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ANALOGUES OF FINITE BLASCHKE PRODUCTS AS

INNER FUNCTIONS

CHRISTOPHER FELDER AND TRIEU LE

Abstract. We give a generalization of the notion of finite Blaschke
products from the perspective of generalized inner functions in vari-
ous reproducing kernel Hilbert spaces. Further, we study precisely how
these functions relate to so-called Shapiro–Shields functions and shift-
invariant subspaces generated by polynomials.

1. Introduction and Background

Let H2 denote the classical Hardy–Hilbert space on the unit disk D, the
space of analytic functions on D that have square-summable Maclaurin coef-
ficients. In 1949, Arne Beurling [8] proved several seminal results regarding
function and operator theory in H2. One result showed that every function
in H2 may be factored as θU , where |θ| = 1 almost everywhere on the unit

circle T (coined as inner), and U is such that log |U(0)| =
∫ 2π
0 log |U(eiθ)|

(coined outer). This result allowed him to characterize shift-invariant sub-
spaces of H2; those subspaces M ⊆ H2 with the property that SM ⊆ M ,
where S : H2 → H2 is given by f(z) 7→ zf(z). Namely, these subspaces
must equal θH2, for some inner function θ.

The simplest H2-inner functions are called finite Blaschke products, given
for β1, . . . , βn ∈ D as

B(z) = λ

n∏

j=1

z − βj

1− βjz
,

where λ ∈ T. One may check that |B| = 1 on T, and so B is in fact inner.
We recall that Blaschke factors, given when n = 1 in B above, define the
automorphisms of D, up to a unimodular constant. See the recent book [18]
for a nice treatment of finite Blaschke products and their applications.

Let us start with an observation. Applying a partial fractions decompo-
sition, and assuming simple zeros different from the origin, one can check
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that any finite Blaschke product can be expressed as

B(z) = c0 −

n∑

j=1

cj

1− βjz

for some constants c0, c1, . . . , cn ∈ C. Further, each term in the sum can be
seen as a scalar multiple of the Szegő kernel, sλ(z) = 1/(1 − λz), λ ∈ D.
Noting that s0(z) = 1, we have

B(z) = c0s0(z) −

n∑

j=1

cjsβj
(z).

Further, the Szegő kernel is the reproducing kernel forH2. Namely, for every
λ ∈ D and every f ∈ H2, 〈f, sλ〉H2 = f(λ). Consequently, every Blaschke
product with simple zeros can be seen as a linear combination of reproducing
kernels. If B also has repeated zeros, certain derivatives of kernel functions
will also be needed in the linear combination. Nonetheless, it turns out
this observation actually characterizes finite Blaschke products among inner
functions: an H2-inner function f is a finite Blaschke product if and only if
f is a linear combination of reproducing kernels and their derivatives.

We will prove this result in a more general setting in Theorem 4.6. Toward
this generalization, we note that the Hardy space H2 is just one example
of a function space where point evaluation can be recovered via its inner
product. Spaces of this type are known as reproducing kernel Hilbert spaces
(RKHS).

The aim of this paper is to show, working in a general class of RKHSs, and
using a generalized definition of inner, that there are analogous inner func-
tions characterized as certain linear combinations of reproducing kernels. We
call functions characterized in this way analogues of finite Blaschke products.
Further, we show precisely how these functions arise as certain Gram deter-
minants, or as certain projections onto shift-invariant subspaces generated
by polynomials.

Throughout this paper, H will denote a reproducing kernel Hilbert space
of analytic functions on some planar domain Ω ⊂ C with 0 ∈ Ω. Formally, H
is a complete inner product space comprised of functions mapping Ω → C

that has the reproducing kernel property, i.e. for each w ∈ Ω, the linear
functional given by f 7→ f(w) is bounded. Equivalently, by the Riesz rep-
resentation theorem, for each w ∈ Ω, there exists a unique function kw ∈ H
such that for all f ∈ H, 〈f, kw〉 = f(w). We also ask that H has the following
properties:

(i) The forward shift operator S, given by f(z) 7→ zf(z), is bounded
on H.

(ii) The analytic polynomials P form a dense subset of H.

The following notation will be used throughout the paper:

• When V ⊆ H is a closed subspace, we will use ΠV : H → V to
denote the orthogonal projection from H onto V .
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• When X ⊆ H is a subset, we will use clH(X) to denote the closure
of X in H.

• For f ∈ H, we will use the standard notation ord0(f) to denote the
order of the zero of f at the origin.

• For f ∈ H, we will let Z(f) be the multiset containing the zeros f ,
i.e. Z(f) is the zero set of f , each zero listed with its multiplicity.

The primary examples of such spaces we keep in mind are those where
Ω = D andH is a subset of the analytic functions on D. A well-known family
of such spaces are the so-called weighted Hardy spaces. Given a sequence
of positive numbers w = {wk}k≥0, with limk→∞wk/wk+1 = 1, define the
weighted Hardy space as

H2
w :=






f(z) =

∑

k≥0

akz
k ∈ Hol(D) :

∑

k≥0

wk|ak|
2 < ∞






.

For f(z) =
∑

k≥0 akz
k and g(z) =

∑

k≥0 bkz
k in H2

w, their inner product in

H2
w is given by

〈f, g〉w =
∑

k≥0

wkakbk.

One may also verify (e.g. see [14, Section 2.1]) that these spaces are repro-
ducing kernel Hilbert spaces with reproducing kernel

kwβ (z) =
∑

n≥0

1

wk

(
β̄z

)n

for, a priori, β, z ∈ D. It turns out that under appropriate conditions on
the weight sequence, the above kernel function extends to points on the unit
circle as well.

If we let α ∈ R and w = {(k+1)α}k≥0, we recover the so-called Dirichlet-
type space Dα. Of these spaces, α = −1 coincides with the Bergman space
A2, α = 0 corresponds to the Hardy space H2, and α = 1 gives the Dirichlet
space D.

2. Inner functions

Although analogous definitions of Beurling’s inner and outer functions in
spaces other than H2 have been made, the objects they describe are not as
well understood. We give these definitions here.

Definition 2.1 (Cyclic function). Say that f ∈ H is cyclic (for S in H) if

[f ] := clH

(

span{zkf : k ≥ 0}
)

is equal to all of H.

Note that [f ] is always a shift-invariant subspace, i.e. S[f ] ⊆ [f ], and is
the smallest such containing f . The space [f ] is read “bracket f” or “the
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(shift-invariant) subspace generated by f .” In H2, it is well known that
cyclic functions are precisely the outer functions.

