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Abstract. Properties of m-selfadjoint and m-isometric operators have
been investigated by several researchers. Particularly interesting to us
are algebraic properties of nilpotent perturbations of such operators.
McCullough and Rodman showed in the nineties that if Qn = 0 and A
is a selfadjoint operator commuting with Q then the sum A + Q is a
(2n − 1)-selfadjoint operator. Very recently, Bermúdez, Martinón, and
Noda proved a similar result for nilpotent perturbations of isometries.
Via a new approach, we obtain simple proofs of these results and other
generalizations to operator roots of polynomials.

1. Introduction

Throughout the paper, H denotes a complex Hilbert space and L(H) the
algebra of all bounded linear operators on H. Let m be a positive integer.
An operator T in L(H) is said to be m-selfadjoint if it satisfies the operator
equation

m∑
k=0

(−1)m−k
(
m

k

)
T ∗kTm−k = 0, (1.1)

where T ∗ is the adjoint operator of T . Here we use the convention that
T 0 = T ∗0 = I, the identity operator on H. It is clear that any 1-selfadjoint
operator is selfadjoint. This notion of m-selfadjoint operators was intro-
duced and studied by Helton [14]. Following Helton, we call an operator
n-Jordan (or Jordan of order n) if it can be written as S + Q, where S is
selfadjoint, Q commutes with S and Qn = 0. Helton [14] showed that an
operator T is 2-Jordan if and only if T and T ∗ are 3-selfadjoint.

In [15], McCullough and Rodman studied several algebraic and spectral
properties of m-selfadjoint operators and they obtained the following result.

Theorem A. ( [15, Theorem 3.2]) Let n be a positive integer. Suppose S
is selfadjoint and Qn = 0 such that SQ = QS. Then the n-Jordan operator
S +Q is (2n− 1)-selfadjoint.

An operator T is said to be m-isometric if
m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0.
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We say that T is a strict m-isometric operator if T is m-isometric but it is not
(m−1)-isometric. It is clear that any 1-isometric operator is isometric. Such
m-isometric operators were introduced by Agler back in the early nineties
and were studied in great detail by Agler and Stankus in a series of three
papers [4–6]. In higher dimensions (d ≥ 1), the notion of m-isometries was
introduced and studied by Gleason and Richter in [11]. Recently, researchers
[8–10] have been interested in algebraic properties of m-isometries. In [8],
Bermúdez, Martinón, and Noda proved a result analogous to Theorem A.
We say that an operator Q is nilpotent of order n ≥ 1 if Qn = 0 and
Qn−1 6= 0.

Theorem B. ( [8, Theorem 2.2]) Suppose S is an isometry and Q is a
nilpotent operator of order n that commutes with S. Then the operator
S +Q is a strict (2n− 1)-isometry.

The proofs of Theorem A and Theorem B in the aforementioned papers
rely heavily on combinatorial identities, which do not provide us with any
hints why the results are true. The main purpose of this paper is to offer
a new approach, which not only simplifies the proofs but also provides a
unified treatment to the above results. In addition, our approach reveals a
more general phenomenon for nilpotent perturbations of operators that are
roots of polynomials.

2. Hereditary functional calculus in several variables

The approach that we take in this paper relies on pairs of commuting
operators and polynomials in two complex variables. However, it is also
convenient to discuss general tuples of commuting operators and polynomials
in several variables. We begin with some definitions and notation. Fix an
integer d ≥ 1. Throughout the paper, we use z to denote a single complex
variable and the boldface letter z to denote a tuple of complex variables
z = (z1, . . . , zd) ∈ Cd. We write z̄ = (z̄1, . . . , z̄d). Let Zd+ be the set of
all multiindices α = (α1, . . . , αd) of non-negative integers. We shall use
the standard multiindex notation zα = zα1

1 · · · z
αd
d with the convention that

00 = 1. Let T = (T1, . . . , Td) be a d-tuple of commuting bounded linear
operators on H. We write Tα = Tα1

1 · · ·T
αd
d and T∗α =

(
Tα
)∗

. Here for

A ∈ L(H), the operator A0 is the identity operator on H.
In this paper, a function f : Cd → C is a polynomial if f is a finite sum

of the form

f(z) =
∑
α,β

aα,β z̄
αzβ.

