ON A CLASS OF IDEALS OF THE TOEPLITZ ALGEBRA ON THE BERGMAN SPACE

TRIEU LE

Abstract. Let $\mathfrak T$ denote the full Toeplitz algebra on the Bergman space of the unit ball \mathbb{B}_n . For each subset G of L^{∞} , let $\mathfrak{CI}(G)$ denote the closed twosided ideal of $\mathfrak T$ generated by all $T_fT_g-T_gT_f$ with $f,g\in G$. It is known that $\mathfrak{CI}(C(\overline{\mathbb{B}}_n)) = \mathcal{K}$ - the ideal of compact operators and $\mathfrak{CI}(C(\mathbb{B}_n) \cap L^{\infty}) = \mathfrak{T}$. Despite these "extreme cases", there are subsets G of L^{∞} so that $\mathcal{K} \subset \mathfrak{CI}(G) \subset$ T. This paper gives a construction of a class of such subsets.

1. INTRODUCTION

For any integer $n \geq 1$, let \mathbb{C}^n denote the Cartesian product of n copies of \mathbb{C} . For $z=(z_1,\ldots,z_n)$ and $w=(w_1,\ldots,w_n)$ in \mathbb{C}^n , we write $\langle z,w\rangle=z_1\overline{w}_1+\cdots+z_n\overline{w}_n$ and $|z| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}$ for the inner product and the associated Euclidean norm. Let \mathbb{B}_n denote the open unit ball which consists of all $z \in \mathbb{C}^n$ with |z| < 1. Let \mathbb{S}_n denote the unit sphere which consists of all $z \in \mathbb{C}^n$ with |z| = 1. For any subset V of \mathbb{B}_n we write $\mathrm{cl}(V)$ for the closure of V as a subset of \mathbb{C}^n with respect to the Euclidean metric. We write $\overline{\mathbb{B}}_n$ for the closed unit ball which is also $cl(\mathbb{B}_n)$. Let $C(\mathbb{B}_n)$ (respectively, $C(\overline{\mathbb{B}}_n)$) denote the space of all functions that are continuous in the open unit ball (respectively, the closed unit ball).

Let ν denote the Lebesgue measure on \mathbb{B}_n normalized so that $\nu(\mathbb{B}_n) = 1$. Let $L^2=L^2(\mathbb{B}_n,\mathrm{d}\nu)$ and $L^\infty=L^\infty(\mathbb{B}_n,\mathrm{d}\nu)$. The Bergman space L^2_a is the subspace of L^2 which consists of all analytic functions. The normalized reproducing kernels for L_a^2 are of the form

$$k_z(w) = (1 - |z|^2)^{(n+1)/2} (1 - \langle w, z \rangle)^{-n-1}, |z|, |w| < 1.$$

We have $||k_z|| = 1$ and $\langle g, k_z \rangle = (1 - |z|^2)^{(n+1)/2} g(z)$ for all $g \in L_a^2, z \in \mathbb{B}_n$. The orthogonal projection from L^2 onto L_a^2 is given by

$$(Pg)(z) = \int_{\mathbb{T}} \frac{g(w)}{(1 - \langle z, w \rangle)^{n+1}} \, \mathrm{d}\nu(w), \ g \in L^2, \ z \in \mathbb{B}_n.$$

For any $f \in L^{\infty}$ the Toeplitz operator $T_f : L_a^2 \longrightarrow L_a^2$ is defined by $T_f h = P(fh)$ for $h \in L^2_a$. We have

(1.1)
$$(T_f h)(z) = \int_{\mathbb{B}_n} \frac{f(w)h(w)}{(1 - \langle z, w \rangle)^{n+1}} \, \mathrm{d}\nu(w)$$

for $h \in L_a^2$ and $z \in \mathbb{B}_n$. For all $f \in L^{\infty}$, $||T_f|| \le ||f||_{\infty}$ and $T_f^* = T_{\overline{f}}$. In contrast with Toeplitz operators on the Hardy space of the unit sphere, there are functions $f \in L^{\infty}$ so that $||T_f|| <$

2000 Mathematics Subject Classification. Primary 47B35; Secondary 47B47.

TRIEU LE

2

 $||f||_{\infty}$. Since T_f is an integral operator by equation (1.1), we see that T_f is compact if f vanishes almost everywhere in the complement of a compact subset of \mathbb{B}_n .

