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ABSTRACT. We study three different problems in the area of Toeplitz operators on the Segal-Bargmann space
in Cn. Extending results obtained previously by the first author and Y.L. Lee, and by the second author, we first
determine the commutant of a given Toeplitz operator with a radial symbol belonging to the class Sym>0(C

n)
of symbols having certain growth at infinity. We then provide explicit examples of zero products of non-trivial
Toeplitz operators. These examples show the essential difference between Toeplitz operators on the Segal-
Bargmann space and on the Bergman space over the unit ball. Finally, we discuss the “finite rank problem”. We
show that there are no non-trivial rank one Toeplitz operators Tf for f ∈ Sym>0(C

n). In all these problems,
the growth at infinity of the symbols plays a crucial role.

1. INTRODUCTION

The first part of the present paper is a continuation and extension of [4], where commuting Toeplitz
operators on the Segal-Bargmann space H2(Cn, dµ) of Gaussian square integrable entire functions on Cn
were analyzed. With the orthogonal projection P from the enveloping L2-space onto H2(Cn, dµ) and a
suitable complex-valued function f on Cn, the Toeplitz operator Tf is defined as Tf = PMf |H2(Cn,dµ),
where Mf denotes the operator of multiplication by f . We call f the symbol of Tf . When f is a radial
function (i.e. f(z) = f(|z|)), it follows from the rotation-invariance of the Gaussian measure that the
operator Tf is diagonalizable. In their previous work, the first author and Lee determined the set Com(Tf )
of Toeplitz operators belonging to the commutant of Tf when n = 1. Recently in [3], the commutant
Com(Tp) was also studied in the case of a non-radial monomial symbol p(z) = z`z̄k where `, k are non-
negative integers, or even for a more general quasi-homogeneous function on the complex plane. In [4] the
higher dimensional situation was only considered for operators with polynomial symbols, which actually
form an algebra. Due to this additional structure, they can be treated more easily than operators with general
symbols.

Analogous results for Toeplitz operators acting on the Bergman space were proved earlier by Čučković
and Rao in [6] for the unit disc D and subsequently in [13], where the second author extended the result in [6]
to the Bergman space A2(Bn) over the unit ball Bn in Cn. In this paper, by combining the techniques in [4]
and [13], we successfully describe Com(Tf ) when f is a radial function belonging to the class Sym>0(Cn)
of generally unbounded functions. The class Sym>0(Cn) consists of all functions g on Cn for which the
function z 7→ g(z) exp(−c|z|2) is bounded for all c > 0. In particular, Sym>0(Cn) contains all functions
which have at most polynomial growth at infinity. We thus recover the results obtained in [4].

On the level of symbols in L∞(Bn) and in Sym>0(Cn), it turns out that the characterization of Com(Tf )
is the same in the Bergman space and Segal-Bargmann space. More precisely, as the following theorem
shows, Com(Tf ) consists of Toeplitz operators whose symbols are invariant under the torus action on Bn
and Cn, respectively.

Theorem A. Let f ∈ L∞(Bn) be non-trivial and radial on Bn (respectively, f ∈ Sym>0(Cn) be non-
trivial and radial on Cn) and g ∈ L∞(Bn) (respectively, g ∈ Sym>0(Cn)). Then [Tf , Tg] = 0 on A2(Bn)

(respectively, H2(Cn, dµ)) if and only if g(eiθz) = g(z) for a.e. θ ∈ R and a.e. z in Bn (respectively, Cn).
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We in fact study a more general problem. For given radial functions f1 and f2 in Sym>0(Cn), we deter-
mine solutions g of the operator equation Tf1Tg = TgTf2 (see Theorem 3.4). Theorem A is then derived
from the case f1 = f2. It was pointed out in [4] that Theorem A fails for Toeplitz operators on the Segal-
Bargmann space whose symbols have higher order of growth at infinity, even in the framework of bounded
operators. This fact is related to the distribution of zeros of the Mellin transform of a radial function.

In the second part of the paper we study zero-products of Toeplitz operators on the Segal-Bargmann space.
On the Bergman space over the unit ball, the following result was recently proved by the second author in
[12]: assume that for a finite number of bounded functions f1, . . . , fN on Bn all of which, except possibly
one, are radial, the product Tf1 · · ·TfN of Toeplitz operators vanishes, then one of the symbols fj must be
zero. We will show in Section 3 that the same statement is true for Toeplitz operators on H2(Cn, dµ) having
symbols in Sym>0(Cn) when N = 2. Surprisingly, we found a counterexample in the case N = 3, even for
bounded symbols.

Theorem B. There are non-zero bounded radial functions f0, f1, f2 on Cn such that Tf0Tf1Tf2 = 0 on the
Segal-Bargmann space H2(Cn, dµ).

It is still open (also for operators on Bergman spaces) whether TfTg = 0 implies f = 0 or g = 0 when
f and g are arbitrary bounded functions. On the other hand, there are counterexamples in the case where at
least one of the symbols f or g does not belong to Sym>0(Cn) (see Proposition 4.5).

It is well known [2] that the quantization map Sym>0(Cn) 3 f 7→ Tf is one-to-one. On the other hand,
Grudsky and Vasilevski showed in [9] the existence of non-zero radial symbols f of high growth order at
infinity with Tf = 0. We give explicit examples of such radial functions f in Section 4. In these examples
we deal with operator symbols f /∈ L2(Cn, dµ) and we need to employ a natural extension [10, 11] of the
above notion of Toeplitz operators. More precisely, for a measurable symbol f , we define the operator T̃f
so that with their maximal domains of definition we have Tf ⊆ T̃f . We then construct non-trivial radial
symbols f, g, h /∈ L2(Cn, dµ) for which the following is true (see Propositions 4.5 and 4.6).

Theorem C. The analytic polynomials P[z] are contained in the domains of T̃f , T̃g, and T̃h; P[z] forms an
invariant subspace for T̃g and T̃h. Furthermore, T̃f = 0, and T̃g, T̃h 6= 0 but T̃gT̃h = T̃hT̃g = 0.

In the last part of the paper we consider the finite rank problem for Toeplitz operators on H2(Cn, dµ)
and give some partial results towards the question: If the Toeplitz operator Tf with f ∈ Sym>0(Cn) has
finite rank, does it follow that f = 0? For Toeplitz operators on the Bergman space over a domain Ω ⊂ Cn,
this problem had been considered for a long time and positive answers were given in the cases where Ω is
bounded or where Ω = Cn and f has compact support [1, 5, 14, 16]. It fact, Alexandrov and Rozenblum [1]
obtained the affirmative answer even when f is replaced by a compactly supported distribution.

For Toeplitz operators with symbols in Sym>0(Cn) acting on H2(Cn, dµ), the problem remains open.
We will show that the problem can be reduced to the complex one dimensional case n = 1. Moreover, we
show the non-existence of non-trivial rank one Toeplitz operators.

Theorem D. Let f be in Sym>0(Cn) such that Tf has at most rank one on the space of analytic polynomials,
then f(z) = 0 for a.e z.

Unfortunately, it seems not easy to generalize our proof of Theorem D to the case of higher ranks. On the
other hand, our approach leads to a necessary criterion for a bounded finite rank operator on H2(Cn, dµ) to
be represented as a Toeplitz operator. This criterion seems hard to be fulfilled and can be used to exclude
various finite rank operators as candidates for Toeplitz operators.

The paper is organized as follows. In Section 2 we introduce the class of Toeplitz operators with (generally
unbounded) symbols belonging to Sym>0(Cn). These operators can be considered as acting on a scale of
Banach spaces [2, 4]. In particular, finite products of such operators are well-defined with dense domains. We
also recall some of the results in [4] which will be used extensively in our proofs. In Section 3 we discuss the
commuting problem. Section 4 provides examples of zero-products of non-trivial Toeplitz operators whose
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domains contain all analytic polynomials. The discussion of the finite rank problem for Toeplitz operators is
contained in Section 5. Finally, we mention some open problems that are related to our results.

2. PRELIMINARIES

For a fixed positive integer n, let µ be the normalized Gaussian measure on Cn defined by

(2.1) dµ(z) = π−ne−|z|
2
dV (z).

Here for z, w ∈ Cn, we write z · w = z1w1 + · · · + znwn and |z| =
√
z · z. Also, dV denotes the usual

Lebesgue measure on Cn ∼= R2n. The Segal-Bargmann spaceH2(Cn, dµ) consists of all µ-square integrable
entire functions on Cn. It is well known that H2(Cn, dµ) is a closed subspace of L2(Cn, dµ). Let N0 denote
the set of all non-negative integers. For any α = (α1, . . . , αn) ∈ Nn0 and z = (z1, . . . , zn) ∈ Cn, we write
α! = α1! · · ·αn! and zα = zα1

1 · · · zαnn . It is standard that the set B = {eα(z) = (α!)−1/2zα | α ∈ Nn0}
forms an orthonormal basis forH2(Cn, dµ), usually referred to as the standard orthonormal basis. The space
H2(Cn, dµ) is in fact a reproducing kernel Hilbert space with kernel function Kz(w) = K(w, z) = ew·z for
(w, z) ∈ Cn × Cn. For any h ∈ H2(Cn, dµ) and z ∈ Cn, we have h(z) = 〈h,Kz〉. Here 〈·, ·〉 is the usual
inner product in L2(Cn, dµ).

