
THE COMMUTANTS OF CERTAIN TOEPLITZ
OPERATORS ON WEIGHTED BERGMAN SPACES

TRIEU LE

Abstract. For α > −1, let A2
α be the corresponding weighted Bergman

space of the unit ball in Cn. For a bounded measurable function f , let
Tf be the Toeplitz operator with symbol f on A2

α. This paper de-
scribes all the functions f for which Tf commutes with a given Tg,

where g(z) = zL1
1 · · · zLn

n for strictly positive integers L1, . . . , Ln, or
g(z) = |z1|s1 · · · |zn|snh(|z|) for non-negative real numbers s1, . . . , sn

and a bounded measurable function h on [0, 1).

1. Introduction

As usual, for any z = (z1, . . . , zn) ∈ Cn we denote its Euclidean norm by
|z|, which is

√
|z1|2 + · · ·+ |zn|2. Let Bn denote the open unit ball consisting

of all z ∈ Cn with |z| < 1. Let ν denote the Lebesgue measure on Bn

normalized so that ν(Bn) = 1. Fix a real number α > −1. The weighted
Lebesgue measure να on Bn is defined by dνα(z) = cα(1−|z|2)αdν(z), where
cα is a normalizing constant so that να(Bn) = 1. A direct computation

shows that cα =
Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
. For 1 ≤ p ≤ ∞, let Lp

α denote the space

Lp(Bn,dνα). Note that L∞α is the same as L∞ = L∞(Bn,dν).
The weighted Bergman space A2

α consists of all functions in L2
α which are

analytic on Bn. It is well-known that A2
α is a closed subspace of L2

α. We
denote the inner product in L2

α by 〈·, ·〉α and the corresponding norm by
‖ · ‖2,α.

For any multi-index m = (m1, . . . ,mn) ∈ Nn (here N denotes the set
of all non-negative integers), we write |m| = m1 + · · · + mn and m! =
m1! · · ·mn!. For any z = (z1, . . . , zn) ∈ Cn, we write zm = zm1

1 · · · zmn
n and

z̄m = z̄m1
1 · · · z̄mn

n . The standard orthonormal basis for A2
α is {em : m ∈ Nn},

where

em(z) =
[Γ(n + |m|+ α + 1)

m! Γ(n + α + 1)

]1/2
zm, m ∈ Nn, z ∈ Bn.

For a more detailed discussion of A2
α, see Chapter 2 in [10].

Since A2
α is a closed subspace of the Hilbert space L2

α, there is an or-
thogonal projection Pα from L2

α onto A2
α. For any function f ∈ L2

α the
Toeplitz operator with symbol f is denoted by Tf , which is densely defined
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on A2
α by Tfϕ = Pα(fϕ) for bounded analytic functions ϕ on Bn. If f is a

bounded function then Tf is a bounded operator on A2
α with ‖Tf‖ ≤ ‖f‖∞

and (Tf )∗ = Tf̄ . However there are unbounded functions f that give rise to
bounded operators Tf . If f is an analytic function then Tf is the multipli-
cation operator on A2

α with symbol f . The Toeplitz operator Tf in this case
is called analytic. It is clear that if both f and g are bounded and analytic
or conjugate analytic (that is, f̄ and ḡ are analytic) then TfTg = TgTf .
Also if there are constants a, b not both zero such that af + bg is a con-
stant function then it is clear that Tf and Tg commute. In the context of
Toeplitz operators on the Hardy space of the unit circle, A. Brown and P.
Halmos [3] showed that these are the only cases where the operators Tf

and Tg commute. For Toeplitz operators on the Bergman space of the unit
disk, the situation becomes more complicated. The above Brown-Halmos
result failed. In fact, if f, g are radial functions, that is, f(z) = f(|z|) and
g(z) = g(|z|) for almost all z, then both Tf and Tg are diagonal operators
with respect to the standard orthonormal basis, hence, they commute. The
problem that we are interested in is: if Tf and Tg commute on A2

α, what
is the relation between the functions f and g? Despite the difficulty of the
general problem, several results have been known for Toeplitz operators on
the Bergman space of the unit disk:

(1) If g = zN for some N ≥ 1 then f is analytic (Ž. Čučković [5]).
This result was later extended to the Bergman space of an arbitrary
bounded domain in C and g an arbitrary non-constant bounded an-
alytic function by S. Axler, Ž. Čučković and N. V. Rao in [2].