Let $\mathfrak{B}(L_a^2)$ be the C^* -algebra of all bounded linear operators on L_a^2 . Let \mathcal{K} denote the ideal of $\mathfrak{B}(L_a^2)$ that consists of all compact operators. The full Toeplitz algebra \mathfrak{T} is the C^* -subalgebra of $\mathfrak{B}(L_a^2)$ generated by $\{T_f: f \in L^\infty\}$. For any subset G of L^∞ , let $\mathfrak{I}(G)$ denote the closed two-sided ideal of \mathfrak{T} generated by all T_f with $f \in G$. Let $\mathfrak{CI}(G)$ denote the closed two-sided ideal of \mathfrak{T} generated by all commutators $[T_f, T_g] = T_f T_g - T_g T_f$ with $f, g \in G$. A result of L. Coburn [1] in the 70's showed that $\mathfrak{CI}(C(\overline{\mathbb{B}}_n)) = \mathcal{K}$. In 2004 D. Suárez [5] showed that $\mathfrak{CI}(L^\infty) = \mathfrak{T}$ for the case n = 1. This result has been generalized by the author [2] to all $n \geq 1$. In fact, we are able to show that $\mathfrak{CI}(G) = \mathfrak{T}$ for certain subsets G of L^∞ . We can take $G = \{f \in C(\mathbb{B}_n) \cap L^\infty : f \text{ vanishes on } \mathbb{B}_n \setminus E\}$ where $0 < \nu(E)$ can be as small as we please. We can also take $G = \{f \in L^\infty : f \text{ vanishes on } \mathbb{B}_n \setminus E\}$ where E is a closed nowhere dense subset of \mathbb{B}_n with $0 < \nu(E)$ as small as we please. From these results, one may be interested in the question: is there any subset G of L^∞ so that $\mathcal{K} \subseteq \mathfrak{CI}(G) \subseteq \mathfrak{T}$? The purpose of this paper is to show that there are infinitely many such subsets. Our main result is the following theorem.

Theorem 1.1. To every closed subset F of \mathbb{S}_n , there is a subset G_F of L^{∞} so that the following statements hold true:

- (1) $\mathfrak{I}(G_{\emptyset}) = \mathcal{K} \text{ and } \mathfrak{CI}(G_{\mathbb{S}_n} \cap C(\mathbb{B}_n)) = \mathfrak{T}.$
- (2) If F_1, F_2 are closed subsets of \mathbb{S}_n and $F_1 \subset F_2$ then $G_{F_1} \subset G_{F_2}$.
- (3) If F_1, F_2 are closed subsets of \mathbb{S}_n and $F_2 \backslash F_1 \neq \emptyset$ then we have $\mathfrak{CI}(G_{F_2} \cap C(\mathbb{B}_n)) \backslash \mathfrak{I}(G_{F_1}) \neq \emptyset$. In particular, if $\emptyset \neq F \subsetneq \mathbb{S}_n$ then $\mathcal{K} \subsetneq \mathfrak{CI}(G_F \cap C(\mathbb{B}_n)) \subseteq \mathfrak{I}(G_F) \subsetneq \mathfrak{T}$.

In Section 2 and Section 3, we provide some preliminaries and basic results. In Section 4, we give a proof for Theorem 1.1.

2. PRELIMINARIES

For any $z \in \mathbb{B}_n$, let φ_z denote the Mobius automorphism of \mathbb{B}_n that interchanges 0 and z. For any $z, w \in \mathbb{B}_n$, let $\rho(z, w) = |\varphi_z(w)|$. Then ρ is a metric on \mathbb{B}_n (called the pseudo-hyperbolic metric) which is invariant under the action of the automorphism group $\operatorname{Aut}(\mathbb{B}_n)$ of \mathbb{B}_n . For any $w \in \mathbb{B}_n$, we have $\rho(z, w) \to 1$ as $|z| \to 1$. These properties and the following inequality can be proved by using the identities in [4, Theorem 2.2.2]. See [2, Section 2] for more details.

