ADJOINTS OF LINEAR FRACTIONAL COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES

ŽELJKO ČUČKOVIĆ AND TRIEU LE

Abstract

It is well known that on the Hardy space $H^{2}(\mathbb{D})$ or weighted Bergman space $A_{\alpha}^{2}(\mathbb{D})$ over the unit disk, the adjoint of a linear fractional composition operator equals the product of a composition operator and two Toeplitz operators. On $S^{2}(\mathbb{D})$, the space of analytic functions on the disk whose first derivatives belong to $H^{2}(\mathbb{D})$, Heller showed that a similar formula holds modulo the ideal of compact operators. In this paper we investigate what the situation is like on other weighted Hardy spaces.

1. Introduction

Let \mathbb{D} denote the open unit disk in the complex plane. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic map. The composition operator C_{φ} is defined by $C_{\varphi} f=f \circ \varphi$, where f is an analytic function on \mathbb{D}. Composition operators have been studied extensively on Hilbert spaces of analytic functions such as the Hardy space H^{2}, the weighted Bergman spaces $A_{\alpha}^{2}(\alpha>-1)$ and the Dirichlet space \mathcal{D}, just to name a few. The reader is referred to the excellent books [5] and [11] for more details. Of particular interest was finding the formula for the adjoint C_{φ}^{*} on these spaces. Cowen [3] found the formula for C_{φ}^{*} on H^{2} for the case φ is a linear fractional self-map of \mathbb{D} (we shall call such C_{φ} a linear fractional composition operator). Cowen showed that if $\varphi(z)=(a z+b) /(c z+d)$ is a linear fractional mapping of \mathbb{D} into itself then

$$
\begin{equation*}
C_{\varphi}^{*}=M_{g} C_{\sigma} M_{h}^{*}, \tag{1.1}
\end{equation*}
$$

where $\sigma(z)=(\bar{a} z-\bar{c}) /(-\bar{b} z+\bar{d})$ is the Kreĭn adjoint of φ and M_{g} and M_{h} are multiplication operators with symbols $g(z)=(-\bar{b} z+\bar{d})^{-1}$ and $h(z)=c z+d$. Cowen's formula was later extended by Hurst [9 to weighted Bergman spaces A_{α}^{2} with $\alpha>-1$. Such formulas initiated more studies of the adjoint of linear fractional composition operators on different spaces of analytic functions and on H^{2} for general rational symbols. See [6, 4, 10, 7, 1] and the references therein.

Recently, Heller [8] investigated the adjoint of C_{φ} acting on the space $S^{2}(\mathbb{D})$, which consists of analytic functions on \mathbb{D} whose first derivative belongs to H^{2}. Let \mathcal{K} denote the ideal of compact operators on $S^{2}(\mathbb{D})$. Heller obtained the following results.

Theorem A. Let $\varphi(z)=a z /(c z+d)$ be a holomorphic self-map of the disk and consider C_{φ} acting on $S^{2}(\mathbb{D})$. Then

$$
C_{\varphi}^{*}=M_{G}^{*} C_{\sigma} \bmod \mathcal{K},
$$

where $G(z)=(-c / a) z+1$ and $\sigma(z)=(\bar{a} / \bar{d}) z-\bar{c} / \bar{d}$ is the Kreı̆n adjoint of φ.

[^0]Theorem B. Let $\varphi(z)=\lambda(z+u) /(1+\bar{u} z),|\lambda|=1,|u|<1$, be an automorphism of the disk and consider C_{φ} acting on $S^{2}(\mathbb{D})$. Then

$$
C_{\varphi}^{*}=M_{G}^{*} C_{\varphi^{-1}} M_{1 / H} \bmod \mathcal{K}
$$

where $G(z)=-\overline{\lambda u} z+1$ and $H(z)=\bar{u} z+1$.
For a general linear fractional self-map φ, a formula for C_{φ}^{*} modulo the compact operators can be obtained by combining the above two results. Certain simplification of the above formulas was also presented in [8]. It is curious to us that Heller's formulas are not of the same form as Cowen's formula 1.1): the order of the multiplication operators is different. The purpose of the paper is to investigate the adjoints of linear fractional composition operators in a more general setting. We then explain how to recover Heller's formulas from our results.

All of the spaces mentioned above belong to the class of weighted Hardy spaces $H^{2}(\beta)$, where $\beta=\{\beta(n)\}_{n \geq 1}^{\infty}$ is a sequence of positive numbers. These spaces are Hilbert spaces of analytic functions on the unit disk in which the monomials $\left\{z^{n}: n \geq 0\right\}$ form an orthogonal basis with $\left\|z^{n}\right\|=\beta(n)$. We shall show that it is possible to obtain Cowen's formula modulo compact operators not only on $S^{2}(\mathbb{D})$ but also on a wide subclass of weighted Hardy spaces $H^{2}(\beta)$. Our strategy involves the family of weighted Bergman spaces $A_{\alpha}^{2}(\alpha \in \mathbb{R})$ studied by Zhao and Zhu [12]. We use the exact formulas for the reproducing kernels of A_{α}^{2} to obtain Cowen's type formula for C_{φ}^{*} on these spaces first. We then extend our formulas to $H^{2}(\beta)$ for appropriate weight sequences whose term β_{n} behaves asymptotically as $\left\|z^{n}\right\|_{\alpha}$.