Recall that a bounded analytic function f on D is called an inner function
if |f(ζ)| = 1 for a.e. |ζ| = 1. Inner functions play an important role in func-
tion theory and operator theory on Hardy spaces. See [9] for a recent survey
of classical and new results linking inner functions and operator theory. Be-
sides the above definition, inner functions can also be characterized via the
inner product in H2. Indeed, it can be checked that a function f ∈ H2 is
inner if and only if ‖f‖H2 = 1 and 〈zmf, f〉 = 0 for all integers m ≥ 1.

In the case of the Dirichlet space D, Richter [26] showed that any shift-
invariant subspace is also generated by a single function that satisfies the
same orthogonality properties above. Aleman, Richter and Sundberg [1]
proved an analogue of Beurling’s Theorem for the Bergman space A2: any
invariant subspaceM of A2 is generated by the so-called wandering subspace
M⊖ zM. Any unit norm function in this subspace satisfies ‖f‖A2 = 1 and
zmf ⊥ f for all m ≥ 1 and is called an A2-inner function. Prior to this
work, Hedenmalm [20] showed the existence of so-called contractive zero-
divisors, which play the role of Blaschke products in the Bergman space.
In certain cases, explicit formulas for these functions have been given, e.g.
see MacGregor and Stessin [23] and Hansbo [19]. These results are phrased
in the language of extremal functions. Although our work here will not
explicitly cover this aspect, it is well known that (normalized) inner functions
are solutions to the extremal problem

sup
{

Re(g(d)(0)) : g ∈ M, ‖g‖ ≤ 1
}

,

where M is a shift-invariant subspace and d is the smallest integer so that
zd /∈ M⊥. See [15, Chapters 5 and 9] and [21, Chapter 3] for a detailed
discussion of inner functions on Bergman spaces Ap. Researchers have thus
defined the notion of inner functions in more general reproducing kernel
Hilbert spaces.

Definition 2.2 (Inner function). Say that f ∈ H \ {0} is H-inner if, for all
k ≥ 1,

〈f, zkf〉 = 0.

This definition was originally considered in [1] for the Bergman space. The
authors there also require an inner function to be of unit norm, as well as
other authors. In a recent paper, Cheng, Mashreghi and Ross [11] introduced
and studied the notion of inner functions with respect to a bounded linear
operator. However, they do not require unit norm, which turns out more
convenient in several situations. We will follow their approach in this work.
Although no function-theoretic description of inner functions is known in
general reproducing Hilbert spaces, there are known constructions of certain
types of inner functions. We will introduce one of these constructions at the
end of Section 3.
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Bénéteau et al. [7, 6] studied inner functions and examined the con-
nections between them and optimal polynomial approximants on weighted
Hardy spaces. They also described a method to construct inner functions
that are analogues of finite Blaschke products with simple zeroes. In [27],
Seco discussed inner functions on Dirichlet-type spaces and characterized
such functions as those whose norm and multiplier norm are equal. In [22],
the second author studied inner functions on weighted Hardy spaces and
obtained generalizations of several results from [6, 27]. In a recent paper [5],
Bénéteau et al. investigated inner functions on general simply connected
domains in the complex plane. We would like to mention that operator-
valued inner functions on vector-valued weighted Hardy spaces have also
been defined and studied [2, 3, 25]. In particular, Ball and Bolotnikov [3]
obtained a realization of inner functions on vector-valued weighted Hardy
spaces. In [4], they investigated the expansive multiplier property of inner
functions. They obtained a sufficient condition on the weight sequences for
which any inner function has the expansive multiplier property. Recently,
Cheng, Mashreghi, and Ross considered inner vectors for Toeplitz operators
[12] and for the shift operator in the Banach space setting of ℓpA [10].

We point out here that if f is inner, then 〈pf, f〉 = p(0)‖f‖2 for all p ∈ P,
and equivalently, up to a constant, f is the reproducing kernel at the origin
for [f ] (we ask for 0 ∈ Ω for this kernel to make sense). The converse is also
true, and we record this result below.

Proposition 2.3. Let f ∈ H and suppose d = ord0(f). Then f is H-inner

if and only if f is a non-zero constant multiple of Π[f ](k
(d)
0 ). Moreover,

Π[f ](k
(d)
0 ) is always an H-inner function.

Proof. Consider the forward implication. For all analytic polynomials p, we
have

〈

pf, f (d)(0)f −Π[f ](k
(d)
0 )

〉

= p(0)f (d)(0)−

d∑

k=0

(
d

k

)

p(k)(0)f (d−k)(0)

= p(0)f (d)(0)− p(0)f (d)(0) = 0.

Thus, f (d)(0)f = Π[f ](k
(df )
0 ).

Conversely, suppose f = cΠ[f ](k
(d)
0 ) for some non-zero constant c. Then,

for k ≥ 1, we have

〈zkf, f〉 = 〈zkf, cΠ[f ](k
(d)
0 )〉 = c〈zkf, k

(d)
0 〉 = 0

since zkf(z) vanishes at the origin with order at least d + 1. Thus, f is

H-inner. Further, this shows that Π[f ](k
(d)
0 ) is alway H-inner. �

In [11], the authors conducted a robust exploration of inner functions. It
was shown there [11, Proposition 3.1] that every inner function is given by
Π[Sf ]⊥(f). We show here that, up to a constant, this function is the same
as a projection of a kernel onto a shift invariant subspace.
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Proposition 2.4. Let f ∈ H and let d = ord0(f). Put

J = f −Π[Sf ](f) = Π[Sf ]⊥(f)

and v = Π[f ](k
(d)
0 ). Then we have

v =
v(d)(0)

f (d)(0)
J.