For any $z, w, u \in \mathbb{B}_n$,

(2.1)
$$\rho(z,w) \le \frac{\rho(z,u) + \rho(u,w)}{1 + \rho(z,u)\rho(u,w)}.$$

For any a in \mathbb{B}_n and any 0 < r < 1, let $B(a,r) = \{z \in \mathbb{B}_n : |z - a| < r\}$ and $E(a,r) = \{z \in \mathbb{B}_n : \rho(z,a) < r\}$.

Inequality (2.1) shows that if $z, w \in \mathbb{B}_n$ so that $E(z, r_1) \cap E(w, r_2) \neq \emptyset$ for some $0 < r_1, r_2 < 1$ then

$$\rho(z,w) \leq \frac{\rho(z,u) + \rho(u,w)}{1 + \rho(z,u)\rho(u,w)} \quad \text{(where } u \text{ is any element in } E(z,r_1) \cap E(w,r_2)\text{)}$$
$$< \frac{r_1 + r_2}{1 + r_1 r_2}.$$

This implies that if $\rho(z, w) \ge \frac{r_1 + r_2}{1 + r_1 r_2}$ then $E(z, r_1) \cap E(w, r_2) = \emptyset$.

Lemma 2.1. For any 0 < r < 1 and $\zeta \in \mathbb{S}_n$ there is an increasing sequence $\{t_m\}_{m=1}^{\infty} \subset (0,1)$ so that $t_m \to 1$ as $m \to \infty$ and $E(t_k\zeta,r) \cap E(t_l\zeta,r) = \emptyset$ for all $k \neq l$.

Proof. We will construct the required sequence $\{t_m\}_{m=1}^\infty$ by induction. We begin by taking any t_1 in (0,1). Suppose we have chosen $t_1<\dots< t_m$ so that $1-j^{-1}< t_j<1$ for all $1\leq j\leq m$ and $E(t_k\zeta,r)\cap E(t_l\zeta,r)=\emptyset$ for all $1\leq k< l\leq m$, where $m\geq 1$. Since $\rho(t\zeta,t_j\zeta)\to 1$ as $t\uparrow 1$ for all $1\leq j\leq m$, we can choose a t_{m+1} with $\max\{t_m,1-(m+1)^{-1}\}< t_{m+1}<1$ and $\rho(t_{m+1}\zeta,t_j\zeta)>\frac{2r}{1+r^2}$ for all $1\leq j\leq m$. It then follows that $E(t_{m+1}\zeta,r)\cap E(t_j\zeta,r)=\emptyset$ for all $1\leq j\leq m$. Also, since $1-m^{-1}< t_m<1$ for all $m,t_m\to 1$ as $m\to\infty$.

Lemma 2.2. For any 0 < r < 1 and any $\epsilon > 0$, there is a δ depending on r and ϵ so that for all $\zeta \in \mathbb{S}_n$ and all $a \in \mathbb{B}_n$ with $|a - \zeta| < \delta$, we have

$$E(a,r) \subset \{z \in \mathbb{B}_n : |z - \zeta| < \epsilon\}.$$

As a consequence, if $b \in \mathbb{B}_n$ and $\zeta \in \mathbb{S}_n$ so that $E(b,r) \cap \{z \in \mathbb{B}_n : |z-\zeta| < \delta\} \neq \emptyset$ then $|b-\zeta| < \epsilon$.

Proof. From [4, Section 2.2.7], for any $a \neq 0$,

$$E(a,r) \subset \{z \in \mathbb{B}_n : \frac{|Pz - c|^2}{r^2 s^2} + \frac{|Qz|^2}{r^2 s} < 1\},$$

where $Pz = \frac{\langle z, a \rangle}{\langle a, a \rangle} a$, Qz = z - Pz, $c = \frac{1 - r^2}{1 - r^2 |a|^2} a$ and $s = \frac{1 - |a|^2}{1 - r^2 |a|^2}$. It then follows that $E(a, r) \subset B(c, r\sqrt{s})$.