2. Adjoint formulas on A_{α}^{2}

In this section we study the adjoint of composition operators acting on weighted Bergman spaces A_{α}^{2} for $a \in \mathbb{R}$. The standard weighted Bergman spaces are defined for measures $d A_{\alpha}(z)=\left(1-|z|^{2}\right)^{\alpha} d A(z)$ with $\alpha>-1$. Zhao and Zhu [12] extended this definition to the case where α is any real number. For any $\alpha \in \mathbb{R}$, the space A_{α}^{2} consists of holomorphic functions f on \mathbb{D} with the property that there exists an integer $k \geq 0$ with $\alpha+2 k>-1$ such that $\left(1-|z|^{2}\right)^{k} f^{(k)}(z)$ belongs to $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$, or equivalently, $f^{(k)}$ belongs to $A_{\alpha+2 k}^{2}$. It is well know that this definition is consistent with the traditional definition for $\alpha>-1$. The reader is referred to 12 for a detailed study of A_{α}^{2}. Note that any function that is analytic on an open neighborhood of the closed unit disk belongs to A_{α}^{2} for all α.

In [12, Section 11], it was shown that each A_{α}^{2} is a reproducing kernel Hilbert space. When equipped with an appropriate inner product, the kernel of A_{α}^{2} can be computed explicitly. Depending on the value of α, we obtain three types of kernels. For each type, we show that the operator

$$
C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}
$$

is either zero or has finite rank, where g and h are certain analytic functions associated with φ.

For $\alpha+2>0$, the kernel is

$$
\begin{equation*}
K_{\alpha}(z, w)=\frac{1}{(1-z \bar{w})^{\alpha+2}} \tag{2.1}
\end{equation*}
$$

and

$$
\left\|z^{m}\right\|_{\alpha}=\sqrt{\frac{m!\Gamma(\alpha+2)}{\Gamma(m+\alpha+2)}}, \quad m=0,1,2 \ldots
$$

which behaves asymptotically as $m^{-(\alpha+1) / 2}$ by Stirling's formula.
When $\alpha+2$ is negative and non-integer such that $-N<\alpha+2<-N+1$ for some positive integer N, the kernel takes the form

$$
\begin{equation*}
K_{\alpha}(z, w)=\frac{(-1)^{N}}{(1-z \bar{w})^{\alpha+2}}+Q(z \bar{w}) \tag{2.2}
\end{equation*}
$$

where Q is an analytic polynomial of degree N. In this case, for $m>N$,

$$
\left\|z^{m}\right\|_{\alpha}=\sqrt{(-1)^{N} \frac{m!\Gamma(\alpha+2)}{\Gamma(m+\alpha+2)}}
$$

which also behaves asymptotically as $m^{-(\alpha+1) / 2}$.
In the case $\alpha+2=-N$, where N is a non-negative integer, the kernel has the form

$$
\begin{equation*}
K_{\alpha}(z, w)=(\bar{w} z-1)^{N} \log \left(\frac{1}{1-\bar{w} z}\right)+Q(\bar{w} z) \tag{2.3}
\end{equation*}
$$

where Q is an analytic polynomial of degree N. For $m>N$, we have

$$
\left\|z^{m}\right\|_{\alpha}=\sqrt{\frac{1}{A_{m}}}
$$

where A_{m} is the coefficient of z^{m} in the Taylor expansion

$$
(z-1)^{N} \log \frac{1}{1-z}=\sum_{k=0}^{\infty} A_{k} z^{k}
$$

The argument in the paragraph preceding [12, Theorem 44] shows that $\left\|z^{m}\right\|_{\alpha}$ behaves asymptotically as $m^{(N+1) / 2}=m^{-(\alpha+1) / 2}$ as well.

Remark 2.1. For any real number α, we see that $\left\|z^{m}\right\|_{\alpha}$ behaves asymptotically as $m^{-(\alpha+1) / 2}$ when $m \rightarrow \infty$.

For the Hardy and weighted Bergman spaces (which may be identified as A_{α}^{2} with $\alpha \geq-1$), it is well known that their multiplier spaces are exactly the same as $H^{\infty}(\mathbb{D})$ and any composition operator induced by a holomorphic self-map of \mathbb{D} is bounded. However, such results do not hold for other values of α. On the other hand, it turns out, as we shall show below, that all multiplication and composition operators discussed in this paper are bounded on all A_{α}^{2}.

For two positive quantities A and B, we write $A \lesssim B$ if there exists a constant $c>0$ independent of the variables under consideration such that $A \leq c B$. We write $A \approx B$ if $A \lesssim B$ and $B \lesssim A$.