(2) If f and g are bounded harmonic functions, then either both func-
tions are analytic or both are conjugate analytic or af + bg is a con-
stant for some constants a and b not both zero (Axler and Čučković
[1]).

(3) If g is radial then f is also radial (Čučković and Rao [6]). In the same
paper, they also characterized all bounded functions f such that Tf

commutes with Tg where g(z) = zm1 z̄m2 for integers m1,m2 ≥ 0. In
[8], I. Louhichi and L. Zakariasy studied the same problem when g
is of the form g(reiθ) = eimθϕ(r), 0 ≤ r < 1, θ ∈ (0, 2π), where m is
an integer and ϕ ∈ L1([0, 1), rdr).

In this paper we generalize the results in (1) and (3) to Toeplitz operators
on weighted Bergman spaces of the unit ball in higher dimensions. Let T
denote the C∗-algebra generated by {Tg : g ∈ L∞}. In addition to the result
in (1), Čučković [5] showed that if S is a bounded operator on the Bergman
space of the unit disk such that S belongs to T and it commutes with TzN

for some integer N ≥ 1, then S = Tf for some bounded analytic function f .
The following theorem generalizes this result.

Theorem 1.1. If S is an operator in T that commutes with T
z

L1
1 ···zLn

n
for

some integers L1, . . . , Ln ≥ 1, then there is a bounded analytic function f
on Bn so that S = Tf .
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Due to the complicated setting of several variables, Čučković and Rao’s
result in (3) no longer holds when n ≥ 2. We will see later that if f(z) = z1z̄2

then Tf commutes with all Tg whenever g is a bounded radial function (a
function h on Bn is called a radial function if there is a function h̃ : [0, 1) → C
such that h(z) = h̃(|z|) for almost all z ∈ Bn). In fact, we will show that if g
is a non-constant bounded radial function then Tf commutes with Tg if and
only if f satisfies f(eiθz) = f(z) for almost all z ∈ Bn and almost all θ ∈ R.

Throughout the paper, an operator on A2
α is said to be diagonal if it

is diagonal with respect to the standard orthonormal basis of A2
α. In one

dimension, all diagonal Toeplitz operators arise from radial functions. In
higher dimensions, in order to get all diagonal operators we have to replace
radial functions by functions that are invariant under the action of the n-
torus on Bn. More precisely, it was showed in [7] that for f ∈ L∞, the
operator Tf is diagonal if and only if f(z1, . . . , zn) = f(|z1|, . . . , |zn|) for
almost all z ∈ Bn. Even though we are unable to describe all the functions
f ∈ L2

α such that Tf commutes with a given non-trivial diagonal Toeplitz
operator Tg, we have been successful in doing so when the function g is of the
from g(z) = |z|2s1 · · · |zn|2snh(|z|), where s1, . . . , sn ≥ 0 and h is a bounded
function on [0, 1). The technique we use involves results about the zero sets
of bounded analytic functions on the open unit disk. See Section 3 for more
detail.

Let P denote the space of all analytic polynomials in the variable z =
(z1, . . . , zn). Then P is dense in A2

α. The following theorem is our second
result in the paper.

Theorem 1.2. Let g be a non-constant function in Bn such that for almost
all z ∈ Bn, g(z) = |z1|2s1 · · · |zn|2snh(|z|) with h a bounded measurable func-
tion on [0, 1) and s1, . . . , sn ≥ 0. Then for f ∈ L2

α, TfTg = TgTf on P if
and only if f(eiθz) = f(z) for almost all θ ∈ R, almost all z ∈ Bn, and for
1 ≤ j ≤ n with sj 6= 0, f(z1, . . . , zj−1, |zj |, zj+1, . . . , zn) = f(z) for almost
all z ∈ Bn.