Let P denote the orthogonal projection from L2(Cn, dµ) onto H2(Cn, dµ). For any measurable function
f , the Toeplitz operator Tf is defined as the compression of the multiplication operator Mf on H2(Cn, dµ),
that is, Tf = PMf |H2(Cn,dµ). The natural domain of Tf is the space of all functions h ∈ H2(Cn, dµ) for
which fh belongs to L2(Cn, dµ). For such a function h and for any z ∈ Cn, using the reproducing property
of the kernel functions, we have

(2.2) Tfh(z) = 〈Tfh,Kz〉 = 〈P (fh),Kz〉 = 〈fh,Kz〉 =

∫
Cn
f(w)h(w)ez·wdµ(w).

For any number c > 0, we define the space

Dc =
{
f : Cn → C measurable

∣∣ ∃ d > 0 such that |f(z)| ≤ dec|z|2 a.e. z ∈ Cn
}
.

One can check easily that if f belongs to Dc for some c < 1/2, then Tf has a dense domain in H2(Cn, dµ).
In fact, the domain of Tf contains all entire functions belonging to Dc′ with 0 < c′ < 1/2− c. In this paper
we are interested in products of Toeplitz operators. Unfortunately, a product of the form Tf1Tf2 for f1 ∈ Dc1
and f2 ∈ Dc2 can only be defined with a dense domain if the values of c1 and c2 satisfy certain restrictions.
Because of this, we will follow [2] by restricting our attention to the space of symbols

Sym>0(Cn) =
⋂
c>0

Dc =
{
f : Cn → C

∣∣ z 7→ f(z)e−c|z|
2

is bounded for all c > 0
}
.

With the increasing sequence (cj)j∈N0 defined by cj = 1/2− 1/(2j + 2) and Hj = Dcj ∩H2(Cn, dµ),
one obtains a scale of Banach spaces

(2.3) C ∼= H0 ⊂ H1 ⊂ · · · ⊂ Hj ⊂ Hj+1 · · · ⊂ H :=
⋃
j∈N
Hj ⊂ H2(Cn, dµ).

The norm on Hj is given by the restriction of the norm ‖f‖j = ‖e−cj |·|2f(·)‖∞ from Dcj to Hj . It was
shown in [2] that both P and the multiplication operator Mf with f ∈ Sym>0(Cn) are continuous operators
from (Dcj , ‖ · ‖j) to (Dcj+1 , ‖ · ‖j+1) for all j ∈ N0. In particular, the Toeplitz operator Tf mapsH intoH.
This shows that we can form finite products Tg1 · · ·Tgm : H → H with gj ∈ Sym>0(Cn) and consider them
as densely defined operators on H2(Cn, dµ).

If f is a radial function, that is, f(z) = f̃(|z|) for some function f̃ defined on (0,∞), then by the
rotation-invariance of dµ, the Toeplitz operator Tf is diagonal with respect to the standard orthonormal basis
of H2(Cn, dµ). Furthermore, the eigenvalues of Tf are determined by values of the Mellin transform of
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f̃(r)e−r
2
. We now remind the reader of the Mellin transform and state related known results that we will

need. For a complex-valued function h on (0,∞), the Mellin transform of h is given by

M[h](ζ) =

∫ ∞
0

h(r)rζ−1dr,

for all complex numbers ζ for which the integral exists. Under certain restrictions on h, the functionM[h]
is analytic on a vertical strip in the complex plane.

For complex-valued functions k1, k2 : R+ → C, the Mellin convolution of k1 and k2 is defined by

(k1 ∗ k2)(x) =

∫ ∞
0

k1(y)k2

(
x

y

)
dy

y
,

for all x > 0 for which the integral exists. For suitable functions k1 and k2, the convolution k1 ∗k2 is defined
on R+ and the Mellin convolution theorem says thatM[k1 ∗ k2] =M[k1] ·M[k2] on a certain vertical strip
in the complex plane.

We will make intensive use of the following results on the Mellin transform. We state them here and refer
the interested reader to [4] for the proofs.

Define the space

A =
{
u : R+ → C measurable

∣∣ ∃C, c > 0 and ∃ρ, η ≥ 0 such that |u(x)| ≤ c

xρ
for all x ∈ (0, 1],

and |u(x)| ≤ Cxη for all x ∈ [1,∞)
}
.

Proposition 2.1 ([4, Propositions 4.8 and 4.9]). For any functions u, v ∈ A, we put fu(x) = u(x)e−x
2

and
fv(x) = v(x)e−x

2
. Then the Mellin convolution (fu ∗ fv)(x) exists for all x > 0 and there is a function

h1 ∈ A such that
(fu ∗ fv)(x) = h1(x)e−x for all x ∈ R+.

In the case supp(v) ⊂ [0, 1], there is a function h2 ∈ A such that (fu ∗ fv)(x) = h2(x)e−x
2

for x ∈ R+.

Proposition 2.2 ([4, Proposition 4.11]). Let u ∈ A and a ∈ (0, 2]. For any fixed integer m0 ∈ N, if

M[u(t)e−t](ak + 1) =

∫ ∞
0

u(t)e−ttakdt = 0

for all integers k ≥ m0, then u ≡ 0 a.e. on R+.

Proposition 2.3 below was proved in [4] for functions u in A. Here we point out that it remains valid for
symbols u : R+ → C with u ◦ | · | ∈ Sym>0(Cn), as well. We sketch here a proof and refer the reader to [4]
for more details.

Proposition 2.3 ([4, Proposition 4.16]). Let u be defined on R+ such that the function w 7→ u(|w|) belongs
to Sym>0(Cn) and that the function

ψ(ζ) =
M[u(t)e−t

2
](2ζ + 2)

Γ(ζ + 1)
, ζ ∈ C with Re(ζ) > 0 (here Γ is the usual Gamma function),

extends to a periodic entire function with period j ∈ N. Then u must be a constant function.

Proof. Let c ∈ (0, 1) be fixed and choose d > 0 such that |u(t)| ≤ dect
2

for all t > 0. It then follows, for
any ζ ∈ C with Re(ζ) > 0, that∣∣∣M[u(t)e−t

2
](2ζ + 2)

∣∣∣ ≤ ∫ ∞
0
|u(t)|e−t2t2Re(ζ)+1 dt

≤ d
∫ ∞

0
e−(1−c)t2t2Re(ζ)+1 dt = d ·

Γ
(
Re(ζ) + 1

)
2(1− c)Re(ζ)+1

.
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And hence for such ζ, we have

|ψ(ζ)| ≤ d

2(1− c)Re(ζ)+1

Γ
(
Re(ζ) + 1

)
|Γ(ζ + 1)|

.

Now the arguments on [4, p.480] together with the fact that (1 − c)−Re(ζ)+1 is bounded when ζ varies on
any vertical strip of the form α ≤ Re(ζ) ≤ α + j show the existence of a constant C > 0 for which
|ψ(ζ)| ≤ Ce

π
2
|ζ| for all ζ ∈ C. It now follows by the exact same arguments as on [4, p.481 – 483] that

(2.4) M[u(t)e−t
2
](2ζ + 2) = Γ(ζ + 1)

∑
|4`|≤j

a`e
2πi`ζ
j for all ζ ∈ C with Re(ζ) > 0.

Moreover, as it was shown on [4, p.482], for each integer ` satisfying 0 6= |4`| ≤ j, there are λ`, b` ∈ C with
0 < Re(λ`) ≤ 1 such that for all ζ ∈ C with −1 < Re(ζ) < 0 one has

(2.5) M

2a0e
−t2 +

∑
06=|4`|≤j

b`e
(λ`−1)t2

 (2ζ + 2) = Γ(ζ + 1)
∑
|4`|≤j

a`e
2πi`ζ
j .

Since the Mellin transform is one-to-one, we obtain from (2.4) and (2.5) that

u(t) = 2a0 +
∑

06=|4`|≤j

b` e
λ`t

2
.

