Solution to HW 10

(1) (12.2 Problem 1) Determine the sample space for the random experiment of tossing a coin three times.
Solution: The sample space $\Omega=\{H H H, H T T, T H T, T T H, T H H, H T H, H H T, T T T\}$.
(2) (12. 2 Problem 5-6) Assume that $\Omega=\{1,2,3,4,5,6\}, A=\{1,3,5\}$ and $B=\{1,2,3\}$
(a) Find $A \cup B$ and $A \cap B$.

Solution: $A \cup B=\{1,2,3,5\}$ and $A \cap B=\{1,3\}$.
(b) Find A^{c} and show that $\left(A^{c}\right)^{c}=A$.

Solution: $A^{c}=\Omega \backslash A=\{2,4,6\} .\left(A^{c}\right)^{c}=\Omega \backslash A^{c}=\{1,3,5\}$ So $\left(A^{c}\right)^{c}=A$.
(c) Find $(A \cup B)^{c}$

Solution: We have $(A \cup B)^{c}=(\{1,2,3,5\})^{c}=\{4,6\}$.
(d) Are A and B disjoint? Solution $A \cap B=\{1,3\} \neq \emptyset$. So A and B are not disjoint.
(3) (12.2 Problem 18) Assume that $P(A)=0.4, P(B)=0.4$ and $P(A \cup B)=$ 0.7. Find $P(A \cap B)$ and $P\left(A^{c} \cap B^{c}\right)$. (Hint: Use $P(A \cup B)=P(A)+P(B)-$ $p(A \cap B),(A \cup B)^{c}=A^{c} \cap B^{c}$ and $P\left(D^{c}\right)=1-P(D)$.)
Solution: Using $P(A \cap B)=P(A)+P(B)-p(A \cap B)$, we have $0.7=$ $0.4+0.4-p(A \cap B)$ and $p(A \cap B)=0.8-0.7=0.1 . P\left(A^{c} \cap B^{c}\right)=P\left((A \cup B)^{c}\right)=$ $1-P(A \cup B)=1-0.7=0.3$.