2. Commuting with analytic Toeplitz operators

The following result is well-known and its proof for the one dimensional
case is in Proposition 7.2 in [11]. The proof for higher dimensional cases is
similar.

Lemma 2.1. Suppose f = f1 + f̄2, where f1, f2 ∈ A2
α, such that ‖fp‖2,α ≤

M‖p‖2,α for all analytic polynomials p, where M is a fixed positive constant.
Then ‖f‖∞ ≤ M .

For any multi-indexes m, k ∈ Nn, there is a positive real number d(m, k)
such that emek = d(m, k)em+k. Strictly speaking, d(m, k) must be written as
dn,α(m, k) because it depends also on n and α. But to simplify the notation
and since n and α are fixed throughout the paper, we drop the sub-indexes.
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It is immediate that d(m, k) = d(k, m) and d(0, k) = d(m, 0) = 1 for
m, k ∈ Nn. Also for any m, k, l ∈ Nn, since (emek)el = em(ekel), we have

d(m, k)d(m + k, l) = d(m, k + l)d(k, l). (2.1)

Using the explicit formulas for em and ek, we obtain

(d(m, k))2 =
Γ(n + |m|+ α + 1) Γ(n + |k|+ α + 1)
Γ(n + |m|+ |k|+ α + 1) Γ(n + α + 1)

(m + k)!
m! k!

. (2.2)

The following lemma characterizes analytic Toeplitz operators on A2
α in

terms of its matrix with respect to the standard orthonormal basis. Even
though the matrix of an analytic Toeplitz operator is not the usual analytic
Toeplitz matrix, it becomes one after scaling each matrix entry by a factor
depending on the position of the entry.

For an n−tuple of integers r = (r1, . . . , rn) ∈ Zn we write r � 0 if
r1, . . . , rn ≥ 0 and write r � 0 if otherwise. For m, k ∈ Nn we write m � k
(respectively, m � k) if m− k � 0 (respectively, m− k � 0).

Lemma 2.2. Suppose S is a linear operator (not necessarily bounded) on A2
α

whose domain contains the space P of all analytic polynomials. Then there
is a function f ∈ A2

α such that Tf = S on P if and only if 〈Sem, ek〉α = 0

whenever k � m and for any l ∈ Nn,
1

d(l,m)
〈Sem, em+l〉α is independent of

m ∈ Nn.

Proof. Suppose f ∈ A2
α and it has the expansion f =

∑
l∈Nn

alel. Then for

any m in Nn, we have

Tfem = fem =
∑
l∈Nn

alelem =
∑
l∈Nn

ald(l, m)em+l.

Therefore, 〈Tfem, ek〉α =

{
0 if k � m

ald(l, m) if k = m + l.

This shows that if S = Tf on P then 〈Sem, ek〉α = 0 whenever k � m and

for any l ∈ Nn,
1

d(l, m)
〈Tem, em+l〉α = al, which is independent of m.

Now suppose S has the above property. Let al = 〈Se0, el〉α for each l in

Nn. Then by assumption, al =
1

d(l, m)
〈Sem, em+l〉α for all m in Nn. Let

f =
∑

l∈Nn

alel = Se0. Then f is an element of A2
α and we have 〈Tfem, ek〉α =

〈Sem, ek〉α for all m, k in Nn. Hence Tf = S on P. �

Suppose l ∈ Nn is a multi-index. For any m, k ∈ Nn we have

〈Tel
em, ek〉α = d(l,m)〈el+m, ek〉α =

{
0 if k 6= l + m,

d(l,m) if k = l + m.
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This implies Tel
em = d(l, m)el+m and Tēl

ek =

{
0 if k � l,

d(l, k − l)ek−l if k � l.

For any linear operator S on A2
α whose domain contains the space of all

analytic polynomials, we have

〈[S, Tel
]em, ek〉α = 〈STel

em, ek〉α − 〈Sem, Tēl
ek〉α

= d(l,m)〈Sem+l, ek〉α −

{
0 if k � l,

d(l, k − l)ek−l if k � l.