Since $|a-c|=r^2s|a|\leq r\sqrt{s}$, we get $B(c,r\sqrt{s})\subset B(a,2r\sqrt{s})$. Hence $E(a,r)\subset B(a,2r\sqrt{s})$. Note that the inclusion certainly holds true for a=0 (in this case s=1).

Now suppose $|a-\zeta| < \delta$. Then $|a| \ge |\zeta| - |a-\zeta| > 1 - \delta$. Hence,

$$s = \frac{1 - |a|^2}{1 - r^2 |a|^2} \le \frac{1 - |a|^2}{1 - r^2} \le \frac{2(1 - |a|)}{1 - r^2} < \frac{2\delta}{1 - r^2}.$$

So for any $z \in E(a, r)$,

$$|z - \zeta| \le |z - a| + |a - \zeta| \le 2r\sqrt{s} + \delta < 2r\sqrt{\frac{2\delta}{1 - r^2}} + \delta.$$

Choosing δ so that $2r\sqrt{\frac{2\delta}{1-r^2}}+\delta<\epsilon$, we then have the first conclusion of the lemma.

Now suppose $a, b \in \mathbb{B}_n$ so that $|a-\zeta| < \delta$ and $a \in E(b, r)$. Then since $b \in E(a, r)$, the first conclusion of the lemma implies $|b-\zeta| < \epsilon$.

For any $z \in B_n$, the formula

$$U_z(f) = (f \circ \varphi_z)k_z, \ f \in L^2,$$

defines a bounded operator on L^2 . It is well-known that U_z is a unitary operator with L_a^2 as a reducing subspace and $U_zT_fU_z^*=T_{f\circ\varphi_z}$ on L_a^2 for all $z\in B_n$ and all $f\in L^\infty$. See, for example, [3, Lemmas 7 and 8].

TRIEU LE

4

Lemma 2.3. For any sequence $\{z_m\}_{m=1}^{\infty} \subset \mathbb{B}_n$ with $|z_m| \to 1$, $U_{z_m} \to 0$ in the weak operator topology of $\mathfrak{B}(L_a^2)$.

Proof. Since Span($\{k_z : z \in \mathbb{B}_n\}$) is dense in L_a^2 , it suffices to show that for all z, w in \mathbb{B}_n , we have $\lim_{m \to \infty} \langle U_{z_m} k_z, k_w \rangle = 0$.

Fix such z and w. For each $m \ge 1$,

$$\begin{split} \langle U_{z_m} k_z, k_w \rangle &= (1 - |w|^2)^{(n+1)/2} (U_{z_m} k_z)(w) \\ &= (1 - |w|^2)^{(n+1)/2} k_z (\varphi_{z_m}(w)) k_{z_m}(w) \\ &= \frac{\left((1 - |w|^2) (1 - |z|^2) (1 - |z_m|^2) \right)^{(n+1)/2}}{\left((1 - \langle \varphi_{z_m}(w), z \rangle) (1 - \langle w, z_m \rangle)^{n+1}}. \end{split}$$

Since $|\langle \varphi_{z_m}(w), z \rangle| \le |z|$ and $|\langle w, z_m \rangle| \le |w|$, we obtain

$$|\langle U_{z_m} k_z, k_w \rangle| \le \frac{\left((1 - |w|^2)(1 - |z|^2)(1 - |z_m|^2) \right)^{(n+1)/2}}{\left((1 - |z|)(1 - |w|) \right)^{n+1}}.$$

It then follows that $\lim_{m\to\infty} \langle U_{z_m} k_z, k_w \rangle = 0.$

Lemma 2.4. Let $\{z_m\}_{m=1}^{\infty} \subset \mathbb{B}_n$ so that $|z_m| \to 1$ as $m \to \infty$. Let S be any non-zero positive operator on L_a^2 . Suppose $A = \sum_{m=1}^{\infty} U_{z_m} SU_{z_m}^*$ exists in the strong operator topology and is a bounded operator on L_a^2 . Then there is a constant c > 0 and an $f \in L_a^2$ so that $||AU_{z_m}f|| \ge c > 0$ for all m.