Let $m \geq 0$ be an integer. Recall [12, Theorem 13] that for any real number α, a function f belongs to A_{α}^{2} if and only if the m th derivative $f^{(m)}$ belongs to $A_{\alpha+2 m}^{2}$ and

$$
\begin{equation*}
\|f\|_{\alpha} \approx\left\|f^{(m)}\right\|_{\alpha+2 m} \tag{2.4}
\end{equation*}
$$

Also, if $\alpha_{1}<\alpha_{2}$ then

$$
\begin{equation*}
\|\cdot\|_{\alpha_{2}} \lesssim\|\cdot\|_{\alpha_{1}} . \tag{2.5}
\end{equation*}
$$

Lemma 2.2. Let α be a real number and m be a positive integer such that $\alpha+2 m>$ -1 . There exists a positive constant C such that if u is a function holomorphic on an open neighborhood of the closed unit disk, then M_{u} is a bounded operator on A_{α}^{2} and

$$
\begin{equation*}
\left\|M_{u}\right\| \leq C \max \left\{\left\|u^{(j)}\right\|_{L^{\infty}(\mathbb{D})}: 0 \leq j \leq m\right\} \tag{2.6}
\end{equation*}
$$

Proof. To simplify the notation, we put

$$
\|u\|_{m, \infty}=\max \left\{\left\|u^{(j)}\right\|_{L^{\infty}(\mathbb{D})}: 0 \leq j \leq m\right\}
$$

For any $f \in A_{\alpha}^{2}$, using (2.4), we compute

$$
\begin{aligned}
\|u f\|_{\alpha} \approx\left\|(u f)^{(m)}\right\|_{\alpha+2 m} & =\left\|\sum_{j=0}^{m}\binom{m}{j} u^{(m-j)} f^{(j)}\right\|_{\alpha+2 m} \\
& \leq \sum_{j=0}^{m}\binom{m}{j}\left\|u^{(m-j)}\right\|_{L^{\infty}(\mathbb{D})}\left\|f^{(j)}\right\|_{\alpha+2 m} \\
& \leq\|u\|_{m, \infty} \sum_{j=0}^{m}\binom{m}{j}\left\|f^{(j)}\right\|_{\alpha+2 m}
\end{aligned}
$$

Moreover, for any $0 \leq j \leq m$, by (2.4) and (2.5), we have

$$
\left\|f^{(j)}\right\|_{\alpha+2 m} \approx\|f\|_{\alpha+2 m-2 j} \lesssim\|f\|_{\alpha}
$$

Consequently,

$$
\|u f\|_{\alpha} \lesssim\|u\|_{m, \infty}\|f\|_{\alpha} \sum_{j=0}^{m}\binom{m}{j}=2^{m}\|u\|_{m, \infty}\|f\|_{\alpha}
$$

This implies 2.6 with a constant C independent of u.
Lemma 2.3. Let φ be a holomorphic self-map of \mathbb{D} such that φ extends to a holomorphic function on an open neighborhood of the closed unit disk. Then C_{φ} is a bounded operator on A_{α}^{2} for any real number α.
Proof. Fix any real number $\gamma>-1$. We shall prove that C_{φ} is bounded on $A_{-2 k+\gamma}^{2}$ for all integers $k \geq 0$ by induction on k. This immediately yields the conclusion of the lemma.

Since $\gamma>-1, A_{\gamma}^{2}$ is the weighted Bergman space with weight $\left(1-|z|^{2}\right)^{\gamma}$. It is well known that C_{φ} is bounded on A_{γ}^{2}, which proves our claim for the case $k=0$. Now assume that C_{φ} is bounded on $A_{-2 k+\gamma}^{2}$ for some integer $k \geq 0$. We would like to show that C_{φ} is bounded on $A_{-2 k-2+\gamma}^{2}$. Since C_{φ} is a closed operator, it suffices to show that for any h in $A_{-2 k-2+\gamma}^{2}$, the composition $h \circ \varphi$ belongs to $A_{-2 k-2+\gamma}^{2}$ as well. This, in turn, is equivalent to the requirement that $(h \circ \varphi)^{\prime}$ belongs to $A_{-2 k+\gamma}^{2}$. We have $(h \circ \varphi)^{\prime}=\left(h^{\prime} \circ \varphi\right) \cdot \varphi^{\prime}$. Since h is in $A_{-2 k-2+\gamma}^{2}$, the derivative h^{\prime} belongs to $A_{-2 k+\gamma}^{2}$. By the induction hypothesis, $h^{\prime} \circ \varphi=C_{\varphi} h^{\prime}$ belongs to $A_{-2 k+\gamma}^{2}$ as well. On the other hand, by our assumption about φ, Lemma 2.2 shows that multiplication by φ^{\prime} is a bounded operator on $A_{-2 k+\gamma}^{2}$. Consequently, $\left(h^{\prime} \circ \varphi\right) \cdot \varphi^{\prime}$ is an element of $A_{-2 k+\gamma}^{2}$, which is what we wish to show.