The coefficients aα,β are complex numbers. We shall use the standard nota-
tion C[z̄, z] for the ring of all such polynomials. The dimension d should be
understood from the context. A polynomial is holomorphic if it is a holo-
morphic function. Equivalently, it is a polynomial in z only. A polynomial is
anti-holomorphic if it is a polynomial in z̄ only. Equivalently, its conjugate
is holomorphic.
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For a polynomial f(z) =
∑

α,β aα,β z̄
αzβ on Cd and a d-tuple T of com-

muting operators in L(H), we define

f(T) =
∑
α,β

aα,βT
∗αTβ. (2.1)

This functional calculus was termed the hereditary functional calculus by
Agler [1] and was studied in [1, 2]. The following properties are immediate
from the definition.

Lemma 2.1. Let p, q, r be polynomials in Cd and T be a d-tuple of com-
muting operators in L(H). Then the following statements hold.

(1) (p+ q)
(
T
)

= p(T) + q(T).
(2) If p is anti-holomorphic and r is holomorphic, then

(pqr)
(
T
)

= p(T)q(T)r(T).

(3) Define p̄(z) = p(z). Then p̄(T) = (p(T))∗.

Remark 2.2. Since the adjoints T ∗
1 , . . . , T

∗
d may not commute with T1, . . . , Td,

the identity (pq)
(
T
)

= p(T)q(T) does not hold in general.

We call a mapping ϕ = (ϕ1, . . . , ϕm) : Cd → Cm a holomorphic polyno-
mial mapping if each component ϕj (1 ≤ j ≤ m) is a holomorphic poly-

nomial over Cd. The following fact concerns composition with holomorphic
polynomial mappings.

Lemma 2.3. Suppose f : Cm → C is a polynomial and ϕ : Cd → Cm is
a holomorphic polynomial mapping. Then for any d-tuple T of commuting
operators in L(H), ϕ(T) is an m-tuple of commuting operators and we have

(f ◦ ϕ)
(
T
)

= f(ϕ(T)).

Proof. For w ∈ Cm, write f(w) =
∑

α,β aα,βw̄
αwβ. Then for z ∈ Cd,

f ◦ ϕ(z) =
∑
α,β

aα,β(ϕ(z))α(ϕ(z))β =
∑
α,β

aα,βϕα(z)ϕβ(z).

Using the fact that ϕ is holomorphic together with Lemma 2.1, we obtain

(f ◦ ϕ)(T) =
∑
α,β

aα,βϕα(T)ϕβ(T) =
∑
α,β

aα,β(ϕ(T)α)∗ϕ(T)β = f(ϕ(T)).�

Remark 2.4. It is clear that the conclusion of Lemma 2.3 remains valid if
ϕ is an anti-holomorphic mapping.

Definition 2.5. Let f be a polynomial in Cd and T a d-tuple of commuting
operators in L(H). We say that T is a (hereditary) root of f if f(T) = 0.

Example 2.6. (1) An operator is m-selfadjoint if and only if it is a root of
the polynomial p(z) = (z̄ − z)m in one variable z ∈ C.

(2) An operator is m-isometric if and only if it is a root of the polynomial
q(z) = (z̄z − 1)m in one variable z ∈ C.



4 TRIEU LE

Hereditary roots have been studied by several researchers, see [1–6, 14,
15] and the references therein. In a recent paper, Stankus [16] studied
spectrum pictures, maximal invariant subspaces, resolvent inequalities and
other properties of roots of polynomials over C. In this paper we focus on
certain algebraic properties of roots. In particular, we generalize several
results obtained in [8–10,15].

We begin with a simple but crucial result. Recall that C[z̄, z] denotes the
space of polynomials over Cd.

Proposition 2.7. Let T be a d-tuple of commuting operators in L(H).
Then the set

J(T) =
{
p ∈ C[z̄, z] : p(T) = 0

}
is an ideal in C[z̄, z].

Proof. Let p, q be polynomials over Cd such that p belongs to J(T). Write
q(z) =

∑
α,β bα,β z̄

αzβ. Then

pq(z) =
∑
α,β

bα,β z̄
αp(z)zβ.

Using Lemma 2.1 and the fact that p(T) = 0, we obtain

(pq)
(
T
)

=
∑
α,β

bα,βT
∗αp(T)Tβ = 0.