Proof. Note that any element of [Sf ] vanishes at the origin with multiplic-

ities at least d + 1. It follows that k
(d)
0 ⊥ [Sf ] and hence v ⊥ [Sf ], which

implies that v ∈ [f ]⊖ [Sf ]. On the other hand, we also have J ∈ [f ]⊖ [Sf ].
Since [f ] ⊖ [Sf ] is a one dimensional space, we conclude that v = λJ for
some constant λ. To find the constant λ, let us compute the inner product

J (d)(0) = 〈J, k
(d)
0 〉 = 〈f, k

(d)
0 〉 − 〈Π[Sf ](f), k

(d)
0 〉 = f (d)(0)

because k
(d)
0 ⊥ [Sf ]. It then follows that

λ =
〈v, k

(d)
0 〉

〈J, k
(d)
0 〉

=
v(d)(0)

f (d)(0)

and the conclusion follows. �

In [28], Shapiro and Shields used Gram determinants to produce linear
combinations of reproducing kernels that are Dirichlet-inner functions. This
was then generalized by Bénéteau et al. in [6], and further by the second
author [22] to weighted Hardy spaces over the unit disk. Surprisingly, as we
will see later, even in general RKHSs in which monomials are not necessarily
orthogonal, such a construction (Definition 3.9) is the only way to produce
inner functions that are linear combinations of kernels (see Theorem 4.6).

2.1. Gram Determinants. Let v1, . . . , vn be vectors in an inner product
space. We will denote the associated Gram matrix by

G(v1, . . . , vn) = (〈vi, vj〉)1≤i,j≤n =






〈v1, v1〉 . . . 〈v1, vn〉
...

. . .
...

〈vn, v1〉 . . . 〈vn, vn〉




 .

The Gram determinant is then det(G(v1, . . . , vn)). Note that for any x =
(x1, . . . , xn) ∈ C

n,

〈G(v1, . . . , vn)x, x〉 =
〈 n∑

i=1

xivi,

n∑

j=1

xjvj

〉

≥ 0.

Hence, every Gram matrix is positive semidefinite. Moreover, the vectors
{v1, . . . vn} are linearly independent if and only if G(v1, . . . , vn) has full rank,
and equivalently, if and only if det(G(v1, . . . , vn)) > 0.
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Similarly, for any vector u, we define

D(u; v1, . . . , vn) := det








u 〈u, v1〉 . . . 〈u, vn〉
v1 〈v1, v1〉 . . . 〈v1, vn〉
...

...
. . .

...
vn 〈vn, v1〉 . . . 〈vn, vn〉







.

Note that D(u; v1, . . . , vn) is a linear combination of u, v1, . . . , vn.
For our purposes, it is critical to note that D(u; v1, . . . , vn) is orthogonal

to each vj , 1 ≤ j ≤ n. When δ := det(G(v1, . . . , vn)) > 0, we have that

u− δ−1D(u; v1, . . . , vn)

is a linear combination of the vectors {v1, . . . , vn}, since the coefficient of
u in D(u; v1, . . . , vn) is δ. Consequently, we have the following well-known
lemma.

Lemma 2.5. Let v1, . . . , vn be linearly independent vectors in an inner prod-
uct space V. Then for any u ∈ V,

D(u; v1, . . . , vn)

det(G(v1, . . . , vn))

is the orthogonal projection of u onto (span{v1, . . . , vn})
⊥.

We note here that for any vectors u, v1, . . . , vn with n ≥ 2, the coefficient
of vn in D(u; v1, . . . , vn) is exactly −

〈
D(u; v1, . . . , vn−1), vn

〉
.

For a set of distinct points β1, . . . , βn ⊂ D, the authors in [6] coined the
Shapiro–Shields function as the normalization of D(1; kβ1

, . . . , kβn
), where

the inner product is taken in some H2
w. This follows the construction of

Shapiro and Shields in [28]. They also showed that this function is always
inner.

3. Reproducible Points

It is important to note that the spaces in which we are working are RKHSs
on Ω but may also have kernels that extend to points outside of Ω. For
example, the linear functional of point evaluation extends boundedly to the
unit circle in the Dirichlet-type spaces when α > 1 (more on this below in
Example 3.4).

It is our aim to uncover the relationship between H-inner functions, linear
combinations of reproducing kernels, generalized Shapiro–Shields functions,
and projections of kernels onto shift-invariant subspaces generated by poly-
nomials. If β /∈ Ω, but point evaluation is bounded at β, we can still make
sense of, for example, the function D(u; kβ) when u ∈ H. We introduce here
a framework to handle such points.

Definition 3.1 (Reproducible point/order). Say β ∈ C is a reproducible
point of order m in H if the linear functional

p 7→ p(m)(β)
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extends from P to a bounded linear functional on H.

It is evident that any β ∈ Ω is reproducible of order m for all m ≥ 1.
On the other hand, points outside of Ω may only be reproducible up to a
certain finite order. First we establish a simple fact about the orders of a
reproducible point.

Lemma 3.2. If β is reproducible of order m, then it is also reproducible of
all orders 0 ≤ j ≤ m.

Proof. By assumption, there exists a constant Cm > 0 such that for all
polynomials q, one has

|q(m)(β)| ≤ Cm‖q‖.

For any 0 ≤ j ≤ m, since multiplication by z is bounded, there exists a
constant Bj > 0 such that ‖(z − α)m−jp‖ ≤ Bj‖p‖ for all polynomials p.
On the other hand,

(
m

j

)

p(j)(β) =
dm

dzm
(
(z − β)m−jp(z)

)
∣
∣
∣
z=β

.

It then follows that

|p(j)(β)| ≤
CmBj
(m
j

) ‖p‖

Therefore the map p 7→ p(j)(β) extends to a bounded linear functional on
H. �

Definition 3.3. Let β ∈ C be reproducible of some order. Define the
reproducible order of β (in H) as

ro(β) := sup
m

{p 7→ p(m)(β) extends as a bounded functional from P to H}.

Example 3.4 (Dα, α > 1). Consider the Dirichlet-type spaces Dα. Recall

that monomials have norm ‖zn‖α = (n+ 1)α/2 and that for |β| < 1,

kβ(z) =
∑

n≥0

β̄n

(n+ 1)α/2
zn

(n + 1)α/2
=

∑

n≥0

(β̄z)n

(n+ 1)α
.

For α > 1, it is evident that kβ is a function in Dα even for |β| = 1, which
implies that all points on the unit circle are reproducible points.

In addition, it is well known that for |β| < 1, the linear functional given
by f 7→ f (m)(β) has a reproducing kernel given by

k
(m)
β (z) =

∂m

∂β̄m
kβ(z) =

∑

n≥m

n(n− 1) · · · (n−m+ 1)

(n+ 1)α
β̄n−m zn.

