Quiz 1 Friday, August 30

1 Find the antiderivative of $\frac{2}{x^3} - 2\sin(\frac{x}{2}) + \frac{\sec^2(2x)}{3}$ Solution.

First, we can simplify the expression to get

$$\frac{2}{x^3} - 2\sin(\frac{x}{2}) + \frac{\sec^2(2x)}{3} = 2x^{-3} - 2\sin(\frac{x}{2}) + \frac{1}{3}\sec^2(2x).$$

Method 1:

Note that the antiderivative of x^{-3} is $\frac{x^{-3+1}}{-3+1} + c = \frac{x^{-2}}{-2} + c$,

the antiderivative of $\sin(\frac{x}{2})$ is $-\frac{\cos(\frac{x}{2})}{\frac{1}{2}} + c = -2\cos(\frac{x}{2}) + c$ and the antiderivative of $\sec^2(2x)$ is $\frac{\tan(2x)}{2} + c$.

So the antiderivative of $\frac{2}{x^3} - 2\sin(\frac{x}{2}) + \frac{\sec^2(2x)}{3}$ is $2\cdot\frac{x^{-2}}{-2} - 2\cdot(-2\cos(\frac{x}{2})) + \frac{1}{3}\cdot\frac{\tan(2x)}{2} + c$ which can be simplified as

$$-x^{-2} + 4\cos(\frac{x}{2})) + \frac{1}{6}\tan(2x) + c.$$

One can verify the answer by taking the derivative of $-x^{-2}+4\cos(\frac{x}{2})+\frac{1}{6}\tan(2x)+c$ to get

$$\frac{d}{dx}\left(-x^{-2} + 4\cos(\frac{x}{2})\right) + \frac{1}{6}\tan(2x) + c\right)$$

$$= -\cdot(-2)x^{-3} + 4\cdot(-\cos(\frac{x}{2})\cdot\frac{1}{2}) + \frac{1}{6}\sec^2(2x)\cdot 2 + 0$$

$$= 2x^{-3} - 2\cos(\frac{x}{2}) + \frac{1}{3}\sec^2(2x).$$

Method 2: We can use indefinite integral to find the antiderivative of a function.

Since
$$\frac{2}{x^3} - 2\sin(\frac{x}{2}) + \frac{\sec^2(2x)}{3} = 2x^{-3} - 2\sin(\frac{x}{2}) + \frac{1}{3}\sec^2(2x)$$
, we have
$$\int \left(\frac{2}{x^3} - 2\sin(\frac{x}{2}) + \frac{\sec^2(2x)}{3}\right) dx$$
$$= \int \left(2x^{-3} - 2\sin(\frac{x}{2}) + \frac{1}{3}\sec^2(2x)\right) dx$$
$$= 2\int x^{-3} dx - 2\int \sin(\frac{x}{2}) dx + \frac{1}{3}\int \sec^2(2x) dx$$
$$= 2\cdot \frac{x^{-2}}{-2} - 2\cdot \left(-\frac{\cos(\frac{x}{2})}{\frac{1}{2}}\right) + \frac{1}{3}\cdot \frac{\tan(2x)}{2} + c$$
$$= -x^{-2} + 4\cos(\frac{x}{2})\right) + \frac{1}{6}\tan(2x) + c$$

So the antiderivative of $\frac{2}{x^3} - 2\sin(\frac{x}{2}) + \frac{\sec^2(2x)}{3}$ is $-x^{-2} + 4\cos(\frac{x}{2}) + \frac{1}{6}\tan(2x) + c$.

MATH 1760: page 1 of 1