Thus, pq belongs to J(T). This shows that J(T) is an ideal of C[z̄, z]. �

Using Proposition 2.7 we obtain

Theorem 2.8. Let ϕ : C2 → C be a holomorphic polynomial. Suppose p is
a polynomial over C such that for all z, w ∈ C,

p(ϕ(z, w)) = p(z)h(z, w) + p(w)g(z, w),

where g, h are polynomials over C2. Let A and B be two commuting opera-
tors in L(H). Suppose there exist two positive integers m,n ≥ 1 such that
pm(A) = pn(B) = 0. Then pm+n−1(ϕ(A,B)) = 0.

Proof. By the binomial expansion, there are polynomials p1 and p2 over C2

such that

q(z, w) := pm+n−1(ϕ(z, w)) =
(
p(z)

)m
p1(z, w) +

(
p(w)

)n
p2(z, w).

Since pm(A) = pn(B) = 0, Proposition 2.7 implies that q(A,B) = 0. On the
other hand, Lemma 2.3 gives q(A,B) = pm+n−1(ϕ(A,B)). It then follows
that pm+n−1(ϕ(A,B)) = 0 as required. �

Theorem 2.8 enjoys a number of interesting consequences that we now
describe. These results have appeared in the literature with different proofs.

Corollary 2.9. Let A and B be two commuting operators in L(H) such that
A is m-selfadjoint and B is n-selfadjoint. Then for any integers k, ` ≥ 1,
the operators Ak +B` and AkB` are (m+ n− 1)-selfadjoint. In particular,
if B is selfadjoint (n = 1), then Ak +B` and AkB` are m-selfadjoint.
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Proof. Let p(z) = z̄ − z. Then for z, w ∈ C, we have

p(zk + w`) = p(z)
(
z̄k−1 + · · ·+ zk−1

)
+ p(w)

(
w̄k−1 + · · ·+ wk−1

)
,

and

p(zkw`) = (z̄k − zk)w̄` + (w̄` − w`)zk

= p(z)
(
z̄k−1 + · · ·+ zk−1

)
w̄` + p(w)

(
w̄`−1 + · · ·+ w`−1

)
zk.

Since pm(A) = pn(B) = 0, the conclusion follows from Theorem 2.8 with
the choice of ϕ(z, w) = zk + w` and ϕ(z, w) = zkw`, respectively. �

In the special case k = 1 and B = −µI with µ a real number, we recover
[15, Proposition 2.1].

Corollary 2.10. Let A and B be two commuting operators in L(H) such
that A is m-isometric and B is n-isometric. Then for any integers k, ` ≥ 1,
the product AkB` is (m+ n− 1)-isometric. In particular, if B is isometric
(n = 1), then AkB` is m-isometric.

Proof. Let p(z) = z̄z − 1. Then for z, w ∈ C,

p(zkw`) = (z̄kzk − 1)w̄`w` + (w̄`w` − 1)

= p(z)
(
(z̄z)k−1 + · · ·+ 1

)
w̄`w` + p(w)

(
(w̄w)`−1 + · · ·+ 1

)
.

The conclusion of the corollary now follows from Theorem 2.8 by the choice
of ϕ(z, w) = zkw`. �

A version of Corollary 2.10 was proved in [9, Theorem 3.3] by a combina-
torial argument and in the Banach space setting.

3. Nilpotent perturbations of roots

We now study nilpotent perturbations of roots. Our main result in this
section shows that if A is a root of a polynomial and Q is a nilpotent operator
commuting with A, then the sum A + Q is a root of a related polynomial.
This generalizes Theorems A and B mentioned in the Introduction.

We begin with two elementary results about polynomials in two variables.
Recall that for non-negative integers α, α1, . . . , αk ≥ 0 with α = α1+· · ·+αk,
we have the multinomial coefficient defined by(

α

α1, . . . , αk

)
=

α!

α1! · · ·αk!
.

Proposition 3.1. Suppose F (z, w) = w̄g1(z, w) + wg2(z, w), where g1 and
g2 are polynomials over C2. Let s ≥ 1 be an integer. Denote by I the ideal
in C[z̄, w̄, z, w] generated by w̄s and ws. Then the polynomials

F 2s−2(z, w)−
(

2s− 2

s− 1, s− 1

)
(w̄w)s−1

(
g1(z, 0)g2(z, 0)

)s−1
(3.1)

and F 2s−1(z, w) belong to I.
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Proof. The binomial expansion gives

F 2s−2(z, w) =
2s−2∑
j=0

(
2s− 2

j, 2s− 2− j

)(
w̄g1(z, w)

)j(
wg2(z, w)

)2s−2−j
.