The above series expansion shows that k
(m)
β belongs to Dα for some (and

hence all) |β| = 1 if and only if α > 2m + 1. As a consequence, all points
on the unit circle are reproducible of order r in Dα, where r is the largest
natural number strictly less than α−1

2 .
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Example 3.5 (Local Dirichlet spaces). Let ζ ∈ T and let δζ denote the
Dirac measure at ζ. One may form the local Dirichlet space at ζ

Dδζ :=

{

f ∈ Hol(D) :

∫

D

|f ′(z)|2
1− |z|2

|z − ζ|2
dA(z) < ∞

}

where dA is normalized area measure on D. It is well known that the poly-
nomials are dense in Dδζ and that it is a reproducing kernel Hilbert space
on D. Additionally, Dδζ has the property that point evaluation is bounded
at ζ ∈ T but not at any other point on T (see [16, Theorems 7.2.1 and 8.1.2
(ii)]).

Example 3.6 (L Regions). Let ∆ be an infinite sequence of disjoint closed
discs whose centers lie on the positive real axis and decrease monotonically
to zero. By deleting ∆ from D, one obtains an infinitely connected region,
known as an L region (see [29, 24]). The origin is a boundary point of the
region, and in [24] it was shown that for certain reproducing kernel Hilbert
spaces of analytic functions on the region, where the polynomials are dense,
point evaluation is bounded at the origin, dependent on the rate of decay
of the radii of the disks in ∆. Uniformly perturbing the disks of ∆ to the
right by a fixed positive amount ǫ > 0, we obtain an infinitely connected
L like region containing zero, where the results describing bounded point
evaluation at the origin hold then for the boundary point ǫ. We communicate
this example to highlight that we need no hypotheses on the connectedness
of Ω and that there is interesting reproducible behavior in this case.

The previous examples show that spaces with bounded point evaluation
can behave very differently, and point evaluation can extend outside of the
domain Ω in various ways.

As we will see, Shapiro–Shields functions can be viewed as projections of
a kernel at zero onto certain shift invariant subspaces generated by polyno-
mials. Consequently, we would like to connect reproducibility with the zeros
of a polynomial.

Definition 3.7 (Reproducible zeros). Let p ∈ P. The multiset of repro-
ducible zeros of p (in H) is

R(p) := {β ∈ C : p(m)(β) = 0 and β is reproducible of order m in H},

listed with multiplicity.

Namely, by multiset and “listed with multiplicity,” we require that if
p has a zero of order m at β, then β appears in R(p) with multiplicity
min{ord(β),m}. For example, if the point 1 is reproducible of order 2, but
not of order 3 (i.e. ro(1) = 2), and the point πi is not reproducible inH, then
for p(z) = z(z−1)3(z−πi), we have R(p) = {0, 1, 1}. Although the multiset
of reproducible zeros of a polynomial depends on H, for convenience, we
have not included H in our notation. However, all use of this notation will
be clear.
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We would also like to study the multisets of reproducible points that
coincide with reproducible zero multisets of polynomials. The following
definition allows us to do that.

Definition 3.8 (Reproducible multiset). A finite multiset Z is a repro-
ducible multiset if it can be written as

Z =
{

0 = β0, . . . , β0
︸ ︷︷ ︸

m0 times

, β1, . . . , β1
︸ ︷︷ ︸

m1 times

, . . . , βs, . . . , βs
︸ ︷︷ ︸

ms times

}

where each βj is a distinct reproducible point, β0 = 0 appears with multi-
plicity m0 (possibly zero), and for each 1 ≤ j ≤ s, βj appears with at least
multiplicity 1, but no multiplicity higher than its reproducible order, i.e.
1 ≤ mj ≤ ro(βj).

Note that for any polynomial p, R(p) is a reproducible multiset. We can
now make a full generalization of the Shapiro–Shields function.

Definition 3.9 (Shapiro–Shields function). Let Z be a reproducible multi-
set and put

Z =
{

0 = β0, . . . , β0
︸ ︷︷ ︸

m0 times

, β1, . . . , β1
︸ ︷︷ ︸

m1 times

, . . . , βs, . . . , βs
︸ ︷︷ ︸

ms times

}

.

The Shapiro–Shields function associated to Z is then defined as

§Z = D(k
(m0)
0 ; k

(m0−1)
0 , . . . , k0, k

(m1−1)
β1

, . . . , kβ1
, k

(ms−1)
βs

, . . . , kβs
).

It is imperative to note that §Z vanishes at each βj with multiplicity mj

when 0 ≤ j ≤ s. Also, since P is contained in H, it can be shown that repro-
ducing kernels are linearly independent. Indeed, for any linear combination

of kernel functions f =
∑

m,n cmnk
(m)
βn

in which not all coefficients cmn are

zero, one can always find a polynomial p such that

〈p, f〉 = 〈p,
∑

m,n

cmnk
(m)
βn

〉 =
∑

m,n

cmnp
(m)(βn) 6= 0.

This implies that f is not zero. In light of Lemma 2.5, §Z is a nonzero

constant multiple of the projection of k
(m0)
0 onto the orthogonal complement

of

span{k
(m0−1)
0 , . . . , k0, k

(m1−1)
β1

, . . . , kβ1
, k

(ms−1)
βs

, . . . , kβs
}.

4. Analogues of Finite Blaschke products

In this section, we will show that for p, q ∈ P, [p] = [q] if and only ifR(p) =
R(q). We will then unify the perspective of Shapiro–Shields functions and
projections of kernels at the origin onto shift-invariant subspaces generated
by polynomials, giving analogues of finite Blaschke products.
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4.1. Shift Invariant Subspaces. Note that k
(d)
0 − Π[p](k

(d)
0 ) ⊥ [p], so in

order to understand Π[p](k
(d)
0 ), it is useful to have a characterization of [p]⊥.

We do this first when all the zeros of p are reproducible.

Proposition 4.1. Let f ∈ P and suppose that

R(f) = Z(f) =
{

β1, . . . , β1
︸ ︷︷ ︸

r1 times

, β2, . . . , β2
︸ ︷︷ ︸

r2 times

, . . . , βn, . . . , βn
︸ ︷︷ ︸

rn times

}

.

Then

[f ] =
(

span
{
k
(ℓ)
βj

: 0 ≤ ℓ ≤ rj − 1, 1 ≤ j ≤ n
})⊥

.