As in Heller's work, our adjoint formula for C_{φ} holds modulo finite rank or compact operators. We first recall a description of finite rank operators on Hilbert spaces, see, for example, [2, Exercise II.4.8].

Let \mathcal{H} be a Hilbert space. For non-zero vectors $u, v \in \mathcal{H}$, we use $u \otimes v$ to denote the rank one operator $(u \otimes v)(h)=\langle h, v\rangle u$ for $h \in \mathcal{H}$.
Lemma 2.4. A bounded linear operator $A: \mathcal{H} \rightarrow \mathcal{H}$ has rank at most m if and only if there exist f_{1}, \ldots, f_{m} and g_{1}, \ldots, g_{m} belonging to \mathcal{H} such that

$$
A=f_{1} \otimes g_{1}+\cdots+f_{m} \otimes g_{m}
$$

When \mathcal{H} is a reproducing kernel Hilbert space of analytic function, Lemma 2.4 takes a different form which will be useful for us. This result is probably well known but we provide a proof for the reason of completeness.

Lemma 2.5. Let \mathcal{H} be a Hilbert space of analytic functions on the unit disk with reproducing kernel K. Let \mathcal{X} be the set of functions on $\mathbb{D} \times \mathbb{D}$ of the form

$$
\begin{equation*}
f_{1}(z) \overline{g_{1}(w)}+\cdots+f_{m}(z) \overline{g_{m}(w)} \tag{2.7}
\end{equation*}
$$

where f_{1}, \ldots, f_{m} and g_{1}, \ldots, g_{m} belong to \mathcal{H} and m is a positive integer. Then a bounded linear operator $A: \mathcal{H} \longrightarrow \mathcal{H}$ has finite rank if and only if the function $(z, w) \mapsto\left\langle A K_{w}, K_{z}\right\rangle$ belongs to \mathcal{X}. Here $K_{w}(z)=K(z, w)$ for $z, w \in \mathbb{D}$.
Proof. By Lemma 2.4 a bounded linear operator $A: \mathcal{H} \longrightarrow \mathcal{H}$ has finite rank if and only if there exist a positive integer m and functions f_{1}, \ldots, f_{m} and g_{1}, \ldots, g_{m} belonging to \mathcal{H} such that

$$
A=f_{1} \otimes g_{1}+\cdots+f_{m} \otimes g_{m}
$$

For $1 \leq i, j \leq m$, we have

$$
\left\langle\left(f_{j} \otimes g_{j}\right) K_{w}, K_{z}\right\rangle=\left\langle K_{w}, g_{j}\right\rangle\left\langle f_{j}, K_{z}\right\rangle=f_{j}(z) \overline{g_{j}(w)}
$$

The conclusion of the lemma now follows from the density of the linear span of $\left\{K_{w}: w \in \mathbb{D}\right\}$.

Suppose $\varphi(z)=(a z+b) /(c z+d)$ is a linear fractional self-map of the unit disk. Let $\sigma(z)=(\bar{a} z-\bar{c}) /(-\bar{b} z+\bar{d})$ be the Krĕ̆n adjoint of φ. It is known that σ is also a self-map of \mathbb{D}. Let $\eta(z)=(c z+d)^{-1}$ and $\mu(z)=-\bar{b} z+\bar{d}$. Then η and μ are bounded analytic functions on a neighborhood of the closed unit disk and

$$
1-\overline{\varphi(w)} z=\mu(z)(1-\bar{w} \sigma(z)) \overline{\eta(w)}
$$

Consequently, by choosing appropriate branches of the logarithms, we have

$$
\begin{equation*}
\log (1-\overline{\varphi(w)} z)=\log (\mu(z))+\log (1-\bar{w} \sigma(z))+\log (\overline{\eta(w)}) \tag{2.8}
\end{equation*}
$$

Therefore, for any real number γ,

$$
\begin{equation*}
(1-\overline{\varphi(w)} z)^{\gamma}=\mu(z)^{\gamma}(1-\bar{w} \sigma(z))^{\gamma} \overline{\eta(w)^{\gamma}} \tag{2.9}
\end{equation*}
$$

for z, w in \mathbb{D}.
We are now in a position to discuss the adjoints of composition operators induced by linear fractional maps. In the following theorem, we consider the first two types of kernels.

Theorem 2.6. Let α be a real number such that $\alpha+2$ is not zero nor a negative integer. Let $\varphi(z)=(a z+b) /(c z+d)$ be a linear fractional self-map of the unit disk and σ be its Kreĭn adjoint. Let $g(z)=(-\bar{b} z+\bar{d})^{-\alpha-2}$ and $h(z)=(c z+d)^{\alpha+2}$ for $z \in \mathbb{D}$. Then $C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}$ has finite rank on A_{α}^{2}. In the case $\alpha+2>0$, we actually have the identity $C_{\varphi}^{*}=M_{g} C_{\sigma} M_{h}^{*}$.