Finally, by using the boundedness of u(t)e−εt
2

on R+ for all ε > 0 we see that u(t) ≡ 2a0 is a constant
function. �

3. COMMUTING AND ZERO-PRODUCT PROBLEMS

Let K = {ζ ∈ C | Re(ζ) > 0} be the right half of the complex plane. For a function f : Cn → C, using
the Gaussian measure (2.1), we define

F [f ](z) =

∫
Cn
f(w)|w1|2z1 · · · |wn|2zndµ(w),

for any z = (z1, . . . , zn) ∈ Kn for which the integral is defined. It follows from the Dominated Con-
vergence Theorem and Morera’s Theorem that if f belongs to Dc for some c < 1, i.e., the function
w 7→ f(w) exp(−c|w|2) is bounded, then F [f ] is defined, continuous on Kn, and analytic on Kn.

In the case n = 1 and f is a complex-valued function on C, the function F [f ] is related to the Mellin
transform by the formula

(3.1) F [f ](ζ) =

∫ ∞
0

f̂(r)r2ζ+1e−r
2
dr =M

[
f̂ e−r

2
]

(2ζ + 2) for ζ ∈ K,

where f̂(r) = 1
π

∫ 2π
0 f(reiθ)dθ.

For any function f on Cn and any positive number t, define Vtf(w) = f(tw) exp((1 − t2)|w|2) for
w ∈ Cn. It follows from a change of variables that if z ∈ Kn such that F [f ](z) exists, then F [Vtf ](z) also
exists and we have

(3.2) F [Vtf ](z) = t−2(z1+···+zn+n)F [f ](z) for any t > 0.

The benefit of working with Vtf is that for sufficiently large t, Vtf is bounded even if f has certain exponen-
tial growth at infinity. More precisely, if f belongs to Dc for some c < 1, then (Vtf)(w) → 0 as |w| → ∞
for all t > (1− c)−1/2.

In analyzing the commuting and zero-product problems for Toeplitz operators, we encounter analytic
functions that vanish on the lattice Nn in Kn. Under certain restrictions on the growth at infinity, such
functions must be identically zero as the following proposition shows.
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Proposition 3.1. Put G = {F [f ] : f ∈ Dc for some c < 1}. Let G be a function defined on Kn
of the form

G = u1v1p1 + · · ·+ umvmpm, where u1, . . . , um, v1, . . . , vm belong to G and p1, . . . , pm are polynomials.
If G(z) = 0 for all z ∈ Nn, then G(z) = 0 for all z ∈ Kn

.

Proof. Suppose G = u1v1p1 + · · · + umvmpm, where uj = F [fj ], vj = F [gj ] ∈ G and p1, . . . , pm are
polynomials. For t > 0, (3.2) gives

Gt(z) := F [Vtf1](z)F [Vtg1](z)p1(z) + · · ·+ F [Vtfm](z)F [Vtgm](z)pm(z) = t−4(z1+···+zn+n)G(z).

Therefore, for z ∈ Kn, G(z) = 0 if and only if Gt(z) = 0. On the other hand, for sufficiently large t,
the functions Vtfj , Vtgj (1 ≤ j ≤ m) are all bounded. Replacing fj by Vtfj , gj by Vtgj , and G by Gt if
necessary, we may assume that all functions fj , gj are bounded.

We consider first the case n = 1. To avoid possible confusion, let us use ζ in place of z to denote a single
complex variable. Let d be a positive integer that is strictly larger than the degrees of all the polynomials
p1, . . . , pm. We will show that G(ζ)/(ζ + 1) · · · (ζ + d) can be written as the Mellin transform of a certain
function. First, note that

M[2r2j−2χ[0,1](r)](2ζ + 2) =

∫ 1

0
2r2ζ+2j−1dr =

1

ζ + j
,

for ζ ∈ K and j ≥ 1. Now using partial fractions, we conclude that for any polynomial p(ζ) with deg(p) <
d, there is a polynomial p̌ such thatM[p̌χ[0,1]](2ζ + 2) = p(ζ)/(ζ + 1) · · · (ζ + d) for ζ ∈ K.

Using (3.1) together with the Mellin convolution theorem, we obtain

G(ζ)

(ζ + 1) · · · (ζ + d)
=

m∑
j=1

uj(ζ)vj(ζ)
pj(ζ)

(ζ + 1) · · · (ζ + d)

=
m∑
j=1

F [fj ](ζ) · F [gj ](ζ) · pj(ζ)

(ζ + 1) · · · (ζ + d)

=
m∑
j=1

M
[
f̂je
−r2](2ζ + 2) · M

[
ĝje
−r2](2ζ + 2) · M[p̌jχ[0,1]](2ζ + 2)

=
m∑
j=1

M
[(
f̂je
−r2) ∗ (ĝje−r2 ∗ p̌jχ[0,1]

)]
(2ζ + 2),

for some polynomials p̌1, . . . , p̌m. From Proposition 2.1 and the fact that f̂j , ĝj are bounded on R+, we know
that there are functions ĥj (1 ≤ j ≤ m) in A such that(

f̂je
−r2) ∗ (ĝje−r2 ∗ p̌jχ[0,1]

)
= ĥj(r)e

−r.

Put H =
∑m

j=1 ĥj . For ζ ∈ K, we have

G(ζ) = (ζ + 1) · · · (ζ + d)M
[
He−r

]
(2ζ + 2) = (ζ + 1) · · · (ζ + d)

∫ ∞
0

H(r)e−rr2ζ+1 dr.

Assume now that G(ζ) = 0 for all ζ ∈ N. Since H is in A, it follows from Proposition 2.2 (with a = 2) that
H = 0 a.e. on R+ and as a consequence, G(ζ) = 0 for all ζ ∈ K.

Now consider the case n > 1. We write w = (w1, w
′) ∈ Cn where w′ = (w2, . . . , wn) ∈ Cn−1. For any

bounded function f : Cn → C, we write

F [f ](z) =
1

πn

∫ ∞
0

(∫
Cn−1

∫ 2π

0
f(reiθ, w′) dθ |w2|2z2 · · · |wn|2zne−|w

′|2dV (w′)
)
r2z1+1e−r

2
dr(3.3)

=M
[
F (r, z2, . . . , zn)e−r

2]
(2z1 + 2),
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where the function F (r, z2, . . . , zn) is defined by

(3.4) F (r, z2, . . . , zn) =
1

πn

∫
Cn−1

∫ 2π

0
f(reiθ, w′) dθ |w2|2z2 · · · |wn|2zne−|w

′|2dV (w′).

Therefore,

G(z) =

m∑
j=1

uj(z)vj(z)pj(z) =

m∑
j=1

F [fj ](z) · F [gj ](z) · pj(z)

=

m∑
j=1

M
[
Fj(r, z2, . . . , zn)e−r

2]
(2z1 + 2) · M

[
Gj(r, z2, . . . , zn)e−r

2]
(2z1 + 2) · pj(z),

where (fj , Fj) and (gj , Gj) are related by (3.4). Note that for all j, the functions Fj(r, z2, . . . , zn) and
Gj(r, z2, . . . , zn) are bounded in the variable r. Since G(z1, z

′) = 0 for all (z1, z
′) ∈ Nn, it follows from

the one dimensional case thatG(z1, z
′) = 0 for all (z1, z

′) ∈ K×Nn−1. We now make the transformation to
polar coordinates as in (3.3) with respect to the variable w2 and obtain, with appropriate bounded functions
F̃j and G̃j ,

G(z) =
m∑
j=1

M
[
F̃j(z1, r, z3, . . . , zn)e−r

2]
(2z2 + 2) · M

[
G̃j(z1, r, z3, . . . , zn)e−r

2]
(2z2 + 2) · pj(z).

Since for each fixed (z1, z3, . . . , zn) ∈ K × Nn−2, the function z2 7→ G(z1, z2, . . . , zn) vanishes for
all z2 ∈ N, we conclude, as in the one dimensional case again, that G(z) = 0 for all (z1, z2, . . . , zn) in
K2 × Nn−2. Continuing this argument, we obtain the assertion of the proposition. �

The following lemma characterizes functions on Cn that are invariant under certain actions of the unit
circle T. This characterization will be important for us in analyzing commuting Toeplitz operators.

Lemma 3.2. Let g be in L2(Cn, dµ), l be in Zn and s be an integer. Then the following are equivalent.

(a)
∫
Cn
g(w)wmw̄k dµ(w) = 0 for all multi-indices m, k ∈ Nn0 such that (m− k)l 6= s. Here we write

(m− k)l = (m1 − k1)l1 + · · ·+ (mn − kn)ln.
(b) g(γl1z1, . . . , γ

lnzn) = γ̄sg(z) for a.e. γ ∈ T and a.e. z = (z1, . . . , zn) ∈ Cn.