Proof. Since S is non-zero and positive, there is an $f \in L_a^2$ with ||f|| = 1 so that $\langle Sf, f \rangle > 0$. For each $m \ge 1$,

$$\begin{split} \langle AU_{z_m}f, U_{z_m}f\rangle &\geq \langle U_{z_m}SU_{z_m}^*U_{z_m}f, U_{z_m}f\rangle \\ &\geq \langle SU_{z_m}^*U_{z_m}f, U_{z_m}^*U_{z_m}f\rangle \\ &\geq \langle Sf, f\rangle. \end{split}$$

Since $||U_{z_m}f|| = 1$ it follows that $||AUz_mf|| \ge \langle Sf, f \rangle > 0$ for all m.

3. BASIC RESULTS

The first result in this section shows that for a certain class of subsets G of L^{∞} , $\mathfrak{I}(G)$ possesses a special property. This property will later help us distinguish $\mathfrak{I}(G_1)$ and $\mathfrak{I}(G_2)$ for $G_1 \neq G_2$.

Proposition 3.1. Let W be a subset of \mathbb{B}_n and let $F = \operatorname{cl}(W) \cap \mathbb{S}_n$. Let f be in L^{∞} so that f vanishes almost everywhere in $\mathbb{B}_n \backslash W$. Let g_1, \ldots, g_l be any functions in L^{∞} . Let $\{z_m\}_{m=1}^{\infty}$ be any sequence in \mathbb{B}_n so that $|z_m| \to 1$ and $|z_m - w| \ge \epsilon > 0$ for all $w \in F$, all $m \ge 1$, where ϵ is a fixed constant. Then the sequence $\{T_f T_{g_1} \cdots T_{g_l} U_{z_m}\}_{m=1}^{\infty}$ converges to 0 in the strong operator topology of $\mathfrak{B}(L_a^2)$. Consequently, if we set

$$G = \{ f \in L^{\infty} : f \text{ vanishes almost everywhere in } \mathbb{B}_n \backslash W \}$$

then for any $T \in \mathfrak{I}(G)$, $TU_{z_m} \to 0$ in the strong operator topology of $\mathfrak{B}(L_a^2)$.

Proof. Let $V_1 = \{|z| \le 1 : |z - w| < \epsilon/3 \text{ for some } w \in F\}$ and $V_2 = \{|z| \le 1 : |z - w| < \epsilon/2 \text{ for some } w \in F\}$. Let η be a continuous function on $\overline{\mathbb{B}}_n$ so that $0 \le \eta \le 1$, $\eta(z) = 1$ if $z \in \operatorname{cl}(V_1)$ and $\eta(z) = 0$ if $z \notin V_2$. Let $Z = \operatorname{cl}(W) \cap (\overline{\mathbb{B}}_n \setminus V_1)$. Then $Z \subset \overline{\mathbb{B}}_n$ and Z is compact with respect to the Euclidean metric. We have

$$Z \cap \mathbb{S}_n = \operatorname{cl}(W) \cap \mathbb{S}_n \cap (\overline{\mathbb{B}}_n \backslash V_1) = F \cap (\overline{\mathbb{B}}_n \backslash V_1) = \emptyset.$$

Thus Z is a compact subset of \mathbb{B}_n . Since the function $f(1-\eta)$ vanishes almost everywhere in $(\mathbb{B}_n \backslash W) \cup \operatorname{cl}(V_1)$ which contains $\mathbb{B}_n \backslash Z$, the operator $T_{f(1-\eta)}$ is compact.