Proof. Let M denote the right hand-side. Then M consists of all functions
h in H for which h(ℓ)(βj) = 0 for all 0 ≤ ℓ ≤ rj−1 and 1 ≤ j ≤ n. Note that
for each p ∈ P, the polynomial fp belongs to M. It follows that fP ⊆ M
and hence [f ] ⊆ M, which implies M⊥ ⊆ [f ]⊥. On the other hand, since
kernel functions are linearly independent (due to the fact that polynomials
belong to H), the space M⊥ is of dimension d = r1 + · · ·+ rn. To prove the
equality, we only need to show that the dimension of [f ]⊥ is at most d.

We have fP+Pd−1 = P, where Pd−1 denotes the space of all polynomials
of degree at most d − 1. Taking closure and using the fact that the sum of
a closed subspace with a finite dimensional subspace is closed, we have

H = clH(P) = clH(fP + Pd−1) = [f ] + Pd−1.

As a result, the dimension of [f ]⊥ is at most that of Pd−1, which is d.
Therefore, we have M⊥ = [f ]⊥, which implies [f ] = M as required. �

This proposition generalizes [11, Lemma 4.7] where the authors require
the zeros of the polynomial to be contained in Ω and additional properties
are imposed on the space.

We will also show that if f has zeros that are not reproducible, this does
not change the structure of [f ]. First though, we need a proposition.

Proposition 4.2. Let β be a complex number and m be a non-negative
integer. Then the following statements hold.

(a) β is not a reproducible point if and only if (z − β) is cyclic.
(b) β is a reproducible point with ro(β) ≤ m if and only if

clH((z − β)m+2P) = clH((z − β)m+1P).

Proof. For any integer k ≥ 0, define Xk = (z − β)kP. It is clear that
Xk+1 ⊂ Xk, which shows that the identity clH(Xk+1) = clH(Xk) holds if and
only if Xk+1 is dense in Xk with respect to the norm induced from H.
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On the other hand, define Λk : P → C by Λk(p) = p(k)(β) for p ∈ P.
Observe that

ker(Λk|Xk
) =

{

(z − β)kq(z) : q ∈ P such that Λk

(
(z − β)kq(z)

)
= 0

}

=
{

(z − β)kq(z) : q ∈ P such that q(β) = 0
}

= Xk+1.

It follows from a well-known result in functional analysis (e.g., see Proposi-
tion 5.2 and Theorem 5.3 in [13, Chapter III]) that Λk|Xk

(being a nonzero
functional) is unbounded if and only if Xk+1 = ker(Λ|Xk

) is dense in Xk.
Therefore, we have just showed that for any k ≥ 0, clH(Xk+1) = clH(Xk)

if and only if the linear function Λk|Xk
is unbounded.

(a) Since X0 = P and X1 = (z− β)P, the function (z − β) is cyclic if and
only if clH(X1) = clH(X0), which, from the argument above, is equivalent
to the fact that Λ0|X0

is unbounded. Since Λ0(h) = h(β) for all h ∈ P, the
unboundedness of Λ0 means exactly that β is not a reproducible point.

(b) Suppose first clH(Xm+2) = clH(Xm+1). Then the linear functional
Λm+1 is unbounded on Xm+1, hence, unbounded on P. This implies that β
is not reproducible of order m+ 1. That is, ro(β) ≤ m.

Let us now prove the converse. Suppose that ro(β) ≤ m. To simplify the
notation, define n = ro(β). Note that for each 0 ≤ k ≤ n, the linear func-
tional Λk is bounded but Λn+1 is unbounded on P. We show that actually
Λn+1|Xn+1

is unbounded, which then implies that clH(Xn+2) = clH(Xn+1).
Suppose, for the purpose of obtaining a contradiction, that Λn+1|Xn+1

is
bounded. For any h ∈ P, we write

h =
∑

0≤j≤n

h(j)(β)

j!
(z − β)j + h̃,

where h̃ ∈ Xn+1. Then

Λn+1(h) = Λn+1|Xn+1
(h̃)

and by triangle inequality,

‖h̃‖ =
∥
∥
∥h−

∑

0≤j≤n

h(j)(β)

j!
(z − β)j

∥
∥
∥ ≤ ‖h‖ +

∑

0≤j≤n

|h(j)(β)|

j!
‖(z − β)j‖

≤ ‖h‖+
∑

0≤j≤n

‖Λj‖

j!
‖(z − β)j‖ · ‖h‖.

Therefore,

|Λn+1(h)| = ‖Λn+1|Xn+1
(h̃)‖ ≤ ‖Λn+1|Xn+1

‖ · ‖h̃‖ ≤ C‖h‖,

which implies that Λn+1 is bounded on P, a contradiction.
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We have thus showed that clH(Xn+2) = clH(Xn+1). Now,

clH(Xn+3) = clH

(

(z − β) · clH(Xn+2)
)

= clH
(
(z − β) · clH(Xn+1)

)

= clH(Xn+2).

It then follows inductively that clH(Xm+2) = clH(Xm+1). �

The propositions above allows us to provide a complete description of [f ]
whenever f is a polynomial.

Theorem 4.3. Let f ∈ P. For each distinct βj ∈ R(f), let rj be the
multiplicity of βj , i.e.

R(f) =
{
β1, . . . , β1
︸ ︷︷ ︸

r1 times

, β2, . . . , β2
︸ ︷︷ ︸

r2 times

, . . . , βn, . . . , βn
︸ ︷︷ ︸

rn times

}
.

Then

[f ] =




∏

β∈R(f)

(z − β)



 =
(

span
{
kℓβj

: 0 ≤ ℓ ≤ rj − 1, 1 ≤ j ≤ n
})⊥

.

Proof. We first recall the fact that for any multipliers g, h of H, we have

[g · h] = clH(g · [h]).

If β is a non-reproducible zero of f , then by Lemma 4.2, we have [f ] =
[f/(z − β)]. So it suffices to consider only the zeros of f with some repro-
ducible order. Put f(z) = p(z)

∏n
j=1(z−βj)

dj , each βj distinct with dj ≥ rj,
1 ≤ j ≤ n, and with the zeros of p ∈ P being all of the non-reproducible
zeros of f (i.e. p is cyclic). Then [f ] = [f/p]. So without loss of generality,
we may assume that p(z) is identically one. Let h(z) = (z− β1)

d1 . Then by
Lemma 4.2, we have [h] = [(z − β1)

d1 ] = [(z − β1)
r1 ]. Letting g = f/h, we

have

[f ] = [g · h] = clH(g · [h])

= clH
(
g · [(z − β1)

d1 ]
)
= [g · (z − β1)

r1 ]

=

[
f

(z − β1)d1−r1

]

.