This shows that for m, k ∈ Nn,

〈[S, Tel
]em, ek〉α = d(l, m)〈Sem+l, ek〉α if k � l, (2.3)

and 〈[S, Tel
]em, ek+l〉α = d(l, m)〈Sem+l, ek+l〉α − d(l, k)〈Sem, ek〉α. (2.4)

Lemma 2.3. Suppose that S is an operator (not necessarily bounded) on
A2

α whose domain contains P and that S commutes with TeL where L =
(L1, . . . , Ln) ∈ Nn with L1, . . . , Ln ≥ 1. Suppose l ∈ Nn such that the
operator K = [S, Tel

] is a compact operator on A2
α. Then for any m, k ∈ Nn

we have
d(l, m)
d(l, k)

〈Sem+l, ek+l〉α = 〈Sem, ek〉α.

Proof. Since S commutes with TeL , it commutes with TesL for any positive
integer s because TesL is a multiple of (TeL)s. Then (2.4) implies that for
any m, k ∈ Nn and s ∈ N,

d(sL, m)
d(sL, k)

〈Sem+sL, ek+sL〉α = 〈Sem, ek〉α.

Now for any m, k ∈ Nn, and s ∈ N,

d(l, m)
d(l, k)

〈Sem+l, ek+l〉α − 〈Sem, ek〉α

=
d(l, m)
d(l, k)

d(sL, m + l)
d(sL, k + l)

〈Sem+l+sL, ek+l+sL〉α −
d(sL, m)
d(sL, k)

〈Sem+sL, ek+sL〉α

=
d(sL, m)d(sL + m, l)
d(sL, k)d(sL + k, l)

〈Sem+l+sL, ek+l+sL〉α −
d(sL, m)
d(sL, k)

〈Sem+sL, ek+sL〉α

=
d(sL, m)

d(sL, k)d(sL + k, l)

{
d(sL + m, l)〈Sem+l+sL, ek+l+sL〉α

− d(sL + k, l)〈Sem+sL, ek+sL〉α
}

=
d(sL, m)

d(sL, k)d(sL + k, l)
〈[S, Tel

]esL+m, esL+k+l〉α (by (2.4))

=
d(sL, m)

d(sL, k)d(sL + k, l)
〈KesL+m, esL+k+l〉α.
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Now using (2.2) we have[ d(sL, m)
d(sL, k)d(sL + k, l)

]2

=
Γ(n + s|L|+ α + 1) Γ(n + |m|+ α + 1)
Γ(n + s|L|+ |m|+ α + 1) Γ(n + α + 1)

(sL + m)!
(sL)! m!

× Γ(n + s|L|+ |k|+ α + 1) Γ(n + α + 1)
Γ(n + s|L|+ α + 1) Γ(n + |k|+ α + 1)

(sL)! k!
(sL + k)!

× Γ(n + s|L|+ |k|+ |l|+ α + 1) Γ(n + α + 1)
Γ(n + s|L|+ |k|+ α + 1) Γ(n + |l|+ α + 1)

(sL + k)! l!
(sL + k + l)!

= C(n, α, m, k, l, L)
Γ(n + s|L|+ |l|+ |k|+ α + 1)

Γ(n + s|L|+ |m|+ α + 1)
(sL + m)!

(sL + k + l)!

≈ C(n, α,m, k, l, L)(s|L|)|l|+|k|−|m|
n∏

j=1

(sLj)mj−kj−lj

(by Stirling’s formula for the Gamma function)

= C̃(n, α,m, k, l, L).

This shows that
d(sL, m)

d(sL, k)d(sL + k, l)
is bounded when s →∞. On the other

hand, lim
s→∞

〈KesL+m, esL+k+l〉α = 0 because K is compact. So we conclude

that
d(l,m)
d(l, k)

〈Sem+l, ek+l〉α = 〈Sem, ek〉α for all m, k ∈ Nn. �

Proof of Theorem 1.1. Put L = (L1, . . . , Ln). Then by assumption, S com-
mutes with TeL . Since S belongs to T, it is well-known that [S, Tel

] is
compact for all l ∈ N (see [4] for more detail). Now Lemma 2.3 shows that

d(l, m)
d(l, k)

〈Sem+l, ek+l〉α = 〈Sem, ek〉α for any m, k, l ∈ Nn.

