Solution to HW 10

- (1) (12.2 Problem 1) Determine the sample space for the random experiment of tossing a coin three times. Solution: The sample space $\Omega = \{HHH, HTT, THT, TTH, THH, HTH, HHT, TTT\}$.
- (2) (12. 2 Problem 5-6) Assume that $\Omega = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$ and $B = \{1, 2, 3\}$
 - (a) Find $A \cup B$ and $A \cap B$. Solution: $A \cup B = \{1, 2, 3, 5\}$ and $A \cap B = \{1, 3\}$.
 - **(b)** Find A^c and show that $(A^c)^c = A$. Solution: $A^c = \Omega \setminus A = \{2, 4, 6\}$. $(A^c)^c = \Omega \setminus A^c = \{1, 3, 5\}$ So $(A^c)^c = A$.
 - (c) Find $(A \cup B)^c$ Solution: We have $(A \cup B)^c = (\{1, 2, 3, 5\})^c = \{4, 6\}.$
 - (d) Are *A* and *B* disjoint? Solution $A \cap B = \{1,3\} \neq \emptyset$. So *A* and *B* are not disjoint.
- (3) (12.2 Problem 18) Assume that P(A) = 0.4, P(B) = 0.4 and $P(A \cup B) = 0.7$. Find $P(A \cap B)$ and $P(A^c \cap B^c)$. (Hint: Use $P(A \cup B) = P(A) + P(B) p(A \cap B)$, $(A \cup B)^c = A^c \cap B^c$ and $P(D^c) = 1 P(D)$.) Solution: Using $P(A \cap B) = P(A) + P(B) - p(A \cap B)$, we have $0.7 = 0.4 + 0.4 - p(A \cap B)$ and $p(A \cap B) = 0.8 - 0.7 = 0.1$. $P(A^c \cap B^c) = P((A \cup B)^c) = 1 - P(A \cup B) = 1 - 0.7 = 0.3$.