Ri2kaSa2 + 2haijhar1 S

+ 2heijhar2Si2 — 2harihgi1 Sap — 2har2h gr2Sap -
The ambient curvature term can be calculated using Lemma 4.2, and we derive

(5.1D Z RitkaSe1 + RiokaSar =
k,a

22 A2 1—57
(ky — k2)(n — 1)2 1+ Az)z + (ki + k2) Z a +)L2)2 [Z (1 +)L2):| ’

This can be simplified as

(ki — ko) (n — 1)2

(I—H»Z)2
1—57
+(k1+k2)2(1+x2)2[2(1+x2)]
+<k1+k2)[ A1 “ l_kq
5.12) (1+x2)2<1+x> (1+232 1+
(kl—kz)(f’l—)z kz
(14 17)2

2

1—A2
”’”kz)z <1+A2)2[Z <1+x2>}

(A2+—A2)(1——AZA§)}
(1 4 A3)2(1 + 12)?

+ (ki +k2)|:

This is nonnegative by equation (5.8).
Using the relations in (4.6) again, the last four terms on the right-hand side of
(5.10) can be rewritten as

2 2 2 2
E :2hn+p,k1Sll + 20,4 0822 + 2N, 11 Spp + 2R 4 0 Spp
p.k

= Z (2h£+1,k1511 + 2h121+2,k1511 + 2hﬁ+1,k2522 + 2h;21+2,k2522

(5.13) g

+ 20 S+ 20 1 S22 + 2R 0 S+ 20 5 10 S20)

2 2 2 2
+ § 2hn+q,k1S11 + 2hn+q,k2522 + 2hn+q,klsqq + 2h n+q, k2S6]q .
q>3.k
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Since S;; > S;; for i > 2, it is clear that (5.13) is nonnegative if S;; > 0.
Otherwise, from (5.7), we may assume that
(514) Su <0, 522>0, and S11+S22>0.
In particular, we have )\5 < k% and Af)»% < 1. From (5.9), we have
N (O Digy
n+1,pl )»%(1 +A%)2 n+2,p2 *

2 272

Since A% < )L% and A%A% < 1, we have 2%812%;2 < 1. Thus
1 2

(5.15) hyypt Shniy,, forallp>1.

Recall that S, > Sy for ¢ > 3. The right-hand side of (5.13) can be regrouped as

D [@hy S+ AR 0 S0) + 200 0 (St + S) + 2h7 4 (St + S2)]
k

+ Z [2hi+q,k1(sll + Sqq) + 2h1%+q,k2(522 + Sqq)] :

q>3k
This is nonnegative by (5.5), (5.14), and (5.15). Thus, we have (£ — A) f > 27
> 0 at (xg, #p), and this is a contradiction. ]
Remark. The condition
(1 — 2123
S _eglPl > 0= — >e foralli # j.

T A4+ T

In particular, we have A7 < 16;6 This implies that the Lipschitz norm of f is

preserved along the mean curvature flow.

6 Long-Time Existence and Convergence

In this section we prove Theorem 1.1 using the evolution equation (3.4) of
In *£2.

PROOF OF THEOREM 1.1: Since |A;A;| < 1 fori # j and X, is compact, we
can find an € > 0 such that
6.1) (- 2i2)) forall i # j
. >¢ foralli .
A+2D0+23) /
By Lemma 5.3, condition (6.1) is preserved along the mean curvature flow. In
particular, we have |[A;A;| < /1 — € and kl.z < (1 — €)/e. This implies ¥, remains
the graph of a map f; : ¥ — X, whenever the flow exists. Each f; has uniformly
bounded |df;]|.
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We look at the evolution equation (3.4) of In*€2. The quadratic terms of the
second fundamental form in equation (3.4) is

(6.2) thk + Zk?hiﬂ ik T2 Z Aidjhnyjikhntijx =

o,k kji<j
SIAI” + szhm it (L= ONAP+2 > Mikihugjikhnsiji -
ki<j
Let1 — 6 = +/1 — €. Using |A;A;| < 1 — &, we conclude that this term is bounded
below by §|A|? .
By equation (4.11), the curvature term in (3.4) equals

(ki — ka)(n — 1) 22 a2 1—57
(6.3) 2 21+x2+( ' 2)Zl+,\2[22(1+,\2)]

The second term on the right-hand side of (6.3) can be s1mp11ﬁed as
n A2A2

32
Z 1 +A2|:Z 2(1 +x2)] ZZ 2(1 +x2)(1 +x2)

i=1 i=1 i#j

6.4
©4) x2+xz 2x2x2

_22(1 kz)(l xz.)

This is nonnegative because [A;A;| < 1 — 8. Thus In %< satisfies the following
differential inequality with k; > |k»|:
(6.5) %m*szz AlnxQ + 8|A|>.
According to the maximum principle for parabolic equations, miny, In *€2 is non-
decreasing in time. In particular, %€ > miny, *€2 = €2 is preserved and *£2 has a
positive lower bound. Let

InxQ —InQy + ¢

—InQy+c¢

where c is a positive number such that —In 2y + ¢ > 0. Recall that 0 < *Q < 1.
This implies that 0 < u < 1 and u satisfies the differential inequality

u =

Because u is also invariant under parabolic dilation, it follows from the blowup
analysis in the proof of Theorem 1.1 that the mean curvature flow of the graph of
f remains a graph and exists for all time under the assumption that k; > |k,| [15].

Using X? < (1 —e€)/eand A;A; < +/1 — €, itis not hard to show

A AT = 20747
2
6.6)  (ki+ 2>22(1H2)(1H2) > 1Zx >cl1n1‘[ (14212
i_
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where ¢ is a constant that depends on €, k;, and k.
Recall equation (3.3) and we obtain

d
EIH*Q > AlnxQ2 — c3In %2,

By the comparison theorem for parabolic equations, miny, In* is nonde-
creasing in ¢ and miny, In %2 — 0 as t — oo. This implies that miny, *Q — 1
and max |A;| — 0 as t — oo. We can then apply theorem B in [15] to conclude
smooth convergence to a constant map at infinity. U
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