Remark 2.7. Lemmas 2.2 and 2.3 show that the operators $C_{\varphi}, C_{\sigma}, M_{g}$ and M_{h} are all bounded on A_{α}^{2}.

Proof of Theorem 2.6. As we mentioned before, the case $\alpha>-1$ was considered by Hurst [9. His proof works also for $-2<\alpha \leq-1$ since the kernels have the same form. Here we only need to investigate the case $-N<\alpha+2<-N+1$ for some positive integer N. To simplify the notation, let $\gamma=-(\alpha+2)$. We then rewrite the kernel as $K(z, w)=(-1)^{N}(1-\bar{w} z)^{\gamma}+Q(\bar{w} z)$ for $z, w \in \mathbb{D}$. Set $K_{w}(z)=K(z, w)$ for $z, w \in \mathbb{D}$. We shall make use of the following identities, which are well known:

$$
M_{h}^{*} K_{w}=\overline{h(w)} K_{w}, \quad M_{g}^{*} K_{z}=\overline{g(z)} K_{z}, \quad C_{\varphi}^{*} K_{w}=K_{\varphi(w)}
$$

We now compute

$$
\begin{aligned}
&\left\langle\left(C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}\right) K_{w}, K_{z}\right\rangle= K(z, \varphi(w))-g(z) K(\sigma(z), w) \overline{h(w)} \\
&=(-1)^{N}(1-\overline{\varphi(w)} z)^{\gamma}+Q(\overline{\varphi(w)} z) \\
&-g(z)\left((-1)^{N}(1-\bar{w} \sigma(z))^{\gamma}+Q(\bar{w} \sigma(z))\right) \overline{h(w)} \\
&= Q(\overline{\varphi(w)} z)-g(z) Q(\bar{w} \sigma(z)) \overline{h(w)} \quad(\text { using } \\
&2.9 p)
\end{aligned}
$$

Since g and h are analytic on a neighborhood of the closed unit disk and Q is a polynomial, the last function has the form (2.7). Consequently, Lemma 2.5 shows that $C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}$ has finite rank.

The following theorem considers the third type of kernel.
Theorem 2.8. Let α be a real number such that $\alpha+2$ is zero or a negative integer. Let $\varphi(z)=(a z+b) /(c z+d)$ be a linear fractional self-map of the unit disk and σ be its Kreĭn adjoint. Let $g(z)=(-\bar{b} z+\bar{d})^{-\alpha-2}$ and $h(z)=(c z+d)^{\alpha+2}$ for $z \in \mathbb{D}$. Then $C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}$ has finite rank on A_{α}^{2}.

Proof. Let $N=-\alpha-2$. Then N is a nonnegative integer. Recall that the kernel in this case has the form

$$
K(z, w)=(\bar{w} z-1)^{N} \log \left(\frac{1}{1-\bar{w} z}\right)+Q(\bar{w} z)
$$

for $z, w \in \mathbb{D}$, where Q is an analytic polynomial. We compute

$$
\begin{aligned}
& \left\langle\left(C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}\right) K_{w}, K_{z}\right\rangle \\
& =K(z, \varphi(w))-g(z) K(\sigma(z), w) \overline{h(w)} \\
& =-(\overline{\varphi(w)} z-1)^{N} \log (1-\overline{\varphi(w)} z)+g(z)(\bar{w} \sigma(z)-1)^{N} \log (1-\bar{w} \sigma(z)) \overline{h(w)} \\
& \quad+Q(\overline{\varphi(w)} z)-g(z) Q(\bar{w} \sigma(z)) \overline{h(w)} .
\end{aligned}
$$

Since $g(z)(\bar{w} \sigma(z)-1)^{N} \overline{h(w)}=(\overline{\varphi(w)} z-1)^{N}$, using (2.8), we simplify the first two terms in the last expression as

$$
\begin{array}{r}
(\overline{\varphi(w)} z-1)^{N}(-\log (1-\overline{\varphi(w)} z)+\log (1-\bar{w} \sigma(z))) \\
=-(\overline{\varphi(w)} z-1)^{N}(\log (\mu(z))+\log (\overline{\eta(w)}))
\end{array}
$$

where $\eta(z)=(c z+d)^{-1}$ and $\mu(z)=-\bar{b} z+\bar{d}$ for $z \in \mathbb{D}$. Consequently,

$$
\begin{aligned}
\left\langle\left(C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}\right) K_{w}, K_{z}\right\rangle=- & (\overline{\varphi(w)} z-1)^{N}(\log (\mu(z))+\log (\overline{\eta(w)})) \\
& +Q(\overline{\varphi(w)} z)-g(z) Q(\bar{w} \sigma(z)) \overline{h(w)}
\end{aligned}
$$

Since N is a nonnegative integer and Q is a polynomial, the expression on the right hand side is an element of the form (2.7). Lemma 2.5 shows that $C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}$ has finite rank.

