HW 8 Solution

(1) (8.1 Problem 30) Solve the differential equation $\frac{d y}{d x}=\frac{1}{2} y^{2}-2 y$ with $y(0)=$ -3 . Note that $\frac{1}{2} y^{2}-2 y=\frac{1}{2} y(y-4)$.
Solution: Note that $\frac{d y}{d x}=\frac{1}{2} y^{2}-2 y=\frac{1}{2} y(y-4)$. Separating the variable, we have $\int \frac{1}{y(y-4)} d y=\int \frac{1}{2} d x . \frac{1}{y(y-4)}=\frac{A}{y}+\frac{B}{y-4}$. Multiplying $y(y-4)$ to both sides, we have $1=A(y-4)+B y$. Plugging $y=0$ and $y=4$, we have $A=-\frac{1}{4}$ and $B=\frac{1}{4}$. Thus $\frac{1}{y(y-4)}=-\frac{1}{4} \cdot \frac{1}{y}+\frac{1}{4} \cdot \frac{1}{y-4}$ and $\int \frac{1}{y(y-4)} d y=\int\left(-\frac{1}{4} \cdot \frac{1}{y}+\frac{1}{4} \cdot \frac{1}{y-4}\right) d y=-\frac{1}{4} \ln |y|+\frac{1}{4} \ln |y-4|=\frac{1}{4} \ln \left|\frac{y-4}{y}\right|+c$. Thus $\int \frac{1}{y(y-4)} d y=\int \frac{1}{2} d x$ can be integrated to get $\frac{1}{4} \ln \left|\frac{y-4}{y}\right|=\frac{x}{2}+c$, $\ln \left|\frac{y-4}{y}\right|=2 x+C$ (here $C=4 c$) $\frac{y-4}{y}=e^{2 x+C}=e^{C} \cdot e^{2 x}=D e^{2 x}$ where $D=e^{C}$. From $\frac{y-4}{y}=D e^{2 x}$, we have $y-4=D e^{2 x} y, y-D e^{2 x} y=4$, $y\left(1-D e^{2 x}\right)=4$ and $y=\frac{4}{1-D e^{2 x}}$. Using the initial condition $y(0)=-3$, we have $\frac{4}{1-D e^{2 \cdot 0}}=-3, \frac{4}{1-D}=-3,4=-3+3 D, 3 D=7$ and $D=\frac{7}{3}$. Thus $y=\frac{4}{1-\frac{7}{3} e^{2 x}}$.
(2) (8.1 Problem 48) Solve the differential equation $\frac{d y}{d x}=x^{2} y^{2}$ with $y(1)=1$ Solution: Separating the variable, we have $\int \frac{1}{y^{2}} d y=\int x^{2} d x,-\frac{1}{y}=\frac{x^{3}}{3}+c$ and $y=-\frac{1}{\frac{x^{3}}{3}+c}$. Using the initial condition $y(1)=1$, we have $-\frac{1}{\frac{1}{3}+c}=1$, $\frac{1}{3}+c=-1$ and $c=-\frac{4}{3}$. Thus $y=-\frac{1}{\frac{x^{3}}{3}-\frac{4}{3}}=-\frac{1}{\frac{x^{3}-4}{3}}=-\frac{3}{x^{3}-4}$.
(3) (Part of 8.1 Problem 40) Suppose that the size of a population, denoted by $N(t)$, satisfies

$$
\begin{equation*}
\frac{d N}{d t}=0.7 N\left(1-\frac{N}{35}\right) \tag{0.0.1}
\end{equation*}
$$