Since η is continuous on $\overline{\mathbb{B}}_n$, the operators $T_gT_{1-\eta}-T_{g(1-\eta)}$ and $T_{1-\eta}T_g-T_{g(1-\eta)}$ are compact for all $g \in L^{\infty}$ (see [1]). So we have

$$(3.1) T_{f}T_{g_{1}}\cdots T_{g_{l}} = T_{f}T_{g_{1}}\cdots T_{g_{l}}T_{\eta} + T_{f}T_{g_{1}}\cdots T_{g_{l}}T_{1-\eta}$$

$$= T_{f}T_{g_{1}}\cdots T_{g_{l}}T_{\eta} + T_{f(1-\eta)}T_{g_{1}}\cdots T_{g_{l}} + K_{1}$$

$$= T_{f}T_{g_{1}}\cdots T_{g_{l}}T_{\eta} + K,$$

where K_1 is a compact operator and $K = T_{f(1-\eta)}T_{g_1}\cdots T_{g_l} + K_1$ is also a compact operator.

For any $h \in L_a^2 \cap L^\infty$ and any $m \ge 1$ we have

$$||T_{\eta}U_{z_{m}}h||^{2} \leq ||\eta U_{z_{m}}h||^{2}$$

$$\leq \int_{V_{2}} |(U_{z_{m}}h)(z)|^{2} d\nu(z)$$

$$= \int_{V_{2}} |h(\varphi_{z_{m}}(z))k_{z_{m}}(z)|^{2} d\nu(z)$$

$$\leq ||h||_{\infty}^{2} \int_{V_{2}} |k_{z_{m}}(z)|^{2} d\nu(z).$$

Let $V_3 = \{|z| \leq 1 : |z - w| < \epsilon \text{ for some } w \in F\}$. Since the map $(z, w) \mapsto |1 - \langle z, w \rangle|$ is continuous and does not vanish on the compact set $\operatorname{cl}(V_2) \times (\overline{\mathbb{B}}_n \backslash V_3)$, there is a $\delta > 0$ so that $|1 - \langle z, w \rangle| \geq \delta$ for all $z \in \operatorname{cl}(V_2)$ and $w \in (\overline{\mathbb{B}}_n \backslash V_3)$.

For each $m \geq 1$, $z_m \in (\mathbb{B}_n \backslash V_3)$, so for all $z \in V_2$,

$$|k_{z_m}(z)| \leq \frac{(1-|z_m|^2)^{(n+1)/2}}{|1-\langle z,z_m\rangle|^{n+1}} \leq \frac{(1-|z_m|^2)^{(n+1)/2}}{\delta^{n+1}}.$$

Hence we have

$$||T_{\eta}U_{z_m}h|| \le ||h||_{\infty} \sqrt{\nu(V_2)} \frac{(1-|z_m|^2)^{(n+1)/2}}{\delta^{n+1}}.$$

This implies $||T_{\eta}U_{z_m}h|| \to 0$ as $m \to \infty$. Since $L_a^2 \cap L^\infty$ is dense in L_a^2 and $||T_{\eta}U_{z_m}|| \le ||T_{\eta}|| \le 1$ for all m, we conclude that $T_{\eta}U_{z_m} \to 0$ in the strong operator topology of $\mathfrak{B}(L_a^2)$. So $T_fT_{g_1}\cdots T_{g_l}T_{\eta}U_{z_m} \to 0$ in the strong operator topology of $\mathfrak{B}(L_a^2)$. Also by Lemma 2.3, $U_{z_m} \to 0$ in the weak operator topology, so $KU_{z_m} \to 0$ in the strong operator topology for any compact operator K. Combining these facts with (3.1), we conclude that $T_fT_{g_1}\cdots T_{g_l}U_{z_m} \to 0$ in the strong operator topology of $\mathfrak{B}(L_a^2)$.

The following proposition was proved by Suárez for the case n=1 (see [5, Proposition 2.9]). The case $n\geq 2$ is similar and can be proved with the same

6 TRIEU LE

method. The point is that for all $n \geq 2$, the metric ρ and the reproducing kernel functions have all the properties needed for Suárez's proof. See [2, Section 2] for more details.