Proof. Define the function

g̃(z) =
1

2π

∫ 2π

0
g(eil1θz1, . . . , e

ilnθzn)eiθsdθ,

for any z ∈ Cn for which the integral is defined. Since g belongs to L2(Cn, dµ), g̃ also belongs to
L2(Cn, dµ), and hence g̃(z) is defined for a.e. z. For such z, the identity g̃(γl1z1, . . . , γ

lnzn) = γ̄sg̃(z)
holds for all γ ∈ T. We see that (b) is equivalent to g(z) = g̃(z) a.e. z.

For m, k in Nn0 , using Fubini’s Theorem and the rotation-invariance of µ, we obtain∫
Cn
g̃(w)wmw̄kdµ(w) =

1

2π

∫ 2π

0

(∫
Cn
g(eil1θw1, . . . , e

ilnθwn)wmw̄kdµ(w)
)
eiθsdθ

=
1

2π

∫ 2π

0

(∫
Cn
g(w)wmw̄kdµ(w)

)
eiθ((−m+k)l+s)dθ

=

{
0 if (m− k)l 6= s;∫
Cn g(w)wmw̄kdµ(w) if (m− k)l = s.
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It follows that (a) is equivalent to
∫
Cn
g̃(w)wmw̄kdµ(w) =

∫
Cn
g(w)wmw̄kdµ(w) for all m, k in Nn0 . This,

in view of the fact that g̃ − g belongs to L2(Cn, dµ) and the span of {wmw̄k : m, k ∈ Nn0} is dense in
L2(Cn, dµ), is equivalent to g(w) = g̃(w) for a.e. w in Cn. The conclusion of the lemma now follows. �

If a function g ∈ L2(Cn, dµ) depends only on |z1|, . . . , |zn|, then it follows from the rotation-invariant
property of µ that the Toeplitz operator Tg is diagonal with respect to the standard orthonormal basis B =

{eα(z) = (α!)−1/2zα : α ∈ Nn0} of H2(Cn, dµ). The following corollary to Lemma 3.2 shows that the
converse also holds true.

Corollary 3.3. Let g ∈ L2(Cn, dµ) such that Tg is defined on the space P[z] of analytic polynomials and it
is diagonal with respect to the orthonormal basis B. Then g(z) = g(|z1|, . . . , |zn|) for a.e. z ∈ Cn, that is,
g is radial in each component.

Proof. Since Tg is diagonal with respect to B, we have 〈Tgeα, eβ〉 = 0 for all α 6= β ∈ Nn0 . This implies that

for any l ∈ Zn, we have
∫
Cn
g(w)wαw̄β dµ(w) = 0 whenever (α − β)l 6= 0. Lemma 3.2 now shows that

g(γl1z1, . . . , γ
lnzn) = g(z) for a.e. z ∈ Cn and γ ∈ T. Since l was arbitrary, the conclusion of the corollary

follows. �

If g ∈ L2(Cn, dµ) is a radial function, that is, g(z) = g(|z|) for a.e. z ∈ C, then the eigenvalue of Tg
corresponding to the eigenvector eα depends only on |α| = α1 + · · · + αn. In fact, by integration in polar
coordinates, we obtain

〈Tgeα, eα〉 =
1

α!

∫
Cn
g(w)|w1|2α1 · · · |wn|2αndµ(w) =

1

α!
F [g](α)

=
1

Γ(|α|+ n)

∫ ∞
0

2g(r)r2|α|+2n−1e−r
2
dr =

M[2g(r)e−r
2
](2|α|+ 2n)

Γ(|α|+ n)
.

For any s ∈ C with Re(s) > −n, we define ω(g, s) =M[2g(r)e−r
2
](2s + 2n)/Γ(s + n). Then ω(g, s) is

analytic on its domain and for α ∈ Nn0 , we have

(3.5) ω(g, |α|) =
F [g](α)

α!
and Tgeα = ω(g, |α|)eα.

Since ω(g− c, s) = ω(g, s)− c for any complex number c, we see that s 7→ ω(g, s) is a constant function
if and only if g is a constant function on Cn.

Let f1, f2 ∈ L2(Cn, dµ) be two radial functions. In order to study the equation Tf1Tg = TgTf2 , we have
to investigate when the eigenvalues of Tf1 and Tf2 coincide. It turns out (as in the proof below) that we need
to consider the set

(3.6) Z(f1, f2) =
{
d ∈ Z

∣∣ ω(f1, s) = ω(f2, d+ s) for all s ∈ K with Re(s) sufficiently large
}
.

Without any restriction on the growth at infinity of the functions f1 and f2, it may be difficult to describe
Z(f1, f2). However, if we assume that both f1 and f2 belong to Sym>0(Cn), then Z(f1, f2) is extremely
simple. Indeed, if both f1 and f2 are constant functions, then it is clear that either Z(f1, f2) = ∅ or
Z(f1, f2) = Z. The former corresponds to the case f1 6≡ f2 and the latter corresponds to the case f1 ≡ f2.

In the case one of the functions f1, f2 is non-constant, we claim that there are also two possibilities:
Z(f1, f2) = ∅ or Z(f1, f2) = {d} for some integer d. In fact, suppose d1 < d2 and both belong to
Z(f1, f2). Then for s ∈ K with Re(s) large enough, we have

ω(f1, s+ d2 − d1) = ω(f2, s+ d2) = ω(f1, s).

Because the map s 7→ ω(f1, s) is analytic on the set {s ∈ C : Re(s) > −n}, we conclude that the identity
ω(f1, s − n + 1 + d2 − d1) = ω(f1, s − n + 1) holds for all s ∈ C with Re(s) > 0. This shows that the
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function s 7→ ω(f1, s− n+ 1) extends to a periodic function with period d2 − d1 ∈ N. Since

ω(f1, s− n+ 1) =
2M[f1(r)e−r

2
](2(s− n+ 1) + 2n)

Γ((s− n+ 1) + n)
=

2M[f1(r)e−r
2
](2s+ 2)

Γ(s+ 1)
,

Proposition 2.3 implies that f1 is a constant function. This then shows that the function s 7→ ω(f2, s), which
is the same as ω(f1, s−d1), is constant. Hence f2 is also a constant function. This contradicts the assumption
that one of the functions f1, f2 is non-constant. Therefore, the set Z(f1, f2) contains at most one element.

If it happens that f1 = f2 = f , a non-constant function, then since 0 clearly belongs to Z(f, f), we have
Z(f, f) = {0}.

If f1 = 0 and f2 is not the zero function, then since ω(f1, s) ≡ 0 and ω(f2, s) is not identically zero, we
see that Z(f1, f2) = ∅.

We are now ready for the main result in this section.

Theorem 3.4. Let f1, f2 ∈ Sym>0(Cn) be two radial functions, at least one of which is non-constant. Then
exactly one of the following two cases occurs.

(a) Z(f1, f2) = ∅ and for any function g ∈ Sym>0(Cn), Tf1Tg = TgTf2 on the space of analytic
polynomials if and only if g(z) = 0 a.e. z ∈ Cn.

(b) Z(f1, f2) = {d} and for any function g ∈ Sym>0(Cn), Tf1Tg = TgTf2 on the space of analytic
polynomials if and only if g(γz) = γ̄dg(z) for a.e. γ ∈ T and a.e. z ∈ Cn.

Proof. Let g be a function in Sym>0(Cn). Then as we discussed in Section 2, the products Tf1Tg and TgTf2
are defined on the space of analytic polynomials. For any multi-indices α and β, since Tf̄1eβ = ω(f̄1, |β|)eβ
and Tf2eα = ω(f2, |α|)eα, we obtain

〈Tf1Tgeα, eβ〉 = 〈P (geα), f̄1eβ〉 = 〈geα, Tf̄1eβ〉 = 〈geα, ω(f̄1, |β|)eβ〉 = ω(f1, |β|)〈geα, eβ〉,

and 〈TgTf2eα, eβ〉 = ω(f2, |α|)〈geα, eβ〉. This shows that Tf1Tg = TgTf2 on analytic polynomials if and
only if for all α and β,

0 =
(
ω(f1, |β|)− ω(f2, |α|)

)
〈geα, eβ〉 =

1√
α!
√
β!

(
ω(f1, |β|)− ω(f2, |α|)

)∫
Cn
g(w)wαw̄βdµ(w).

Let m and k be two fixed multi-indices in Nn0 . With α = m + l and β = k + l for l ∈ Nn0 , by (3.5), we
obtain

G(l) :=
(F [f1](k + l)

(k + l)!
− F [f2](m+ l)

(m+ l)!