3. Adjoint formulas on $H^{2}(\beta)$

In this section we would like to generalize the results in Section 2 to certain weighted Hardy spaces $H^{2}(\beta)$. We begin with an auxiliary result. For $s=1,2$, consider a Hilbert space H_{s} of analytic functions on the unit disk such that

$$
\left\langle z^{j}, z^{\ell}\right\rangle= \begin{cases}0 & \text { if } j \neq \ell \\ \beta_{s}^{2}(j) & \text { if } j=\ell\end{cases}
$$

Here, $\left\{\beta_{s}(n)\right\}_{n=0}^{\infty}$ is a sequence of positive real numbers with ${\lim \inf _{n \rightarrow \infty}}^{\beta_{s}(n)^{1 / n}=}$ 1. Such restriction guarantees that elements of H_{s} are analytic functions on the unit disk, see for example, [5, Exercise 2.1.10]. Assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\beta_{2}(n)}{\beta_{1}(n)}=\alpha>0 \tag{3.1}
\end{equation*}
$$

It is clear that the norms on H_{1} and H_{2} are equivalent. We claim that there is a compact operator $K: H_{2} \rightarrow H_{2}$ such that for all functions $f, g \in H_{1}$,

$$
\begin{equation*}
\alpha^{2}\langle f, g\rangle_{1}=\langle f, g\rangle_{2}+\langle K f, g\rangle_{2} \tag{3.2}
\end{equation*}
$$

In fact, define the operator $K: H_{2} \rightarrow H_{2}$ by

$$
K\left(z^{n}\right)=\left(\frac{\alpha^{2} \beta_{1}(n)^{2}}{\beta_{2}(n)^{2}}-1\right) z^{n}
$$

for $n=0,1, \ldots$ and extend by linearity and continuity to all H_{2}. We see that K is a self-adjoint diagonal operator with respect to the orthonormal basis of monomials. By (3.1), [2, Proposition II.4.6] shows that K is a compact operator on H_{2}, hence on H_{1} as well. It is clear that $\left(3.2\right.$ holds for $f(z)=z^{j}$ and $g(z)=z^{\ell}$ if $j \neq \ell$. If $j=\ell$, then we compute

$$
\begin{aligned}
\alpha^{2}\left\langle z^{j}, z^{j}\right\rangle_{1} & =\alpha^{2} \beta_{1}^{2}(j)=\beta_{2}^{2}(j)+\left(\frac{\alpha^{2} \beta_{1}(j)^{2}}{\beta_{2}(j)^{2}}-1\right) \beta_{2}^{2}(j) \\
& =\left\langle z^{j}, z^{j}\right\rangle_{2}+\left\langle K z^{j}, z^{j}\right\rangle_{2}
\end{aligned}
$$

Linearity and boundedness of K then shows that holds for all $f, g \in H_{1}$.
Proposition 3.1. Let A be a bounded linear operator on H_{1} (hence, A is also bounded on H_{2}). Let B_{s} be the adjoint of A on H_{s} for $s=1,2$. Then $B_{2}-B_{1}$ is a compact operator on H_{2} (hence, on H_{1} as well).

Proof. For $f, g \in H_{2}$, we have

$$
\begin{aligned}
\left\langle B_{2}(I+K) f, g\right\rangle_{2} & =\langle(I+K) f, A g\rangle_{2} \quad\left(\text { since } B_{2} \text { is the adjoint of } A \text { in } H_{2}\right) \\
& =\alpha^{2}\langle f, A g\rangle_{1} \quad(\text { by }(3.2)) \\
& =\alpha^{2}\left\langle B_{1} f, g\right\rangle_{1} \quad\left(\text { since } B_{1} \text { is the adjoint of } A \text { in } H_{1}\right) \\
& =\left\langle(I+K) B_{1} f, g\right\rangle_{2} \quad(\text { by } 3.2) .
\end{aligned}
$$

This implies $B_{2}(I+K)=(I+K) B_{1}$, which shows that $B_{2}-B_{1}=K B_{1}-B_{2} K$. Since K is compact on H_{2}, we conclude that $B_{2}-B_{1}$ is compact as well.

We now state and prove our main result in this section.
Theorem 3.2. Let t be a real number. Suppose $\beta=\{\beta(n)\}_{n=0}^{\infty}$ is a sequence of positive numbers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\beta(n)}{n^{t}}=\ell \tag{3.3}
\end{equation*}
$$

where $0<\ell<\infty$. Let $\varphi(z)=(a z+b) /(c z+d)$ be a linear fractional self-map of the unit disk and σ be its Kreŭn adjoint. Let $g(z)=(-\bar{b} z+\bar{d})^{2 t-1}$ and $h(z)=$ $(c z+d)^{-2 t+1}$. Then the difference $C_{\varphi}^{*}-M_{g} C_{\sigma} M_{h}^{*}$ is a compact operator on $H^{2}(\beta)$.