(a) Determine all equilibria by solving $\frac{d N}{d t}=0$. Solution: Solving $0.7 N\left(1-\frac{N}{35}\right)=0$, we have $N=0$ and $N=35$.
(b) Solve the differential equation (0.0.1) with $N(0)=10$ and find $\lim _{t \rightarrow \infty} N(t)$. Solution: We can rewrite $0.7 N\left(1-\frac{N}{35}\right)=0.7 N\left(\frac{35-N}{35}\right)=$ $-\frac{0.7}{35} N(N-35)=-0.02 N(N-35)$. So the diff eq $\frac{d N}{d t}=0.7 N\left(1-\frac{N}{35}\right)$ is the same as $\frac{d N}{d t}=-0.02 N(N-35)$. Separating the variable, we have $\int \frac{1}{N(N-35)} d N=\int-0.02 d t$. Let $\frac{1}{N(N-35)}=\frac{A}{N}+\frac{B}{N-35}$. Multiplying $N(N-35)$ to both sides, we have $1=A(N-35)+B N$. Plugging $N=0$ and $N=35$, we have $A=-\frac{1}{35}$ and $B=\frac{1}{35}$. So $\frac{1}{N(N-35)}=-\frac{1}{35} \cdot \frac{1}{N}+$ $\frac{1}{35} \cdot \frac{1}{N-35}$ and $\int \frac{1}{N(N-35)} d N=-\frac{1}{35} \int \frac{1}{N} d N+\frac{1}{35} \int \frac{1}{N-35} d N=-\frac{1}{35} \ln |N|+$ $\frac{1}{35} \ln |N-35|=\frac{1}{35} \ln \left|\frac{N-35}{N}\right|+c$. Thus $\int \frac{1}{N(N-35)} d N=\int-0.02 d t$ can be integrated as $\frac{1}{35} \ln \left|\frac{N-35}{N}\right|=-0.02 t+c$ and $\ln \left|\frac{N-35}{N}\right|=-0.7 t+c_{1}$, $\frac{N-35}{N} C e^{-0.7 t}, N-35=C e^{-0.7 t} N, N-C e^{-0.7 t} N=35, N\left(1-C e^{-0.7 t}\right)=$

35 and $N=\frac{35}{1-C e^{-0.7 t}}$. Using the condition $N(0)=10$, we have $\frac{35}{1-C e^{0}}=10, \frac{35}{1-C}=10,35=10-10 C, 10 C=-25$ and $C=-2.5$. Thus $N=\frac{35}{1-(-2.5) e^{-0.7 t}}=\frac{35}{1+2.5 e^{-0.7 t}}$ and $\lim _{t \rightarrow \infty} N(t)=\lim _{t \rightarrow \infty} \frac{35}{1+2.5 e^{-0.7 t}}=35$
(c) Solve the differential equation 0.0.1 with $N(0)=50$ and find $\lim _{t \rightarrow \infty} N(t)$.
Solution: Using the general solution $N=\frac{35}{1-C e^{-0.7 t}}$ and $N(0)=50$, we have $\frac{35}{1-C}=50,35=50-50 C, 50 C=15$ and $C=0.3$. Thus $N=\frac{35}{1-0.3 e^{-0.7 t}}$ and $\lim _{t \rightarrow \infty} N(t)=\lim _{t \rightarrow \infty} \frac{35}{1-0.3 e^{-0.7 t}}=35$.
(4) (Part of 8.2 Problem 4) Suppose that $\frac{d y}{d x}=y(2-y)(y-3)$
(a) Determine the equilibria of this differential equation. Solution: Solving $y(2-y)(y-3)=0$, we have $y=0, y=2$ or $y=3$. So the equilibria of this differential equation are $y=0, y=2$ or $y=3$
(b) Graph $\frac{d y}{d x}$ as a function of y, and use your graph to discuss the stability of the equilibria.
Solution: We plug in the value $y=-1<0,0<y=1<2$ and $2<y=2.5<3$ and $3<y=4$ to $y(2-y)(y-3)$.

y	-1	1	2.5	4
$y(2-y)(y-3)$	$(-1)(2-(-1))(-1-3)$	$1(2-1)(1-3)$	$2.5(2-2.5)(2.5-3)$	$4(2-4)(4-3)$
	+	-	+	-

From the graph on next page, we know that $y=0$ is stable, $y=2$ is unstable, $y=3$ is stable.
(5) ($\sec 8.2$) Suppose that $\frac{d y}{d x}=g(y)$ and the graph of $\frac{d y}{d x}$ as a function of y is given by the figure above
(a) Determine the equilibria of this differential equation. Solution: The equilibrium of this differential equation are $y=2, y=4, y=7$ and $y=9$
(b) Use the graph to discuss the stability of the equilibria. From the graph on next page, we know that $y=2$ is unstable, $y=4$ is unstable, $y=7$ is stable and $y=9$ is unstable.

Figure 1. graph for Problem 4

Figure 2. graph for Problem 5