Repeating this argument for each βj , 2 ≤ j ≤ n, we have

[f ] =

[

f
∏n

j=1(z − βj)dj−rj

]

=
[ n∏

j=1

(z − βj)
rj
]

=




∏

β∈R(f)

(z − β)



 .

Applying Proposition 4.1 then gives the result. �

This theorem, to which was previously alluded, is a generalization proved
for the H2

w spaces by the first author in [17, Theorem 5.4]. Let us illustrate
this theorem by applying it to an example in various spaces.
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Example 4.4. Let f(z) = z2(z − i
2)(z

2 − 1)2. Then the zero multiset of f
is

Z(f) =
{

0, 0,
i

2
,−1,−1, 1, 1

}

.

Interestingly, by Theorem 4.3, the shift-invariant subspace [f ] depends greatly
on the underlying Hilbert space.

If H = Dα for α ≤ 1 (which includes the Hardy, Bergman and Dirichlet
spaces), then R(f) = {0, 0, i/2} and

[f ] =
(

span
{
k0, k

(1)
0 , ki/2

})⊥
.

IfH = Dα for 1 < α ≤ 3, then by Example 3.4, we have R(f) = {0, 0, i/2,−1, 1},
which then implies that

[f ] =
(

span
{
k0, k

(1)
0 , ki/2, k−1, k1

})⊥
.

If H = Dα for α > 3, then by Example 3.4 again, R(f) = Z(f) and so

[f ] =
(

span
{
k0, k

(1)
0 , ki/2, k−1, k

(1)
−1 , k1, k

(1)
1

})⊥
.

On the other hand, if H = Dδ1 , the local Dirichlet space at 1, then by
Example 3.5, we have R(f) = {0, 0, i/2, 1} and hence,

[f ] =
(

span
{
k0, k

(1)
0 , ki/2, k1

})⊥
.

Theorem 4.3 also has an immediate and useful corollary.

Corollary 4.5. Let p, q ∈ P. Then [p] = [q] if and only if R(p) = R(q).

Proof. The backward implication is given directly by Theorem 4.3. So let
[p] = [q] and suppose for contradiction that R(p) 6= R(q). WLOG, there
exists β ∈ R(p) with β /∈ R(q) or β having greater multiplicity in R(p) than
in R(q). In either case, Theorem 4.3 implies there is some n ≥ 0 so that

k
(n)
β ⊥ [p] = [q]. But then 〈p, k

(n)
β 〉 = 〈q, k

(n)
β 〉 = 0, which is a contradiction,

since β /∈ R(q) or β has multiplicity strictly less than n+ 1 in R(q). �

4.2. Inner Functions and Linear Combinations of Kernels. We now
show that each inner function that arises as a certain linear combination
of reproducing kernels can be identified with a shift invariant subspace and
a Shapiro–Shields function. The following theorem generalizes a result of
the second author in [22, Theorem 3.7], proved initially in the H2

w spaces.
The significance of our contribution is that we do not require monomials be
orthogonal and require very little geometric assumption on the underlying
set for which H is an RKHS, providing a very general setting for which
these results hold. When H = H2, this result describes classical Blaschke
products and in general gives our analogues of finite Blaschke products.
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Theorem 4.6. Suppose that

B =

s∑

j=0

mj∑

ℓ=0

cj,ℓ k
(ℓ)
λj

is an H-inner function, with cj,mj
6= 0. Then B is a constant multiple of

Π[f ](k
(d)
0 ) for some d and some polynomial f . Further, B must also be a

Shapiro–Shields function.

The function B here is what we call an analogue of a finite Blaschke
product.

Proof. Take B as above and without loss of generality, assume that ‖B‖ = 1.
Let g ∈ P. Then

g(0) = 〈gB,B〉 =

s∑

j=0

mj∑

ℓ=0

c̄j,ℓ〈gB, k
(ℓ)
λj

〉

=

s∑

j=0

mj∑

ℓ=0

c̄j,ℓ

ℓ∑

m=0

(
ℓ

m

)

g(m)(λj) ·B
(ℓ−m)(λj)

=

s∑

j=0

mj∑

m=0

{ mj∑

ℓ=m

c̄j,ℓ

(
ℓ

m

)

Bℓ−m(λj)
}

g(m)(λj).

It follows that 0 ∈ {λ0, . . . , λs} and for all j, we have

mj∑

m=0

{ mj∑

ℓ=m

c̄j,ℓ

(
ℓ

m

)

B(ℓ−m)(λj)
}

g(m)(λj) =

{

0, if λj 6= 0

g(0), if λj = 0
(4.1)

for all polynomials g. Without loss of generality, we shall always assume
that λ0 = 0. Then for j = 0 and 0 ≤ m ≤ m0, identity (4.1) gives

m0∑

ℓ=m

c̄0,ℓ

(
ℓ

m

)

B(ℓ−m)(0) =

{

1, if m = 0,

0, if m ≥ 1.

Since c0,m0
6= 0, we conclude that either m0 = 0, or m0 ≥ 1 and B(ℓ)(0) = 0

for all 0 ≤ ℓ ≤ m0 − 1. That is, B ⊥ {k
(ℓ)
0 : 0 ≤ ℓ ≤ m0 − 1}.

On the other hand, for j 6= 0 and 0 ≤ m ≤ mj, by identity (4.1),

mj∑

ℓ=m

c̄j,ℓ

(
ℓ

m

)

B(ℓ−m)(λj) = 0.

Since cj,mj
6= 0, it follows that B(ℓ)(λj) = 0 for all 0 ≤ ℓ ≤ mj . That is,

B ⊥ {k
(ℓ)
λj

: 0 ≤ ℓ ≤ mj}. Let M be the subspace spanned by the functions

{
k
(ℓ)
0 : 0 ≤ ℓ ≤ m0 − 1

}
∪
{
k
(ℓ)
λj

: 1 ≤ j ≤ s, 0 ≤ ℓ ≤ mj

}
,
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where the first set is considered to be empty if m0 = 0. Then we have

B = c0,m0
ΠM⊥(k

(m0)
0 ). By Proposition 4.1, M⊥ can be recognized as [f ],

where

f(z) = zm0

s∏

j=1

(z − λj)
mj+1.