)∫
Cn
g(w)wmw̄k|w1|2l1 · · · |wn|2lndµ(w)

=
(
ω(f1, |k|+ |l|)− ω(f2, |m|+ |l|)

)∫
Cn
g(w)wm+lw̄k+ldµ(w) = 0.(3.7)

Using the fact that (m + k + l)!/(k + l)! and (m + k + l)/(m + l)! are polynomials in l, one can verify
that the function (m+k+ l)!G(l) satisfies the hypothesis of Proposition 3.1. Therefore, by Proposition 3.1,
G(l) = 0 for all l ∈ Nn0 if and only if G(l) = 0 for all l ∈ Kn. This, by analyticity, is equivalent to either

ω(f1, |k| + |l|) = ω(f2, |m| + |l|) for all l ∈ Kn or
∫
Cn
g(w)wmw̄k|wl|2dµ(w) = 0 for all l ∈ Kn. The

former is equivalent to that |m| − |k| belongs to Z(f1, f2). Since one of the functions f1, f2 is non-constant,
by the discussion preceding the theorem, there are two possibilities.

(a) If Z(f1, f2) = ∅, then (3.7) is equivalent to
∫
Cn
g(w)wmw̄k|wl|2dµ(w) = 0 for all l ∈ Kn, all

m, k ∈ Nn0 . This, in turn, is equivalent to g(z) = 0 for a.e. z ∈ Cn.

(b) If Z(f1, f2) = d, then (3.7) is equivalent to
∫
Cn
g(w)wmw̄k|wl|2dµ(w) = 0 for all l ∈ Kn satisfying

|m| − |k| 6= d, that is, (m − k) · (1, . . . , 1) 6= d. By Lemma 3.2, this is equivalent to g(γz) = γ̄dg(z) for
a.e. γ ∈ T and a.e. z ∈ Cn. The proof of the theorem is now completed. �
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Using Theorem 3.4, we obtain results about the commuting and the zero-product problems for Toeplitz
operators on H2(Cn, dµ).

Corollary 3.5. Let f ∈ Sym>0(Cn) be a radial, non-constant function. Then for any g ∈ Sym>0(Cn),
[Tf , Tg] = 0 on analytic polynomials P[z] if and only if g(γz) = g(z) for a.e. z ∈ Cn.

Proof. We see from the discussion preceding Theorem 3.4 thatZ(f, f) = {0}. The assertion of the corollary
now follows from Theorem 3.4. �

Corollary 3.6. Let f, g be in Sym>0(Cn) so that f is radial. If TfTg = 0 or TgTf = 0 on P[z], then f or g
must be zero a.e. on Cn.

Proof. If f is a constant function, then TfTg and TgTf are constant multiples of Tg. The conclusion of the
corollary follows.

Now assume that f is not a constant function. Put h(z) = 0 for all z. If TfTg = 0, then we have
TfTg = TgTh. Since Z(f, h) = ∅, Theorem 3.4 implies that g must be zero. The case TgTf = 0 is
similar. �

On the Bergman space of the unit ball in Cn, it was proved in [12] that if f1, . . . , fN are bounded functions
all of which, except possibly one, are radial, then Tf1 · · ·TfN = 0 implies that one of the functions must be
zero. Corollary 3.6 shows that this result holds on H2(Cn, dµ) for N = 2. Surprisingly, it fails when N = 3
as the next proposition shows.

In the proof of the proposition, we will make use of the following known integral formula (3.8). It can
be found in [8, p.498] (formula 3.944(5)) without a proof (see also [4, Example 4.12] for details of the
calculation).

(3.8)
∫ ∞

0
rζ−1 sin(ar)e−rdr = (1 + a2)−ζ/2 sin(ζ arctan a)Γ(ζ),

where a is a positive number and ζ belongs to K.

Proposition 3.7. There exist bounded non-zero functions f0, f1, f2 on Cn such that the operator Tf0Tf1Tf2
is zero on H2(Cn, dµ).

Proof. For j = 0, 1, 2, put fj(z) = |z|2je−|z|2 sin(2
√

3|z|2) for z ∈ Cn. Then Tfj is diagonal with respect
to the standard orthonormal basis. The eigenvalue corresponding to the eigenvector eα is given by

ω(fj , |α|) =
1

α!

∫
Cn
fj(z)|zα|2dµ(z)

=
1

Γ(|α|+ n)

∫ ∞
0

2
(
r2j sin(2

√
3r2)e−r

2)
r2|α|+2n−1e−r

2
dr (integration in polar coordinates)

=
2−j−|α|−n

Γ(|α|+ n)

∫ ∞
0

tj+|α|+n−1 sin(
√

3t)e−tdt (change of variables t = 2r2)

=
2−j−|α|−n

Γ(|α|+ n)
(1 + 3)−(j+|α|+n)/2 sin

(
(j + |α|+ n) arctan(

√
3)
)
Γ(j + |α|+ n) (by (3.8))

=
4−j−|α|−n

Γ(|α|+ n)
sin
((j + |α|+ n)π

3

)
Γ(j + |α|+ n).

It follows that the operator Tf0Tf1Tf2 is a diagonal operator whose eigenvalue corresponding to the eigen-
vector eα is a multiple of the product sin( (|α|+n)π

3 ) sin( (1+|α|+n)π
3 ) sin( (2+|α|+n)π

3 ), which is zero since one
of the integers |α|+ n, 1 + |α|+ n, 2 + |α|+ n is a multiple of 3. Therefore, Tf0Tf1Tf2 = 0. �

Note that the symbols fj (j = 0, 1, 2) in Proposition 3.7 even vanish at exponential rate at infinity and
hence the corresponding operators Tfj are compact. Furthermore, Corollary 3.6 implies that the product
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Tf0Tf1 cannot be represented as a Toeplitz operator Tg with g ∈ Sym>0(Cn). Coburn [7] provided examples
of C∞-functions ϕ for which the products TϕTϕ are not Toeplitz operators. However, the functions in his
examples have exponential growth at infinity.

4. EXTENSION OF TOEPLITZ OPERATORS AND THE ZERO-PRODUCT PROBLEM

It turns out that a statement analogous to Corollary 3.6 still holds when the symbols f and g have certain
higher orders of growth at infinity. On the other hand, it fails to be true when the functions f and g grow too
rapidly. Since we are dealing with symbols of high growth order at infinity, we need to describe an extension
of the notion of Toeplitz operators for symbols not in L2(Cn, dµ). A detailed study of this extension and its
relation with the usual Toeplitz operators can be found in [10].

Recall that the set {eα | α ∈ Nn0} is an orthonormal basis for H2(Cn, dµ) and that P[z] is the space of
analytic polynomials, which is the linear span of {eα | α ∈ Nn0}.

Definition 4.1. Let f : Cn → C be a measurable function. We define the domain D(T̃f ) to be the space
of all functions ϕ in H2(Cn, dµ) such that fϕeα is integrable with respect to dµ for all α ∈ Nn0 , and∑

α

∣∣ ∫
Cn fϕeα dµ

∣∣2 <∞. We then define the operator T̃ : D(T̃f )→ H2(Cn, dµ) by

(4.1) T̃fϕ =
∑
α∈Nn0

(∫
Cn
fϕeα dµ

)
eα for ϕ ∈ D(T̃f ).

Let f be as in Definition 4.1. Suppose ϕ is in the domain of the Toeplitz operator Tf defined in Section 2.
Then fϕ belongs to L2(Cn, dµ), and since eα also belongs to L2(Cn, dµ), fϕeα is integrable with respect
to dµ for all α ∈ Nn0 . Furthermore,

Tfϕ =
∑
α

〈Tfϕ, eα〉eα =
∑
α

〈fϕ, eα〉eα =
∑
α

(∫
Cn
fϕeα dµ

)
eα = T̃fϕ.

This shows that T̃f is an extension of Tf . In [10], Janas defined another extension Πf of Tf and showed
[10, Proposition 1.1] that Tf ⊆ Πf ⊆ T̃f . For our purpose in this section we do not need this intermediate
extension.

For a real number t > 0, define (Sth)(z) = t−nh(t−1z) for measurable functions h on Cn. Then the
restriction of St on P[z] is a diagonalizable operator which satisfies Steα = t−n−|α|eα for α ∈ N0. Recall
that in Section 3 we defined Vtf(z) = f(tz) exp((1 − t2)|z|2) for measurable functions f . It turns out that
there is a simple relation between T̃Vtf and T̃f via St.

Lemma 4.2. Let t > 0. For any ϕ ∈ H2(Cn, dµ) such that ϕ belongs to the domain of T̃Vtf and Stϕ
belongs to the domain of T̃f , we have T̃Vtfϕ = StT̃fStϕ.

Proof. For any multi-index α, a change of variables gives∫
Cn
ϕ(Vtf)eα dµ =

1

πn

∫
Cn
ϕ(z)f(tz)eα(z) exp(−t2|z|2)dV (z)

=
t−2n

πn

∫
Cn
ϕ(t−1w)f(w)eα(t−1w) exp(−|w|2)dV (w) = t−n−|α|

∫
Cn

(Stϕ)feαdµ.