Proposition 3.2. Let 0 < r < 1 and $\{w_m\}_{m=1}^{\infty}$ be a sequence in \mathbb{B}_n so that $E(w_k, r) \cap E(w_l, r) = \emptyset$ for all $k \neq l$. For each $m \in \mathbb{N}$, let c_m^1, \ldots, c_m^l , a_m, b_m , $d_m^1, \ldots, d_m^k \in L^{\infty}$ be functions of norm ≤ 1 that vanish almost everywhere on $\mathbb{B}_n \setminus E(w_m, r)$. Then

$$\sum_{m \in \mathbb{N}} T_{c_m^1} \cdots T_{c_m^l} (T_{a_m} T_{b_m} - T_{b_m} T_{a_m}) T_{d_m^1} \cdots T_{d_m^k}$$

belongs to $\mathfrak{CI}(L^{\infty})$.

Remark 3.3. In the proof of Proposition 3.2, we work only with Toeplitz operators with symbols in the set G which consists of functions of the form $\sum_{m \in F} f_m$, where

F is a subset of \mathbb{N} and f is one of the symbols $c^1, \ldots, c^l, a, b, d^1, \ldots, d^k$. So in the conclusion of the proposition, we may replace $\mathfrak{CI}(L^{\infty})$ by $\mathfrak{CI}(G)$.

4. PROOF OF THE MAIN THEOREM

We are now ready for the proof of Theorem 1.1.

Fix 0 < r < 1. Let $W_{\emptyset} = E(0, r)$. For any closed non-empty subset F of \mathbb{S}_n , let

$$W_F = \bigcup_{0 < t < 1} \bigcup_{\zeta \in F} E(t\zeta, r).$$

It is clear that $W_{\mathbb{S}_n} = \mathbb{B}_n$. We always have $F \subset \operatorname{cl}(W_F) \cap \mathbb{S}_n$. We will show that in fact $F = \operatorname{cl}(W_F) \cap \mathbb{S}_n$. Suppose $\zeta \in \operatorname{cl}(W_F) \cap \mathbb{S}_n$. For any $m \geq 1$, applying Lemma 2.2 with $\epsilon = m^{-1}$, we get a $\delta_m > 0$ so that if $E(b,r) \cap V_m \neq \emptyset$, where $V_m = \{z \in \mathbb{B}_n : |z - \zeta| < \delta_m\}$, then $|b - \zeta| < m^{-1}$. Since $W_F \cap V_m \neq \emptyset$, there is $0 < t_m < 1$ and $\zeta_m \in F$ so that $E(t_m \zeta_m, r) \cap V_m \neq \emptyset$. Hence $|t_m \zeta_m - \zeta| < m^{-1}$. So $|t_m \zeta_m - \zeta| \to 0$ as $m \to \infty$. Since $t_m = |t_m \zeta_m| \to |\zeta| = 1$ as $m \to \infty$, we get $\zeta_m = t_m^{-1}(t_m \zeta_m) \to \zeta$ in the Euclidean metric as $m \to \infty$. This implies that $\zeta \in F$. Thus, $\operatorname{cl}(W_F) \cap \mathbb{S}_n \subset F$ and hence, $\operatorname{cl}(W_F) \cap \mathbb{S}_n = F$.

Now define

$$G_F = \{ f \in L^\infty : f \text{ vanishes almost everywhere in } \mathbb{B}_n \backslash W_F \}.$$

It is clear that if $F_1 \subset F_2$ then $W_{F_1} \subset W_{F_2}$, hence $G_{F_1} \subset G_{F_2}$.

Since T_f is compact for all $f \in G_{\emptyset}$, $\mathfrak{I}(G_{\emptyset}) = \mathcal{K}$. Since $G_{\mathbb{S}_n} = L^{\infty}$, we have $\mathfrak{CI}(G_{\mathbb{S}_n} \cap C(\mathbb{B}_n)) = \mathfrak{CI}(L^{\infty} \cap C(\mathbb{B}_n)) = \mathfrak{T}$.