Consider the terms on the right hand side. If j ≤ s − 2 then the exponent
of w is at least 2s − 2 − (s − 2) = s. If j ≥ s then the exponent of w̄ is at
least s. This shows that the difference

F 2s−2(z, w)−
(

2s− 2

s− 1, s− 1

)(
w̄w
)s−1(

g1(z, w)g2(z, w)
)s−1

is a sum of multiples of w̄s and of ws, which belongs to I. On the other
hand, the power expansion of the product g1g2 at the origin shows that
g1(z, w)g2(z, w)− g1(z, 0)g2(z, 0) is a sum of a multiple of w̄ and a multiple
of w. This implies that polynomial

(w̄w)s−1
(
g1(z, w)g2(z, w)

)s−1 − (w̄w)s−1
(
g1(z, 0)g2(z, 0)

)s−1

belongs to I. Consequently, the difference (3.1) is a polynomial in I. Mul-
tiplying (3.1) by F (z, w) immediately yields that F 2s−1(z, w) belongs to
I. �

Proposition 3.2. Suppose f is a polynomial over C. Let m, s ≥ 1 be two
positive integers. Let J denote the ideal of C[z̄, w̄, z, w] generated by the set
{fm(z), w̄s, ws}. Then the polynomials

fm+2s−3(z + w)−
(

m+ 2s− 3

m− 1, s− 1, s− 1

)
(w̄w)s−1fm−1(z)

(
fz(z)fz̄(z)

)s−1

and fm+2s−2(z +w) belong to J . Here fz and fz̄ denote the partial deriva-

tives ∂f
∂z and ∂f

∂z̄ , respectively.

Proof. There are polynomials g1 and g2 in C[z̄, w̄, z, w] such that

f(z + w) = f(z) + w̄g1(z, w) + wg2(z, w) for all z, w ∈ C.
Define F (z, w) = w̄g1(z, w) + wg2(z, w). The binomial expansion gives

fm+2s−3(z + w) =
m+2s−3∑
j=0

(
m+ 2s− 3

j,m+ 2s− 3− j

)
f j(z)Fm+2s−3−j(z, w).

If j ≤ m − 2, then m + 2s − 3 − j ≥ 2s − 1, Proposition 3.1 shows that
Fm+2s−3−j(z, w) belongs to J . On the other hand, if j ≥ m, then f j(z)
belongs to J . Consequently, the difference

fm+2s−3(z + w)−
(
m+ 2s− 3

m− 1, 2s− 2

)
fm−1(z)F 2s−2(z, w)

belongs to J . By Proposition 3.1 again,

F 2s−2(z, w)−
(

2s− 2

s− 1, s− 1

)
(w̄w)s−1

(
g1(z, 0)g2(z, 0)

)s−1

belongs to J . Since g1(z, 0) = fz̄(z) and g2(z, 0) = fz(z), the conclusion of
the proposition follows. �

We are now in a position to prove the main result in this section.
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Theorem 3.3. Let p be a polynomial over C and let A and Q be commuting
operators in L(H). Suppose there are positive integers m, s ≥ 1 such that
pm(A) = 0 and Qs = 0. Then the following statements hold.

(a) pm+2s−2(A+Q) = 0.
(b) Define r(z) = pm−1(z)ps−1

z (z)ps−1
z̄ (z). Then pm+2s−3(A+Q) 6= 0 if and

only if (Q∗)s−1r(A)Qs−1 6= 0.

Proof. Let J be the ideal in C[z̄, w̄, z, w] generated by {pm(z), w̄s, ws}.
Proposition 3.2 shows that both polynomials q1(z, w) = pm+2s−2(z + w)
and

q2(z, w) = pm+2s−3(z + w)−
(

m+ 2s− 3

m− 1, s− 1, s− 1

)
w̄s−1r(z)ws−1

belong to J . Since pm(A) = 0 and (Qs)∗ = Qs = 0, it follows from Propo-
sition 2.7 that f(A,Q) = 0 for any polynomial f(z, w) in J . In particular,
q1(A,Q) = 0 and q2(A,Q) = 0. By Lemmas 2.1 and 2.3 we infer that
q1(A,Q) = pm+2s−2(A+Q) and

q2(A,Q) = pm+2s−3(A+Q)−
(

m+ 2s− 3

m− 1, s− 1, s− 1

)
(Q∗)s−1r(A)Qs−1.