Proof. Let $\alpha=-2 t-1$. Then $t=-(\alpha+1) / 2$ and we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{\beta(m)}{\|z\|_{\alpha}} & =\left(\lim _{m \rightarrow \infty} \frac{\beta(m)}{m^{t}}\right)\left(\lim _{m \rightarrow \infty} \frac{m^{t}}{\left\|z^{m}\right\|_{\alpha}}\right) \\
& =\ell \lim _{m \rightarrow \infty} \frac{m^{-(\alpha+1) / 2}}{\left\|z^{m}\right\|_{\alpha}}
\end{aligned}
$$

The last limit is a finite positive number by Remark 2.1. This, in particular, says that the spaces A_{α}^{2} and $H^{2}(\beta)$ are the same with equivalent norms. For any bounded operator T on these spaces, we write $T^{*, \alpha}$ for the adjoint of T as an operator on A_{α}^{2} and $T^{*, \beta}$ for the adjoint of T as an operator on $H^{2}(\beta)$.

By Theorems 2.6 and 2.8 the difference $K=C_{\varphi}^{*, \alpha}-M_{g} C_{\sigma} M_{h}^{*, \alpha}$ is compact on A_{α}^{2}, hence on $H^{2}(\beta)$ as well.

On the other hand, applying Proposition 3.1 with $H_{1}=A_{\alpha}^{2}$ and $H_{2}=H^{2}(\beta)$, we have $C_{\varphi}^{*, \beta}=C_{\varphi}^{*, \alpha}+K_{1}$ and $M_{h}^{*, \beta}=M_{h}^{*, \alpha}+K_{2}$ for some compact operators K_{1}, K_{2} on $H^{2}(\beta)$. Consequently,

$$
\begin{aligned}
C_{\varphi}^{*, \beta}-M_{g} C_{\sigma} M_{h}^{*, \beta} & =\left(C_{\varphi}^{*, \alpha}+K_{1}\right)-M_{g} C_{\sigma}\left(M_{h}^{*, \alpha}+K_{2}\right) \\
& =C_{\varphi}^{*, \alpha}-M_{g} C_{\sigma} M_{h}^{*, \alpha}+K_{1}-M_{g} C_{\sigma} K_{2} \\
& =K+K_{1}-M_{g} C_{\sigma} K_{2}
\end{aligned}
$$

which is compact on $H^{2}(\beta)$. This completes the proof of the theorem.
We now explain how one obtains Heller's results from our Theorem 3.2. Let φ be a holomorphic self-map of the unit disk. We shall consider two particular cases: the case $\varphi(0)=0$ and the case φ is an automorphism.

Corollary 3.3. Let $\beta=\{\beta(n)\}_{n=0}^{\infty}$ be a sequence of positive numbers satisfying the condition (3.3). Let $\varphi(z)=a z /(c z+d)$ be a holomorphic self-map of the disk and consider C_{φ} acting on $H^{2}(\beta)$. Then we have

$$
C_{\varphi}^{*}=M_{G}^{*} C_{\sigma} \bmod \mathcal{K},
$$

where $G(z)=(-(c / a) z+1)^{2 t-1}$ and $\sigma(z)=(\bar{a} / \bar{d}) z-\bar{c} / \bar{d}$ is the Kreĭn adjoint of φ.

Proof. Theorem 3.2 shows that

$$
\begin{equation*}
C_{\varphi}^{*}=M_{g} C_{\sigma} M_{h}^{*} \bmod \mathcal{K}, \tag{3.4}
\end{equation*}
$$

where $g(z)=(\bar{d})^{2 t-1}, h(z)=(c z+d)^{-2 t+1}$. Since g is a constant function, we may combine it with h and rewrite (3.4) as $C_{\varphi}^{*}=C_{\sigma} M_{h_{1}}^{*} \bmod \mathcal{K}$, where $h_{1}(z)=$ $(d /(c z+d))^{2 t-1}$. It then follows that $C_{\sigma}=C_{\varphi}^{*} M_{1 / h_{1}}^{*} \bmod \mathcal{K}$. Now, a direct calculation verifies that $h_{1}=G \circ \varphi$. We then compute

$$
C_{\sigma}=C_{\varphi}^{*} M_{1 / G \circ \varphi}^{*}=\left(M_{1 / G \circ \varphi} C_{\varphi}\right)^{*}=\left(C_{\varphi} M_{1 / G}\right)^{*}=M_{1 / G}^{*} C_{\varphi}^{*}
$$

Multiplying by M_{G}^{*} on the left gives $C_{\varphi}^{*}=M_{G}^{*} C_{\sigma} \bmod \mathcal{K}$ as desired.