As a result, we have shown that B is a projection of k
(d)
0 onto [f ] for some

d and some polynomial f . Further, by Lemma 2.5, we know that B must
also equal the Shapiro-Shield function §Z(f). �

Remark 4.7. Recall that finite Blaschke products are the only rational
inner functions on the Hardy space (e.g. see [18, Section 3.5]). In fact,
since any rational function with poles outside of the closed unit disk can
be written as a linear combination of H2-kernel functions, this also follows
from our Theorem 4.3.

We can also apply our result to investigate rational inner functions on the
Bergman space A2. Suppose λ1, . . . , λs are distinct nonzero points on the
open unit disk and a function of the form

B(z) = c0 +
s∑

j=1

cjkλj
= c0 +

s∑

j=1

cj

(1− λjz)2

is A2-inner. Theorem 4.3 shows that B must vanish at all these points.
Therefore, there exists a polynomial q of degree at most s such that

B(z) =
q(z)

∏s
j=1(z − λj)

∏s
j=1(1− λjz)2

.

On the other hand, it follows from the formula for B as a linear combina-
tion of Bergman kernels, all residues of B at 1/λ1, . . . , 1/λs are zero. As a
consequence, q is uniquely determined (up to a constant) from this condi-
tion. This approach provides a different way to construct analogues of finite
Blaschke products in A2, which does not involve determinants. The above
argument can be adapted for the case of repeated points.

Corollary 4.8. Assume that any function that is analytic and non-vanishing
on a neighborhood of Ω is cyclic in H (this is true for all weighted Hardy
spaces Hw, including the Hardy, Bergman and Dirichlet-type spaces). Let
f be an H-inner function that is analytic on a neighborhood of Ω. Then
f must be a linear combination of kernel functions and hence, f is deter-
mined by Theorem 4.6. In particular, all rational A2-inner functions are
Shaprio–Shields functions.

Proof. Write f(z) = p(z)g(z), where p is a polynomial and g is analytic and
non-vanishing on a neighborhood of Ω. By the definition of inner functions,
we see that f belongs to the orthogonal complement of [Sf ] = [qg], where
q(z) = zp(z). Since g is cyclic, it follows that [Sf ] = [q]. On the other
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hand, Theorem 4.3 shows that [q]⊥ is spanned by a finite collection of kernel
functions. As a result, f is of the form described in Theorem 4.6. �

We can also provide a description of the various ways in which we view
analogues of finite Blaschke products.

Proposition 4.9. Let f ∈ P and write

R(f) =
{

0 = β0, . . . , β0
︸ ︷︷ ︸

r0 times

, β1, . . . , β1
︸ ︷︷ ︸

r1 times

, . . . , βn, . . . , βn
︸ ︷︷ ︸

rn times

}

and let f̃(z) =
∏

β∈R(f)(z − β). Then, up to a constant, the following are

equal:

(i) Π[f ](k
(r0)
0 )

(ii) Π[f̃ ](k
(r0)
0 )

(iii) The Shapiro–Shields function §R(f), associated to the reproducible
zeros of f .

(iv) ϕ := k
(r0)
0 −

∑n
j=0

∑rj−1
ℓ=0 cℓ,jk

(ℓ)
βj

, where the constants cℓ,j are given

by 〈ϕ, k
(ℓ)
βj

〉 = 0 for 0 ≤ ℓ ≤ rj − 1 and 0 ≤ j ≤ n.

Proof. The fact that Π[f ](k
(r0)
0 ) = Π[f̃ ](k

(r0)
0 ) is given by Theorem 4.3. Now,

let M = span
{

k
(ℓ)
βj

: 0 ≤ ℓ ≤ rj − 1, 0 ≤ j ≤ n
}⊥

. Again, by Theorem 4.3,

M = [f ] = [f̃ ]. So by Lemma 2.5, we have §R(f) and Π[f̃ ](k
(r0)
0 ) are equal up

to a constant multiple. Following the discussion after Definition 3.9, we know

that 〈Π[f̃ ](k
(r0)
0 ), k

(ℓ)
βj

〉 = 0 for 0 ≤ ℓ ≤ rj − 1 and 0 ≤ j ≤ n, which is also

required of ϕ. Since dim(M⊥) = r0+ · · ·+rn, this uniquely determines both

Π[f̃ ](k
(r0)
0 ) and ϕ, which then must be equal up to a constant multiple. �

We have included the equivalence (iv) above in order to provide a more
computationally explicit description. Conditions (i), (ii), and (iv) generalize
results of the first author in [17], initially proven for H2

w spaces.

5. Extraneous Zeros

So far, we have seen various descriptions of analogues of finite Blaschke
products, namely those in Proposition 4.9. We also saw that for p, q ∈ P,
R(p) = R(q) if and only if [p] = [q]. However, in certain settings, we will see
that we have a surprising strengthening of this fact. Namely, Corollary 5.4

will show, under certain assumptions, that [p] = [q] if and only if Π[p](k
(d)
0 ) =

Π[q](k
(d)
0 ), for appropriate d.

In a similar fashion, one may ask, for different reproducible multisets A
and B, is it possible that §A is a constant multiple of §B? We start by
pointing out that for a reproducible multiset Z, the function §Z can vanish
off of Z (e.g. see discussion in [11, Section 5]). In this case, we naturally say
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that §Z has an extraneous zero. On the other hand, the following lemma
asserts that any such extraneous zero must be different from the origin.

Lemma 5.1. Let Z be a reproducible multiset with 0 appearing m0 times.
Then §Z vanishes at the origin with order precisely m0. Namely, any extra-
neous zero of a Shapiro–Shields function cannot be at the origin.

Proof. Let p(z) =
∏

β∈Z(z − β). Then the inner product 〈§Z , k
(m0)
0 〉 is a

nonzero constant multiple of
〈
Π[p](k

(m0)
0 ), k

(m0)
0

〉
=

∥
∥Π[p](k

(m0)
0 )

∥
∥2,

which is not zero since, by hypothesis, k
(m0)
0 is not orthogonal to p. As a

result, any extraneous zero of §Z must be different from the origin. �

We will also need the following simple lemma about projection on orthog-
onal complements of sets of vectors.

Lemma 5.2. Let M and N be two sets of vectors in a Hilbert space. Then
for any v, we have Π(M∪N)⊥(v) = ΠM⊥(v) if and only if ΠM⊥(v) ⊥ N .

In the following proposition, we show that shift-invariant subspaces are
characterized uniquely by the projection of a kernel function at the origin,
as long as Shapiro–Shields functions do not possess extraneous reproducible
zeroes.

Proposition 5.3. The following two statements are equivalent.