Put m = 0 we see that for each k ∈ Nn,
1

d(l, k)
〈Sel, ek+l〉α = 〈Se0, ek〉α,

which is independent of l ∈ Nn.
Now suppose m, k ∈ Nn such that k � m. Then there is an integer

1 ≤ j ≤ n so that kj < mj . Consider first the case kj = 0. Put l =
(L1, . . . , Lj−1, Lj − 1, Lj+1, . . . , Ln). Then we have k + l � L but m+ l ≥ L.
Hence,

〈Sem, ek〉α =
d(l,m)
d(l, k)

〈Sem+l, ek+l〉α

=
d(l,m)

d(l, k)d(L,m + l − L)
〈STeLem+l−L, ek+l〉α

=
d(l,m)

d(l, k)d(L,m + l − L)
〈TeLSem+l−L, ek+l〉α



COMMUTANTS OF TOEPLITZ OPERATORS 7

=
d(l,m)

d(l, k)d(L,m + l − L)
〈Sem+l−L, TēLek+l〉α = 0

since TēLek+l = 0.
Now consider the case kj > 0. Let k̃ = k− kjδj and m̃ = m− kjδj , where

δj = (δ1j , . . . , δnj). Then k̃, m̃ are in Nn and 0 = k̃j < m̃j . We have

〈Sem, ek〉α = 〈Sem̃+mjδj
, ek̃+mjδj

〉α

=
d(mjδj , k̃)
d(mjδj , m̃)

〈Sem̃, ek̃〉α

= 0 (by the case considered above).

By Lemma 2.2 there is a function f ∈ A2
α so that S = Tf on the space of

analytic polynomials. Since S is a bounded operator, Lemma 2.1 implies
that f is bounded and ‖f‖∞ ≤ ‖S‖. Consequently, S = Tf on A2

α because
they are bounded operators that agree on a dense subset of A2

α. �

We now discuss the necessity of the condition L1, . . . , Ln ≥ 1 in Theorem
1.1. When n = 1 this condition is necessary because T obviously contains
non-analytic Toeplitz operators that commute with Te0 ≡ I. For the case
n ≥ 2, we will show that there is an operator S in T such that S commutes
with Tz1 , . . . , Tzn−1 but it does not commute with Tzn . Recall that for 1 ≤
j ≤ n, δj denotes (δ1j , . . . , δnj).

Proposition 2.4. Suppose n ≥ 2. For any ϕ ∈ A2
α, define

Sϕ = S
( ∑

m∈Nn

〈ϕ, em〉αem

)
=

∑
m∈Nn

mn=0

d(m, δn)〈ϕ, em〉αem+δn . (2.5)

Then the following statements hold true:
(1) S is a compact operator on A2

α and hence it belongs to T,
(2) S commutes with Tz1 , . . . , Tzn−1,
(3) S does not commute with Tzn and hence S is not an analytic Toeplitz

operator.

Proof. From the definition (2.5) of S, we see that Sem = d(m, δn)em+δn if
mn = 0 and Sem = 0 if mn > 0. For any m ∈ Nn with mn = 0, formula
(2.2) gives

(d(m, δn))2 =
Γ(n + |m|+ α + 1) Γ(n + |δn|+ α + 1)
Γ(n + |m|+ |δn|+ α + 1) Γ(n + α + 1)

(m + δn)!
m!δn!

=
Γ(n + |m|+ α + 1) Γ(n + α + 2)
Γ(n + |m|+ α + 2) Γ(n + α + 1)

(m + δn)!
m!