Now suppose F_1 and F_2 are two closed subsets of \mathbb{S}_n so that $F_2 \backslash F_1 \neq \emptyset$. Let $\zeta \in F_2 \backslash F_1$. From Lemma 2.1 there is a sequence $\{t_m\}_{m=1}^{\infty} \subset (0,1)$ with $t_m \uparrow 1$ and $E(t_k \zeta, r) \cap E(t_l \zeta, r) = \emptyset$ for all $k \neq l$. Let $z_m = t_m \zeta$ for all $m \geq 1$. Since $|z_m - \zeta| \to 0$ and $\zeta \notin F_1$ which is a closed subset of \mathbb{S}_n , there is an $\epsilon > 0$ so that $|z_m - w| \geq \epsilon$ for all $w \in F_1$, all $m \geq 1$. Since $\operatorname{cl}(W_{F_1}) \cap \mathbb{S}_n = F_1$, Proposition 3.1 shows that $TU_{Z_m} \to 0$ in the strong operator topology for all $T \in \mathfrak{I}(G_{F_1})$.

Take f to be any continuous function supported in E(0,r) such that $[T_f, T_{\overline{f}}] \neq 0$. Any function of the form $f(z) = z_1 \eta(|z|/r)$ where η is non-negative, continuous and supported in [0,1] with $\|\eta\|_{\infty} > 0$ will work. Let $S = [T_f, T_{\overline{f}}]^2$ then S is a non-zero, positive operator on L_a^2 . Define

$$T = \sum_{m=1}^{\infty} U_{z_m} S U_{z_m}^*.$$

By Lemma 2.4, there is a constant c > 0 and an $h \in L_a^2$ so that $||TU_{z_m}h|| \ge c$ for all m. This implies that T is not in $\mathfrak{I}(G_{F_1})$.

For each m,

$$\begin{split} U_{z_m}[T_f,T_{\overline{f}}]U_{z_m}^* &= U_{z_m}T_fT_{\overline{f}}U_{z_m}^* - U_{z_m}T_{\overline{f}}T_fU_{z_m}^* \\ &= T_{f\circ\varphi_{z_m}}T_{\overline{f}\circ\varphi_{z_m}} - T_{\overline{f}\circ\varphi_{z_m}}T_{f\circ\varphi_{z_m}} \\ &= [T_{f\circ\varphi_{z_m}},T_{\overline{f}\circ\varphi_{z_m}}]. \end{split}$$

So
$$U_{z_m}SU_{z_m}^* = [T_{f \circ \varphi_{z_m}}, T_{\overline{f} \circ \varphi_{z_m}}]^2$$
. Hence $T = \sum_{m=1}^{\infty} [T_{f \circ \varphi_{z_m}}, T_{\overline{f} \circ \varphi_{z_m}}]^2$.
Since each $f \circ \varphi_{z_m}$ is continuous and supported in $\{w \in \mathbb{B}_n : |\varphi_{z_m}(w)| < r\} = 0$.

Since each $f \circ \varphi_{z_m}$ is continuous and supported in $\{w \in \mathbb{B}_n : |\varphi_{z_m}(w)| < r\} = E(z_m, r)$ and $E(z_k, r) \cap E(z_l, r) = \emptyset$ for all $k \neq l$, Proposition 3.2 and Remark 3.3 show that $T \in \mathfrak{CI}(G_{F_2} \cap C(\mathbb{B}_n))$. So $T \in \mathfrak{CI}(G_{F_2} \cap C(\mathbb{B}_n)) \setminus \mathfrak{I}(G_{F_1})$.

Acknowledgements. This work was done when the author was a graduate student at the State University of New York at Buffalo.

References

- Lewis A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433–439.MR0322595 (48 #957)
- [2] Trieu Le, On the commutator ideal of the Toeplitz algebra on the Bergman space of the unit ball in \mathbb{C}^n , J. Operator Theory, to appear.
- [3] Young J. Lee, Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces, Canad. Math. Bull. 41 (1998), no. 2, 129–136.MR1624149 (99b:47035)
- [4] Walter Rudin, Function theory in the unit ball of Cⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York, 1980.MR601594 (82i:32002)
- [5] Daniel Suárez, The Toeplitz algebra on the Bergman space coincides with its commutator ideal,
 J. Operator Theory 51 (2004), no. 1, 105–114.MR2055807 (2005b:47060)

Department of Mathematics, University of Toledo, Toledo, OH 43606 $E\text{-}mail\ address$: trieu.le2@utoledo.edu