Review Problem for Midterm #1

Midterm I: Friday, September 20 in class

Topics: 5.8 and 6.1-6.3

No calculator is allowed in the exam. You should know how to solve these problems without a calculator.

1. Evaluate the following indefinite integrals:

(a)
$$\int \frac{-2x^3 - x + 1}{x^2} dx$$

$$\int \frac{-2x^3 - x + 1}{\sqrt{x}} dx$$

$$\int (x-2)(x+3)dx$$

(d)
$$\int -4\sec^2(\frac{x}{2}) - 3\cos(2x) - 4\sin(\frac{x}{3})dx$$

(e)
$$\int 4\sec(\frac{x}{2})\tan(\frac{x}{2}) - 4e^{\frac{x}{3}}dx$$

$$\int \frac{1-x^2}{1+x^2} - \frac{3}{\sqrt{1-x^2}} dx$$

(g)
$$\int 3^x - x^3 dx$$

2. Evaluate the following definite integrals:

(a)
$$\int_{1}^{4} \frac{-2x^{3} + 1}{\sqrt{x}} dx$$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos(\frac{x}{3})}{2} dx$$

(c)
$$\int_{\frac{\pi}{32}}^{\frac{\pi}{9}} 4\sin(3x)dx$$

(d)
$$\int_{-1}^{1} \frac{1}{2x+1} dx$$

(e)

$$\int_0^2 \frac{1}{2x+1} dx$$

- - (a) Approximate $\int_0^1 f(x)dx$ using 4 equal subintervals and left endpoints.
 - **(b)** Approximate $\int_{-1}^{1} f(x)dx$ using 4 equal subintervals and left endpoints.
- **4.** Approximate $\int_1^3 (4x^2 5) dx$ using 4 equal subintervals and left endpoints.
- **5.** Evaluate the following limits

(a)

$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} (c_k^2 - 1) \Delta x_k$$

where $P = \{x_0 = 1, x_1, \dots, x_k, \dots, x_n = 2\}, c_k \in [x_{k-1}, x_k], \Delta x_k = x_k - x_{k-1}.$

(b)

$$\lim_{\|P\|\to 0} \sum_{k=1}^{n} 3\sin(2c_k) \Delta x_k$$

where $P = \{x_0 = 0, x_1, \dots, x_k, \dots, x_n = \frac{\pi}{4}\}, c_k \in [x_{k-1}, x_k], \Delta x_k = x_k - x_{k-1}.$

6. Express the area of the region enclosed by $y = x^2 - 1$ and y = 5x + 5 as an definite integral (**Do not evaluate the definite integral**).

FIGURE 1. Graph for problem 6

7. (a) Express the area of the region enclosed by $y = -\sqrt{x+1}$, y = -2x + 4, x-axis and y-axis as an definite integral(**Do not evaluate the definite integral**).

FIGURE 2. Graph for problem 7

(b) Express the volume of the solid obtained by rotating the above enclosed region about x-axis as an definite integral(**Do not evaluate the definite integral**).

8. Express the area of the region enclosed by $y=-\sqrt{x}$, y=x and x=4 as an definite integral.

FIGURE 3. Graph for problem 8

9. (a) Express the area of the region enclosed by y=4x, $y=2x^2$ as an definite integral(**Do not evaluate the definite integral**).

FIGURE 4. Graph for problem 9

(b) Express the volume of the solid obtained by rotating the above enclosed region about x-axis as an definite integral(**Do not evaluate the definite integral**).