Corollary 3.4. Let $\beta=\{\beta(n)\}_{n=0}^{\infty}$ be a sequence of positive numbers satisfying the condition (3.3). Let $\varphi(z)=\lambda(z+u) /(1+\bar{u} z),|\lambda|=1,|u|<1$, be an automorphism of the disk and consider C_{φ} acting on $H^{2}(\beta)$. Then

$$
C_{\varphi}^{*}=M_{G}^{*} C_{\varphi^{-1}} M_{1 / H} \bmod \mathcal{K},
$$

where $G(z)=(-\overline{\lambda u} z+1)^{2 t-1}$ and $H(z)=(\bar{u} z+1)^{2 t-1}$.
Proof. It can be verified that $\sigma=\varphi^{-1}$. Theorem 3.2 gives

$$
C_{\varphi}^{*}=M_{g} C_{\varphi^{-1}} M_{h}^{*} \bmod \mathcal{K},
$$

where $g(z)=(-\overline{\lambda u} z+1)^{2 t-1}$ and $h(z)=(\bar{u} z+1)^{-2 t+1}$. Taking adjoints gives

$$
\begin{aligned}
C_{\varphi} & =\left(M_{g} C_{\varphi^{-1}} M_{h}^{*}\right)^{*} \bmod \mathcal{K} \\
& =M_{h} C_{\varphi^{-1}}^{*} M_{g}^{*} \bmod \mathcal{K},
\end{aligned}
$$

which implies

$$
M_{1 / h} C_{\varphi} M_{1 / g}^{*}=C_{\varphi^{-1}}^{*} \bmod \mathcal{K}
$$

Taking inverses then yields

$$
C_{\varphi}^{*}=\left(C_{\varphi^{-1}}^{*}\right)^{-1}=\left(M_{1 / h} C_{\varphi} M_{1 / g}^{*}\right)^{-1}=M_{g}^{*} C_{\varphi^{-1}} M_{h} \bmod \mathcal{K}
$$

Since $g=G$ and $h=1 / H$, the conclusion of the corollary follows.
The space $S^{2}(\mathbb{D})$ can be identified as $H^{2}(\beta)$, where the weight sequence $\beta=$ $\{\beta(n)\}_{n \geq 0}$ is given by $\beta(0)=1$ and $\beta(n)=n$ for all $n \geq 1$. This sequence satisfies condition (3.3) with $t=1$. Consequently, Theorem A follows from Corollary 3.3 and Theorem B follows from Corollary 3.4 .

Acknowledgements. The authors wish to thank the referee for a careful reading and useful comments that improved the presentation of the paper.

References

[1] Paul S. Bourdon and Joel H. Shapiro, Adjoints of rationally induced composition operators, J. Funct. Anal. 255 (2008), no. 8, 1995-2012. MR 2462584 (2009m:47056)
[2] John B. Conway, A course in functional analysis, second ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713 (91e:46001)
[3] Carl C. Cowen, Linear fractional composition operators on H^{2}, Integral Equations Operator Theory 11 (1988), no. 2, 151-160. MR 928479 (89b:47044)
[4] Carl C. Cowen and Eva A. Gallardo-Gutiérrez, A new class of operators and a description of adjoints of composition operators, J. Funct. Anal. 238 (2006), no. 2, 447-462. MR 2253727 (2007e:47033)
[5] Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026 (97i:47056)
[6] Eva A. Gallardo-Gutiérrez and Alfonso Montes-Rodríguez, Adjoints of linear fractional composition operators on the Dirichlet space, Math. Ann. 327 (2003), no. 1, 117-134. MR 2005124 (2004h:47036)
[7] Christopher Hammond, Jennifer Moorhouse, and Marian E. Robbins, Adjoints of composition operators with rational symbol, J. Math. Anal. Appl. 341 (2008), no. 1, 626-639. MR 2394110 (2009b:47035)
[8] Katherine Heller, Adjoints of linear fractional composition operators on $S^{2}(\mathbb{D})$, J. Math. Anal. Appl. 394 (2012), no. 2, 724-737. MR 2927493
[9] Paul R. Hurst, Relating composition operators on different weighted Hardy spaces, Arch. Math. (Basel) 68 (1997), no. 6, 503-513. MR 1444662 (98c:47040)
[10] María J. Martín and Dragan Vukotić, Adjoints of composition operators on Hilbert spaces of analytic functions, J. Funct. Anal. 238 (2006), no. 1, 298-312. MR 2253017 (2007e:47035)
[11] Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406 (94k:47049)
[12] Ruhan Zhao and Kehe Zhu, Theory of Bergman spaces in the unit ball of \mathbb{C}^{n}, Mém. Soc. Math. Fr. (N.S.) (2008), no. 115, vi+103 pp. MR 2537698 (2010g:32010)

Department of Mathematics and Statistics, Mail Stop 942, University of Toledo, Toledo, OH 43606, USA

E-mail address: zeljko.cuckovic@utoledo.edu
Department of Mathematics and Statistics, Mail Stop 942, University of Toledo, Toledo, OH 43606, USA

E-mail address: trieu.le2@utoledo.edu

[^0]: 2010 Mathematics Subject Classification. Primary 47B33.
 Key words and phrases. Composition operator; adjoint; weighted Hardy space.

