Quiz 2 Friday, September 6

1 Suppose the value of the function f is shown in the following table | \mathbf{x} | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | 2 | -1 | -2 | $\mathbf{0}$ | Approximate $\int_{1}^{4} f(x) d x$ using 3 equal subintervals and left endpoints.

Solution.

First, we divide the interval [1, 4] into 3 subintervals. The length of each interval is $\frac{\text { end point-starting point }}{\text { the number of subintervals }}=\frac{4-1}{3}=\frac{3}{3}=1$.
So the first interval is $[1,1+1]=[1,2]$, the width of the approximate rectangle is 1 , the value of f at 1 is $f(1)=2$
The second interval is $[2,2+1]=[2,3]$, the width of the approximate rectangle is 1 , the value of f at 2 is $f(2)=-1$
The third interval is $[3,3+1]=[3,4]$, the width of the approximate rectangle is 1 , the value of f at 3 is $f(3)=-2$.
So the Riemann sum is
$\underbrace{f(1)}_{\text {height }} \cdot \underbrace{1}_{\text {width }}+\underbrace{f(2)}_{\text {height }} \cdot \underbrace{1}_{\text {width }}+\underbrace{f(3)}_{\text {height }} \cdot \underbrace{1}_{\text {width }}=2 \cdot 1+(-1) \cdot 1+(-2) \cdot 1=2-1-2=-1$.

Another example:Suppose the value of the function f is shown in the following table | x | 1 | $4 / 3$ | $5 / 3$ | 2 | $7 / 3$ | $8 / 3$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | 1 | -1 | 2 | -2 | 3 | 0 | -1 |

Approximate $\int_{1}^{2} f(x) d x$ using 3 equal subintervals and left endpoints. Solution.
First, we divide the interval [1,2] into 3 subintervals. The length of each interval is $\frac{\text { end point-starting point }}{\text { the number of subintervals }}=\frac{2-1}{3}=\frac{1}{3}$.
So the first interval is $\left[1,1+\frac{1}{3}\right]=\left[1, \frac{4}{3}\right]$, the width of the approximate rectangle is $\frac{1}{3}$, the value of f at 1 is $f(1)=1$
The second interval is $\left[\frac{4}{3}, \frac{4}{3}+\frac{1}{3}\right]=\left[\frac{4}{3}, \frac{5}{3}\right]$, the width of the approximate rectangle is $\frac{1}{3}$, the value of f at $\frac{4}{3}$ is $f\left(\frac{4}{3}\right)=-1$
The third interval is $\left[\frac{5}{3}, \frac{5}{3}+\frac{1}{3}\right]=\left[\frac{5}{3}, 2\right]$, the width of the approximate rectangle is $\frac{1}{3}$, the value of f at $\frac{5}{3}$ is $f\left(\frac{5}{3}\right)=2$.
So the Riemann sum is
So the Riemann sum is
$\underbrace{f(1)}_{\text {height }} \cdot \underbrace{\frac{1}{3}}_{\text {width }}+\underbrace{f\left(\frac{4}{3}\right)}_{\text {height }} \cdot \underbrace{\frac{1}{3}}_{\text {width }}+\underbrace{f\left(\frac{5}{3}\right)}_{\text {height }} \cdot \underbrace{\frac{1}{3}}_{\text {width }}=1 \cdot \frac{1}{3}+(-1) \cdot \frac{1}{3}+2 \cdot \frac{1}{3}=\frac{1}{3}-\frac{1}{3}+\frac{2}{3}=\frac{2}{3}$.

Figure 1.
2 Suppose the $y=f(x)$ and the area of the shaded region is given by below. Find $\int_{-1}^{1} f(x) d x$ and $\int_{-1}^{2} f(x) d x$. Solution: From the graph, we know that $\int_{-1}^{0} f(x) d x=1, \int_{0}^{1} f(x) d x=-2$ and $\int_{1}^{2} f(x) d x=1$. So we have $\int_{-1}^{1} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x=1+(-2)=-1$ and $\int_{-1}^{2} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x=1+(-2)+1=0$.