For any z ∈ Cn, by (4.1), we have

(T̃Vtfϕ)(z) =
∑
α

(∫
Cn
ϕ(Vtf)eα dµ

)
eα(z) =

∑
α

(
t−n−|α|

∫
Cn

(Stϕ)feαdµ
)
eα(z)

= t−n
∑
α

(∫
Cn

(Stϕ)feαdµ
)
eα(t−1z) = (StT̃fStϕ)(z).

This shows that T̃Vtfϕ = StT̃fStϕ, which completes the proof of the lemma. �



12 W. BAUER AND T. LE

Now assume that f is a measurable radial function such that f(z) = f(|z|) for a.e. z ∈ Cn. Let ϕ be a
function in D(T̃f ). Write ϕ =

∑
β〈ϕ, eβ〉eβ . For each multi-index α, integration in polar coordinates gives∫

Cn
ϕfeα dµ =

1

πn

∫ ∞
0

2nr2n−1f(r)
(∫

S
ϕ(rζ)eα(rζ) dσ(ζ)

)
e−r

2
dr

=
1

πn

∫ ∞
0

2nr2n−1f(r)
{∫

S

(∑
β

〈ϕ, eβ〉eβ(rζ)
)
eα(rζ) dσ(ζ)

}
e−r

2
dr

= 〈ϕ, eα〉
1

πn

∫ ∞
0

2nr2n−1f(r)
(∫

S
|eα(rζ)|2 dσ(ζ)

)
e−r

2
dr

= 〈ϕ, eα〉
∫
Cn
f |eα|2 dµ.

As before, we put ω(f, α) =
∫
Cn f |eα|

2 dµ. Then by (4.1), we have

T̃fϕ =
∑
α

(∫
Cn
ϕfeα dµ

)
eα =

∑
α

ω(f, α)〈ϕ, eα〉eα.(4.2)

This shows, in particular, that T̃f is a diagonal operator on analytic polynomials P[z] whenever P[z] is
contained in D(T̃f ). This generalizes the fact (as we have seen in Section 3) that Tf is diagonal on P[z]
when f is radial and P[z] is contained in the domain of Tf .

Using (4.2) , we now show that T̃f commutes with St whenever f is a radial function.

Lemma 4.3. Let f be a radial measurable function and let t > 0. For any ϕ ∈ H2(Cn, dµ) such that both
ϕ and Stϕ belong to the domain of T̃f , we have StT̃fϕ = T̃fStϕ.

Proof. Write ϕ =
∑

α〈ϕ, eα〉eα. Then Stϕ =
∑

α〈ϕ, eα〉t−|α|−neα. For z ∈ Cn, using (4.2) we obtain(
T̃fStϕ

)
(z) =

∑
α

ω(f, α)〈ϕ, eα〉t−|α|−neα(z) = t−n
∑
α

ω(f, α)〈ϕ, eα〉eα(t−1z) = St
(
T̃fϕ

)
(z).

The conclusion of the lemma now follows. �

Using Lemmas 4.2 and 4.3, we are able to strengthen Corollary 3.6 to include functions that have higher
orders of growth at infinity. Recall that for any real number c < 1, Dc denotes the space of all measurable
functions f such that the map z 7→ f(z) exp(−c|z|2) is bounded on Cn.

Theorem 4.4. Let f and g be two functions belonging to Dc for some c < 1 so that f is radial. If T̃f T̃g = 0

or T̃gT̃f = 0 on P[z], then either f = 0 or g = 0 a.e. on Cn.

Proof. Since f and g belong to Dc with c < 1, it follows from discussion after Definition 4.1 that the space
P[z] of analytic polynomials is contained in the domains of T̃f and T̃g.

Choose a sufficiently large number t > 0 such that both functions Vtf and Vtg are bounded. Then
TVtf = T̃Vtf and TVtg = T̃Vtg and they are all bounded operators. Let p be a polynomial in P[z]. By
Lemmas 4.2 and 4.3, we have

TVtfTVtgp =
(
StT̃fSt

)(
StT̃gStp) = S3

t T̃f T̃gStp,

TVtgTVtfp =
(
StT̃gSt

)(
StT̃fStp) = StT̃f T̃gS

3
t p.

Since P[z] is invariant under St, we conclude that on P[z], TVtfTVtg = 0 (if T̃f T̃g = 0) or TVtgTVtf = 0 (if
T̃gT̃f = 0). By Corollary 3.6, either Vtf = 0 or Vtg = 0, which implies that either f = 0 or g = 0. �

It turns out that there are zero products of non-zero Toeplitz operators in which the symbols are radial
and belong to D1. We now construct explicit examples. With parameters s ≥ 0, a > 0 and t ∈ (0, 1),
consider the radial function gs,a,t : Cn → C defined by gs,a,t(w) = |w|2s sin

(
a|w|2t

)
e|w|

2−|w|2t . Note that
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gs,a,t /∈ L2(Cn, dµ) but gs,a,t ∈ D1. For simplicity we only consider the case n = 1 in the calculation below.
However, the idea can be generalized to higher dimensional situation.

For any integer m ≥ 0,

ω(gs,a,t,m) =
1

π m!

∫
C
gs,a,t(z)|z|2me−|z|

2
dV (z) =

2

m!

∫ ∞
0

sin
(
ar2t

)
e−r

2t
r2(m+s)+1dr

=
1

m! t

∫ ∞
0

sin(au)e−uu
m+s+1

t
−1du (by the change of variables u = r2t)(4.3)

=
1

m! t

(
1 + a2

)−m+s+1
2t sin

(
m+ s+ 1

t
arctan(a)

)
Γ

(
m+ s+ 1

t

)
(by formula (3.8)).

By (4.2), the monomial em(z) = zm/
√
m! belongs to D(T̃gs,a,t) and T̃gs,a,tem = ω(gs,a,t,m)em for any

integer m ≥ 0. This shows that the space of analytic polynomials P[z] is contained in D(T̃gs,a,t) and P[z] is
invariant under T̃gs,a,t . It also follows from (4.3) that ω(gs,a,t,m) = 0 if and only if m = tπ

arctan(a)k − s− 1

for some k ∈ Z.
For a fixed number t ∈ [1

2 , 1) we choose a > 0 such that arctan(a) = tπ/2. Then ω(g0,a,t, 2k + 1) =
ω(g1,a,t, 2k) = 0 and ω(g0,a,t, 2k), ω(g1,a,t, 2k + 1) 6= 0 for all k ∈ N0. Let ϕ be a function in the domain
of the product T̃g0,a,t T̃g1,a,t . Applying (4.2) twice, we obtain

T̃g0,a,t T̃g1,a,tϕ = T̃g0,a,t

( ∞∑
m=0

ω(g1,a,t,m)〈ϕ, em〉em
)

=

∞∑
m=0

ω(g0,a,t,m)ω(g1,a,t,m)〈ϕ, em〉em = 0.

Similarly, we can show that T̃g1,a,t T̃g0,a,tϕ = 0 for all ϕ belonging to the domain of T̃g1,a,t T̃g0,a,t . Thus, we
have shown the existence of zero-products of non-zero Toeplitz operators.

Proposition 4.5. For each fixed t in [1
2 , 1), one can choose a > 0 such that T̃g0,a,t T̃g1,a,t = T̃g1,a,t T̃g0,a,t = 0

on their domains (which contain the space of analytic polynomials P[z]).

Now for a fixed number t ∈ (0, 1
2) we choose a > 0 so that arctan(a) = tπ. Then for any integers

s,m ≥ 0, (4.3) shows that ω(gs,a,t,m) = 0. By (4.2), T̃gs,a,tϕ = 0 for all ϕ in the domain of T̃gs,a,t .
We have thus shown the existence of zero Toeplitz operators with non-zero symbols. In [9], Grudsky and
Vasilevski showed the existence of such symbols using Fourier transform. Here we obtain concrete examples.

Proposition 4.6. For any fixed number t ∈ (0, 1
2), one can choose a > 0 such that for any integer s ≥ 0,

T̃gs,a,t = 0.

5. FINITE RANK TOEPLITZ OPERATORS

In this section we study the finite rank problem for Toeplitz operators on H2(Cn, dµ). More precisely,
we are interested in the conjecture: If the Toeplitz operator Tf with f ∈ Sym>0(Cn) has finite rank, then
f = 0. Starting from Toeplitz operators acting on the Bergman space over bounded domains, the discussion
of the finite rank problem has a long history. The conjecture for finite rank Toeplitz operators on Bergman
spaces was open for about thirty years. Only recently was the conjecture solved by D. Luecking in [14]
(for dimension n = 1) and later on generalized to arbitrary dimensions in [1, 5, 16]. We state here the
corresponding result in our setting.

