HW 11 Due: Friday, Nov. 8

(1) (30 pts) Sec 12.2 Problem 32

Suppose that one parent is of genotype $A A$ and the other is of genotype $A a$. What is the probability that their offspring is of genotype $A A$? (Assume Mendels first law.)
Solution: The possible outcomes of a cross between $A A$ and $A a$ are $\Omega=\{A A, A a, A A, A a\}$. All outcomes are equally probable. So the probability that their offspring is of genotype $A A$ is $\frac{2}{4}=0.5$
(2) (30 pts) Sec 12.2 Problem 36

If a woman with normal vision who carries the color blindness gene on one of her X chromosomes has a child with a man who has normal vision, what is the probability that their child will be color blind? Solution: Let the woman's chromosomes be represented by $X 1 f$ and $X 2 f$. Let the man's chromosomes be represented by $X 1 m$ and $X 2 m$. The possible outcomes of the chromosomes of their son are $\Omega=$ $\{X 1 f X 1 m, X 1 f X 2 m, X 2 f X 1 m, X 2 f X 2 m\}$. All outcomes are equally probable. The son because he is male will be color blind in case 1 and case 2 (X 1 fX 1 m , X 1 fX 2 m . A male is color blind if he carries the gene on his X only chromosome). So the probability that their child will be color blind is $\frac{2}{4}=0.5$.
(3) (40 pts) Sec 12.3 Problem 16

A screening test for a disease shows a positive result in 92% of all cases when the disease is actually present and in 7% of all cases when it is not. Assume that the prevalence of the disease is 1 in 600. If the test is administered to a randomly chosen individual, what is the probability that the result is positive?
Solution: Let A be the event that the test is positive, B_{1} be the event that a person is infected and B_{2} be the event that a person is not infected. From the condition that the prevalence of the disease is 1 in 600, we have $P\left(B_{1}\right)=\frac{1}{600}$ and $P\left(B_{2}\right)=1-P\left(B_{1}\right)=1-\frac{1}{600}=\frac{599}{600}$. From the condition that a positive result in 92% of all cases when the disease is actually present, we have $P\left(A \mid B_{1}\right)=\frac{92}{100}$. From the condition that a positive result in 7% of all cases when the disease is not present, we have $P\left(A \mid B_{2}\right)=\frac{7}{100}$. Since B_{1} and B_{2} is a partition, we have $P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)=\frac{92}{100} \cdot \frac{1}{600}+\frac{7}{100} \cdot \frac{599}{600}=\frac{92+7.599}{60000}=$ $\frac{4285}{60000} \cong 0.07141666666$. So the probability that the result is positive is about 0.07141666666 .