(a) All Shapiro–Shields functions do not possess extraneous zeros that
are reproducible points.

(b) For any two polynomials p and q, if Π[p](k
(dp)
0 ) = Π[q](k

(dq)
0 ), then

[p] = [q]. Here dp (respectively, dq) denotes the multiplicity of the
zero of p (respectively, q) at the origin.

Proof. Assume that for some multiset Z of reproducible points with β0 =
0 appearing m0 ≥ 0 times and non-zero values β1, . . . , βs each appearing
with multiplicity mj, 1 ≤ mj ≤ ord(βj), the corresponding Shapiro–Shields
function

§Z = D
(
k
(m0)
0 ; k

(m0−1)
0 , . . . , k0, k

(m1−1)
β1

, . . . , kβ1
, k

(ms−1)
βs

, . . . , kβs

)

has an extraneous zero. This means that either §Z has an additional zero
at a reproducible point β /∈ Z or it has a zero of multiplicity at least mj +1
at some β = βj. By Lemma 5.1, β 6= 0. Note that §Z is a non-zero constant

multiple of f = Π[p](k
(m0)
0 ), where

p(z) =

s∏

j=0

(z − βj)
mj .

It follows that f(β) = 0 (so f ⊥ kβ) in the case β /∈ Z, or f (mj)(βj) = 0 (so

f ⊥ k
(mj)
βj

) in the case β = βj for some j. Put q(z) = (z − β)p(z). Then f
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coincides with Π[q](k
(m0)
0 ), by Proposition 4.1 and Lemma 5.2. Since β 6= 0,

we see that dq = dp = m0 and hence Π[p](k
dp
0 ) = Π[q](k

dq
0 ) even though

[p] 6= [q].
Conversely, assume that (a) holds. Let p, q be two polynomials. Using

Theorem 4.3, we write

[p] =
{

k
(ℓ)
βj

: 0 ≤ ℓ < mj , 0 ≤ j ≤ s
}⊥

,

and

[q] =
{

k(ℓ)αj
: 0 ≤ ℓ < nj, 0 ≤ j ≤ t

}⊥
.

We know that Π[p](k
(dp)
0 ) is a non-zero constant multiple of the Shapiro-

Shield function corresponding to a multiset Z1 consisting of βj with multi-

plicity mj for 0 ≤ j ≤ s. In the expansion of Π[p](k
(dq)
0 ), for each 1 ≤ j ≤ s,

the coefficient of k
(mj−1)
βj

is plus or minus of 〈§Z̃1
, k

(mj−1)
βj

〉, where Z̃1 is

obtained from Z1 by removing one appearance of βj . By the hypothe-
sis, this coefficient is nonzero. By the same argument, the coefficient of

any k
(nj−1)
αj in the expansion of Π[q](k

(dq)
0 ) is nonzero. It follows that if

Π[p](k
(dp)
0 ) = Π[q](k

(dq)
0 ), then due to the linear independence of the kernel

functions, each βj equals some αℓ and mj = nℓ, and vice versa. Therefore,
[p] = [q]. �

In general, the projection of a single vector onto a subspace does not
characterize the subspace itself. However, in the setting of Theorem 5.3, we
have a surprising immediately corollary.

Corollary 5.4. Let p, q ∈ P with ord0(p) = dp and ord0(q) = dq. Suppose

that Π[p](k
(dp)
0 ) and Π[q](k

(dq)
0 ) vanish only on R(p) and R(q), respectively.

Then, [p] = [q] if and only if Π[p](k
(dp)
0 ) = Π[q](k

(dq)
0 ).

When Shapiro–Shields functions do possess extraneous zeros, we show
one way in which two different reproducible multisets can generate the same
Shapiro–Shields function.

Theorem 5.5. Let A be a reproducible multiset. Then for any reproducible
multiset B such that A ⊂ B ⊂ Z(§A), the function §B is a constant multiple
of §A.

Proof. It suffices to prove the case B having exactly one element more than
A. Write

A =
{

0 = β0, . . . , β0
︸ ︷︷ ︸

r0 times

, β1, . . . , β1
︸ ︷︷ ︸

r1 times

, . . . , βn, . . . , βn
︸ ︷︷ ︸

rn times

}

,

where r0 ≥ 0 and r1, . . . , rn ≥ 1. Then §A is a nonzero constant multiple of

the projection ΠM⊥(k
(r0)
0 ), where

M = {k
(ℓ)
βj

: 0 ≤ ℓ < rj , 0 ≤ j ≤ n}.
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Let β be the extra element that B has more than A. Note that β 6= 0 by

Lemma 5.1. If β = βs for some 1 ≤ s ≤ n, set u = k
(rs)
βs

. If β 6= βj for

all j, let u = kβ. Since B ⊂ Z(§A), we have that ΠM⊥(k
(r0)
0 ) ⊥ u. As a

consequence,

ΠM⊥(k
(r0)
0 ) = Π(M∪{u})⊥(k

(r0)
0 ).

On the other hand, §B is a nonzero constant multiple of Π(M∪{u})⊥(k
(r0)
0 ).

The conclusion of the theorem then follows. �

We conclude with a few remarks. For f a polynomial, we have described
[f ] in general reproducing kernel Hilbert space of analytic functions. As
we have seen, [f ] depends closely on reproducible points of the underlying
space. It would be interesting to go beyond the polynomial case but it seems
to be a more difficult problem.

Blaschke products (and more generally, inner functions) on the Hardy
space possess a remarkable multiplicative property: if B1 and B2 are finite
Blaschke products, then B1B2 is also a finite Blaschke product. On the other
hand, this property does not hold on other spaces, such as the Bergman
and Dirichlet spaces, which can be seen from direct calculation. While the
multiplicative property of classical Blaschke products trivially follows from
the definition, it is quite curious why such a property even holds true, in light
of Theorem 4.6. In terms of extremal problems, it is somehow remarkable
that the solution to the linear n-point extremal problem is given by the
product of the n individual 1-point problems.

Lastly, we would like to mention that analyticity is not actually needed
to establish the results throughout this paper. Instead, one could make the
weaker assumption that functions in H are simply smooth at the origin.
We have chosen to require analyticity because it is unclear if there are any
(interesting) RKHSs for which the polynomials are dense and the shift is
bounded, yet not comprised of analytic functions.

Acknowledgements. The first author would like to thank John McCarthy
and Dima Khavinson for helpful discussion.
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