Theorem 5.1 ([1, 5, 14, 16]). Let f ∈ L1(Cn, dµ) be a function having a compact support such that Tf (P[z])
has finite dimensions, then f = 0 a.e. on Cn.

More general versions of Theorem 5.1 were shown in the above papers for a larger class of operators
whose symbols are measures (or even distributions) with compact supports. The corresponding results assert
that the measure (or the distribution) must have a finite support. In [15] the recent progress on the finite rank
problem of Toeplitz operators was described in a systematic way.
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It turns out that the approach employed by Luecking and others does not immediately generalize to sym-
bols having non-compact supports. We point out here that by Proposition 4.6, the conclusion of Theorem 5.1
fails if the support of f is not compact. However, the counterexample given in Proposition 4.6 has certain
growth at infinity. In fact, it does not even belong to any Dc with c < 1. By this reason one still hopes to
prove an affirmative result when appropriate restrictions are impulsed on the growth of the function f , for
example, f belongs to Sym>0(Cn) as we stated above. In this section we offer several partial results which,
we hope, will shed some light on the conjecture.

We first give a necessary condition for a finite rank operator to be a Toeplitz operator and derive some
consequences. Let A be a finite rank operator in H2(Cn, dµ) given by the form A(·) =

∑N
j=1〈·, fj〉gj ,

where f1, . . . , fN and g1, . . . , gN belong to H2(Cn, dµ). Define the function F (z) =
∑N

j=1 gj(−iz)fj(iz)
for z ∈ Cn. Suppose there exists a function h in Sym>0(Cn) such that Th = A on H2(Cn, dµ). Using the
reproducing property of the kernel functions Ka(w) = exp(w · ā), we get

F (z) =

N∑
j=1

〈Kiz, fj〉〈gj ,K−iz〉 = 〈ThKiz,K−iz〉 = 〈hKiz,K−iz〉

=

∫
Cn
h(w) exp {−iz · w̄ − iw · z̄} dµ(w).

For multi-indices α and β, let ∂αz and ∂βz denote the partial derivatives ∂|α|

∂z
α1
1 ···∂z

αn
n

and ∂|β|

∂z
β1
1 ···∂z

βn
n

, respec-

tively. By differentiating under the integral sign we obtain

∂αz ∂
β
z̄ F (z) = ∂αz ∂

β
z̄

(∫
Cn
h(w) exp {−iz · w̄ − iz̄ · w} dµ(w)

)
= (−i)|α|+|β|

∫
Cn
h(w)w̄αwβ exp {−iz · w̄ − iz̄ · w} dµ(w)

= (−i)|α|+|β|
∫
Cn
h(w)w̄αwβ exp {−iRe (2z · w̄)} dµ(w)(5.1)

= (−i)|α|+|β| · 2n · F
(
h(w)w̄αwβe−|w|

2
)

(2z),

where F denotes the Fourier transform on Cn ∼= R2n. Since w 7→ h(w)w̄αwβe−|w|
2

is a function in
L1(Cn, dV ), it follows from the mapping properties of the Fourier transform that ∂αz ∂

β
z̄ F belongs toC0(Cn),

the space of all continuous functions on Cn vanishing at infinity. Thus we have proved

Lemma 5.2. Let f1, . . . , fN and g1, . . . , gN be in H2(Cn, dµ) such that the operator A(·) =
∑N

j=1〈·, fj〉gj
equals a Toeplitz operator Th for some h in Sym>0(Cn). Then the function F (z) =

∑N
j=1 gj(−iz)fj(iz)

and all its partial derivatives vanish at infinity.

We suspect that any function F satisfying the conclusion of Lemma 5.2 must be identically zero but we
have not found a proof.

We now consider two special cases for which we are able to show that F , and hence h, must be the zero
function. The first (trivial) case is when gj(z) = fj(−z) for all 1 ≤ j ≤ N . Since F (z) =

∑N
j=1 |fj(iz)|2

and F vanishes at infinity, we conclude that fj = 0 for all 1 ≤ j ≤ N . Using this, we show now that certain
finite rank “twisted” projections cannot be represented as Toeplitz operators. Let {0} 6= V ⊂ H2(Cn, dµ)
be a subspace of finite dimension N and PV : H2(Cn, dµ) → V be the orthogonal projection. Define the
operator U−1 by (U−1ϕ)(z) = ϕ(−z) for ϕ ∈ H2(Cn, dµ) and z ∈ Cn. Then neither U−1PV nor PV U−1

are Toeplitz operators with symbols in Sym>0(Cn). In fact, choose an orthonormal basis {ϕ1, . . . , ϕN} for
V . Then we can write PV (·) =

∑N
j=1〈·, ϕj〉ϕj and henceU−1PV (·) =

∑N
j=1〈·, ϕj〉U−1ϕj and PV U−1(·) =∑N

j=1〈·, U−1ϕj〉ϕj . If either U−1PV or PV U−1 were a Toeplitz operator with symbol in Sym>0(Cn), then
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it would imply, from the above argument, that ϕ1 = · · · = ϕN = 0, a contradiction since V 6= {0}. We
mention in passing here that it can be shown that the operator U−1 itself is also not a Toeplitz operator, see
[7, Theorem 3].

In order to describe the second special case, we need to introduce some notation. For any polynomial Q
in n variables with complex coefficients, we write Q(∂) = Q(∂z1 , . . . , ∂zn) and Q(∂) = Q(∂z1 , . . . , ∂zn).
It can be verified that for any polynomial Q, there is a polynomial Q∗ such that for any analytic function f

on Cn, we have Q(∂)
(
f(iz)

)
= Q∗(∂)

(
f(iz)

)
for all z ∈ Cn. We define E to be the set of all functions f

in H2(Cn, dµ) for which Q(∂)f ≡ 0 for some polynomial Q. It is immediate that E is a linear subspace of
H2(Cn, dµ) which contains all functions of the form p(z) exp(z · a), where p is an analytic polynomial and
a belongs to Cn.

Now we assume that for each j = 2, . . . , N , either fj or gj belongs to E . Choose polynomials Q and

R such that Q(∂)R∗(∂)
(
gj(−iz)fj(iz)

)
= Q(∂)

(
gj(−iz)

)
R(∂)

(
fj(iz)

)
= 0 for all 2 ≤ j ≤ n and all

z ∈ Cn. Put H(z) = Q(∂)
(
g1(−iz)

)
·R(∂)

(
f1(iz)

)
. Then H is entire and

|H(z)| =
∣∣∣Q(∂)

(
g1(−iz)

)
·R(∂)

(
f1(iz)

)∣∣∣ =
∣∣∣Q(∂)R∗(∂)

(
F (z, z)

)∣∣∣→ 0

as |z| → ∞. This implies that H , and hence Q(∂)R∗(∂)F , is identically zero on Cn. On the other hand,
(5.1) shows that there is a polynomialG in the variablesw1, . . . , wn andw1, . . . , wn for whichQ(∂)R∗(∂)F

is the Fourier transform of h(w)G(w)e−|w|
2
. We then conclude that h(w)G(w)e−|w|

2
= 0 for a.e. w. Since

the zero set of G has measure zero, h(w) must be zero for a.e. w in Cn. Using this, we now show

Theorem 5.3. Let h be in Dc for some c < 1. Suppose there exists a function ϕ in H2(Cn, dµ) such that
T̃h(P[z]) is a finite dimensional vector subspace of E + Cϕ. Then h(z) = 0 for a.e. z ∈ Cn.

Proof. Consider first the case h is a bounded function. Then T̃h = Th is a bounded operator on H2(Cn, dµ).
Since P[z] is dense in H2(Cn, dµ) and Th(P[z]) is a finite dimensional vector space, we conclude that Th,
as an operator on H2(Cn, dµ), has finite rank. Furthermore, the range of Th is the same as Th(P[z]), which
is contained in E + Cϕ. This implies that there exist functions f1, . . . , fN in H2(Cn, dµ) and functions
g2, . . . , gN in E such that Th(·) = 〈·, f1〉ϕ +

∑N
j=2〈·, fj〉gj . It now follows from the discussion preceding

the theorem that h(w) = 0 for a.e. w in Cn.
Now suppose h is not bounded but it belongs toDc for some c < 1. Choose a positive number t sufficiently

large so that the function Vth is bounded. Using Lemma 4.2 and the fact that the operator St preserves P[z]

and E , we see that TVth(P[z]) = StT̃hSt(P[z]) is a finite dimensional vector subspace of E + C(Stϕ). It
now follows from the case already considered that Vth = 0 a.e., which implies that h = 0 a.e. on Cn. This
completes the proof of the theorem. �

Corollary 5.4. If h ∈ Dc for some c < 1 and T̃h has rank one on P[z], then h = 0 a.e. on Cn.

Corollary 5.5. If p is a polynomial in z and z̄ such that T̃p has finite rank on P[z], then p = 0 a.e. on Cn.