The conclusions of the theorem then follow. �

We now apply Theorem 3.3 to obtain several results on nilpotent pertur-
bations of m-selfadjoint and m-isometric operators.

3.1. Perturbations of m-selfadjoint operators. Recall that an operator
T on H is m-selfadjoint if pm(T ) = 0, where p(z) = z̄− z for z ∈ C. We say
that T is a strict m-selfadjoint operator if pm−1(T ) 6= 0.

Since pz = −1 and pz̄ = 1, the polynomial r(z) in Theorem 3.3 is

r(z) = (−1)s−1pm−1(z).

We then obtain

Theorem 3.4. Let A be m-selfadjoint and Q be nilpotent with Qs = 0
for some integer s ≥ 1. Suppose that A and Q commute. Then A + Q is
(m+2s−1)-selfadjoint. Furthermore, A+Q is strictly (m+2s−2)-selfadjoint
if and only if (Q∗)s−1pm−1(A)Qs−1 6= 0.

In the case A is selfadjoint (that is, m = 1), we have

(Q∗)s−1pm−1(A)Qs−1 = (Q∗)s−1Qs−1.

This operator is not zero if and only if Qs−1 6= 0. Consequently, we recover
Theorem A as a corollary.

Corollary 3.5. Let A be a selfadjoint operator and Q be a nilpotent operator
that commutes with A. Then A + Q is strictly (2s − 1)-selfadjoint if and
only if Q is nilpotent of order s.
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3.2. Perturbations of m-isometric operators. An operator T on H is
m-isometric if qm(T ) = 0, where q(z) = z̄z − 1. We say that T is a strict
m-isometric operator if qm−1(T ) 6= 0.

Since qz = z̄ and qz̄ = z, the polynomial r(z) in Theorem 3.3 is

r(z) = qm−1(z)qs−1
z (z)qs−1

z̄ (z) = z̄s−1(z̄z − 1)m−1zs−1.

As an application of Theorem 3.3, we have

Theorem 3.6. Let A be m-isometric and Q be nilpotent with Qs = 0 for
some integer s ≥ 1. Suppose that A and Q commute. Then A + Q is an
(m+ 2s−2)-isometry. Furthermore, A+Q is a strict (m+ 2s−2)-isometry
if and only if (Q∗)s−1r(A)Qs−1 6= 0.

In the case A is isometric (that is, m = 1), we have A∗A = I and hence,
r(A) = (A∗)s−1As−1 = I. Consequently, (Q∗)s−1r(A)Qs−1 = (Q∗)s−1Qs−1.
This operator is not zero if and only if Qs−1 6= 0. We then recover Theorem
B as a corollary.

Corollary 3.7. Let A be an isometry and Q be a nilpotent operator that
commutes with A. Then A + Q is strictly (2s − 1)-isometric if and only if
Q is nilpotent of order s.

Remark 3.8. It has been brought to our attention recently that the results
in this subsection have been obtained by several researchers independently.
In fact, Gu and Stankus [13] proved Theorem 3.6 (and Theorem 3.4 as well)
using a similar but less general approach than ours here. In [7], Bermúdez
et al. obtained Theorem 3.6 via a different method which makes use of
arithmetic progressions. In addition, they provided examples which show
that Theorem 3.6 no longer holds in the Banach space setting. Recently,
Theorem 3.6 has also been used in the study of m-isometric elementary
operators in [12].

3.3. Perturbations of m-isometric powers. We now describe an ap-
plication that involves operators whose powers are m-isometric. Fix an
integer ` ≥ 1. Suppose A is a bounded operator on H such that A` is m-
isometric. There exist examples of such operators A for which A is not itself
m-isometric. Theorem 3.3 offers a result concerning perturbations of A by
a nilpotent operator.

Theorem 3.9. Let Q be an operator commuting with A and Qs = 0 for
some integer s ≥ 1. Then (A+Q)` is (m+ 2s− 2)-isometric.

Proof. Let h(z) = z̄`z` − 1. Then hm(A) = 0. Theorem 3.3 shows that
hm+2s−2(A+Q) = 0, which means that (A+Q)` is (m+2s−2)-isometric. �

It is not clear whether one can find a combinatorial proof of Theorem 3.9.
We leave this for the interested reader.

Acknowledgements. The author wishes to thank Akaki Tikaradze for
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