Proof. It follows from Definition 4.1 that P[z] is invariant under T̃p when p is a polynomial in z and z̄. The
corollary then follows immediately from Theorem 5.3. �

We conclude this section by showing that the existence (or non-existence) of non-trivial finite rank Toeplitz
operators on H2(Cn, dµ) can be reduced to the complex one dimensional case, i.e., H2(C, dµ).

Proposition 5.6. Let n > 1 and assume that there is a non-trivial function f ∈ Dc for some c < 1 such
that P[z] belongs to the domain of T̃f and T̃f

(
P[z]

)
has finite dimension. Then there is a non-trivial function

g ∈ L∞(C) such that Tg has finite rank on H2(C, dµ).
Conversely, if there is a bounded non-trivial function g on C such that Tg has finite rank on H2(C, dµ),

then there exists a bounded non-trivial function f on Cn such that Tf has finite rank on H2(Cn, dµ).
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Proof. First assume that f is a non-trivial function inDc with c < 1 such that T̃f
(
P[z]

)
is finite dimensional.

Choose a sufficiently large real number t such that Vtf is bounded. Since T̃Vtf = StT̃fSt by Lemma 4.2 and
P[z] is invariant under St, the operator TVtf = T̃Vtf also has finite rank on P[z]. By replacing f by Vtf , we
may assume that f is bounded.

Since f is not the zero function, there is an analytic monomial p such that Tfp 6= 0. We write p(z) =
p1(z1)p2(z′) for z = (z1, z

′) in Cn and choose y = (y1, y
′) ∈ Cn such that (Tfp)(y) 6= 0. For any w1 ∈ C,

define

g(w1) =

∫
Cn−1

f(w1, w
′)p2(w′)ey

′·w′ dµ(w′).

Since f is bounded on Cn, we see that g is bounded on C and hence, the Toeplitz operator Tg is bounded on
H2(C, dµ).

Put V = Tf
(
P[z]

)
. For any function h in V , define h̃ on C by h̃(z1) = h(z1, y

′) for z1 ∈ C. Let
Ṽ = {h̃ : h ∈ V }. Then dim(Ṽ ) <∞ since dim(V ) <∞. For any analytic polynomial q in one complex
variable and any z1 in C, using (2.2) and Fubini’s Theorem, we obtain

(Tgq)(z1) =

∫
C
g(w1)q(w1)ez1·w1 dµ(w1)

=

∫
Cn
f(w1, w

′)p2(w′)q(w1)ey
′·w′+z1·w1 dµ(w1, w

′)

= Tf (q ⊗ p2)(z1, y
′),

here q ⊗ p2 is the polynomial given by (q ⊗ p2)(w) = q(w1)p2(w′) for w = (w1, w
′). This shows that Tgq

belongs to Ṽ . Since q was arbitrary and dim(Ṽ ) < ∞, we conclude that Tg(P[z1]) is finite dimensional.
Because (Tgp1)(y1) = (Tfp)(y1, y

′) = (Tfp)(y) 6= 0 by our choice of y, we see also that g is a non-trivial
function.

Now assume that g is bounded on C such that Tg has rank M < ∞. Put f(w) = g(w1) · · · g(wn)
for w = (w1, . . . , wn) ∈ Cn. Then f is a bounded function. For any analytic monomial p of the form
p(w) = p1(w1) · · · pn(wn) and z = (z1, . . . , zn) ∈ Cn, we have

Tfp(z) =

∫
Cn
f(w)p(w) exp(z · w)dµ(w) =

n∏
j=1

∫
C
g(wj)pj(wj) exp(zj · wj) dµ(wj)

= (Tgp1)(z1) · · · (Tgpn)(zn).

Since the space {Tg(q) : q is an analytic polynomial in one complex variable} has dimension M , the above
formula shows that Tf (P[z]) has dimension Mn. It then follows from the density of P[z] in H2(Cn, dµ) that
Tf has rank Mn. �

6. OPEN PROBLEMS

In this final section we collect and discuss some problems that we have not been able to solve with the
hope that they will stimulate further investigation.

First of all, Theorem 4.4 shows that if f and g belong to Dc for some c < 1, T̃f T̃g = 0 on analytic
polynomials, and one of the functions is radial, then either f = 0 or g = 0. We do not know if the
conclusion still holds if the functions are not assumed to be radial. In fact the corresponding problem for
Toeplitz operators on the Bergman space of the unit disc is still unsolved. Thus the following question is
open and quite challenging.

Question A. Let f, g be in Dc for some c < 1 such that TfTg = 0. Is it true that f = 0 or g = 0 a.e.?

The restriction on the growth of the functions f and g in Question A is essential since Proposition 4.5 gives
two non-trivial Toeplitz operators (with radial symbols belonging to D1) whose product is a zero operator.
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Other unanswered questions we would like to discuss in this section are related to the existence of finite
rank Toeplitz operators. By Proposition 5.6, we only need to consider Toeplitz operators with bounded
symbols on H2(C, dµ). Also, by Corollary 5.4, the case of rank one has an affirmative answer.

Question B. Let f be in L∞(C) such that Tf has finite rank ≥ 2 on P[z]. Is it true that f = 0 a.e.?

We present here Luecking’s approach [14] to Question B and discuss the difficulties when applied to our
current settings. For any integer N ≥ 2, let SN be the permutation group on {1, . . . , N}. Any π ∈ SN acts
on CN by π(z) = (zπ(1), . . . , zπ(N)) for z ∈ CN . We call a function f on CN symmetric if f ◦ π = f for
all π ∈ SN .

On L2(CN , dµ) we define the symmetrization S by[
Sf
]
(z) =

1

N !

∑
π∈SN

f ◦ π(z) =
1

N !

∑
π∈SN

f(zπ(1), . . . , zπ(N))

for f ∈ L2(CN , dµ). It can be checked that S is an orthogonal projection and that H2(CN , dµ) is invari-
ant under S. This implies PS = SP (recall that P is the orthogonal projection from L2(CN , dµ) onto
H2(CN , dµ)). We defineH2

s (CN , dµ) = S(H2(CN , dµ)), which is the subspace ofH2(CN , dµ) consisting
of symmetric functions.

Now assume there is a bounded function f such that Tf has rank less than N . As in [14], we obtain

(6.1) 0 =

∫
CN

f(z1)f(z2) · · · f(zN )F1(z)F2(z) |V (z)|2 dµ(z)

for all symmetric analytic polynomials F1 and F2. Here V (z) = det(zj−1
l )1≤l,j≤N denotes the Van-

dermonde determinant (note that |V (z)|2 is a symmetric polynomial in z1, . . . , zN and z1, . . . , zN ). Put
G(z) = f(z1) · · · f(zN )|V (z)|2, which is a symmetric function in Sym>0(CN ). For any symmetric poly-
nomial F1 in H2

s (CN , dµ) and any polynomial F in H2(CN , dµ), using the fact that S is a projection,
GF1 = S(GF1) and (6.1) with F2 = S(F ), we obtain

0 = 〈GF1, S(F )〉 = 〈S(GF1), F 〉 = 〈GF1, F 〉 = 〈TGF1, F 〉.

This shows that the Toeplitz operator TG vanishes on the space of symmetric analytic polynomials in CN . If
it can be proved that G = 0 a.e., then it follows that f = 0 a.e. since the set of zeros of V has measure zero.
Thus the following question is closely related to Question B.

Question C. Let G be a symmetric function on CN (N ≥ 2) that has at most polynomial growth at infinity.
Assume that TG : H2

s (CN , dµ) −→ H2
s (CN , dµ) vanishes on symmetric analytic polynomials. Does it

follow that G = 0 a.e.?

It was shown in [14] that Question C has an affirmative answer whenG has compact support. In fact, it fol-
lows from the Stone-Weierstrass Theorem that the set {F1F 2 : F1, F2 are analytic symmetric polynomials}
is dense in the space of continuous symmetric functions on any bounded ball centered at the origin in CN .
This then implies that any function G satisfying the hypothesis of Question C must be zero almost every-
where. This approach works even in the case the measure Gdµ is replaced by any complex regular Borel
measure with compact support. When G does not have compact support, the Stone-Weierstrass Theorem
does not apply and it is, we believe, the main difficulty in this approach.

Finally, Question D below is also closely related to the finite rank problem for Toeplitz operators by
Lemma 5.2. We showed in Section 5 that Question D has an affirmative answer under certain restrictions.
However, we have not been able to resolve the general case.

Question D. LetN ≥ 2 be an integer and f1, . . . , fN , g1, . . . , gN belong toH2(C, dµ) such that the function
F = f1g1 + · · · + fNgN and all of its partial derivatives vanish at infinity. Does it follow that F = 0
identically?
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