=
(n + α + 1)(mn + 1)

n + |m|+ α + 1

=
n + α + 1

n + |m|+ α + 1
(since mn = 0).
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Thus, lim
|m|→∞
mn=0

d(m, δn) = 0. This shows that the operator S is not only

bounded but also compact on A2
α. On the other hand, it is well-known that

T contains the ideal of compact operators on A2
α (see [4]). Hence S belongs

to T.
Now let j be an integer in {1, . . . , n− 1}. For m ∈ Nn we have

STeδj
em = S

(
d(m, δj)em+δj

)
=

{
0 if mn > 0
d(m, δj)d(m + δj , δn)em+δj+δn if mn = 0,

Teδj
Sem =

{
0 if mn > 0
Teδj

(
d(m, δn)em+δn

)
if mn = 0

=

{
0 if mn > 0
d(m, δn)d(δj ,m + δn)em+δn+δj

if mn = 0

=

{
0 if mn > 0
d(m, δj)d(m + δj , δn)em+δn+δj

if mn = 0.

Thus STeδj
em = Teδj

Sem for all m ∈ Nn. This shows that S commutes with
Teδj

(hence Tzj ) for 1 ≤ j ≤ n− 1. Now for m ∈ Nn with mn = 0, we have

STeδn
em = S

(
d(δn,m)em+δn

)
= 0,

Teδn
Sem = Teδn

(
d(m, δn)em+δn

)
= d(δn,m + δn)d(m, δn)em+2δn 6= 0.

This shows that STeδn
6= Teδn

S, so S does not commute with Teδn
. Since

Tzn is a nonzero multiple of Teδn
, S does not commute with Tzn either. �

3. Commuting with diagonal Toeplitz operators

In the first part of this section we use results from complex analysis of one
variable, more precisely, results about zeros of bounded analytic functions
on the open unit disk, to obtain some function-theoretic results which are
crucial for the proof of Theorem 1.2. The proof of Theorem 1.2 itself will
be presented at the end of the section.

For the rest of the paper, N∗ denotes the set of all positive integers. For
any 1 ≤ j ≤ n, let σj : N∗ × Nn−1

∗ −→ Nn
∗ be the map defined by the

formula σj(s, (r1, . . . , rn−1)) = (r1, . . . , rj−1, s, rj , . . . , rn−1) for all s ∈ N∗
and (r1, . . . , rn−1) ∈ Nn−1

∗ . If M is a subset of Nn
∗ and 1 ≤ j ≤ n, we define

M̃j =
{

r̃ = (r1, . . . , rn−1) ∈ Nn−1
∗ :

∑
s∈N∗

σj(s,r̃)∈M

1
s + 1

= ∞
}

.

Definition 3.1. We say that M has property (P) if one of the following
statements holds.
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(1) M = ∅, or

(2) M 6= ∅, n = 1 and
∑

s∈M

1
s + 1

< ∞, or

(3) M 6= ∅, n ≥ 2 and for any 1 ≤ j ≤ n, the set M̃j has property (P)
as a subset of Nn−1

∗ .

The following observations are then immediate.
(1) If M ⊂ N∗ and M does not have property (P) then

∑
s∈M

1
s+1 = ∞.

If M ⊂ Nn
∗ with n ≥ 2 and M does not have property (P) then M̃j

does not have property (P) as a subset of Nn−1
∗ for some 1 ≤ j ≤ n.

(2) If M1 and M2 are subsets of Nn
∗ that both have property (P) then

M1 ∪M2 also has property (P).
(3) If M ⊂ Nn

∗ has property (P) and l ∈ Zn then (M + l) ∩ Nn
∗ also has

property (P). Here M + l = {m + l : m ∈ M}.
(4) If M ⊂ Rn has property (P) then N∗ ×M also has property (P) as

a subset of Nn+1
∗ . This can be showed by induction on n.

(5) The set Nn
∗ does not have property (P) for all n ≥ 1. This together

with (2) shows that if M ⊂ Nn
∗ has property (P) then Nn

∗\M does
not have property (P).

Proposition 3.2. Let K denote the right half of the complex plane. Let
F : Kn → C be an analytic function. Suppose there exists a polynomial p
such that |F (z)| ≤ p(|z|) for all z ∈ Kn. Put Z(F ) = {r ∈ Nn

∗ : F (r) = 0}.
If Z(F ) does not have property (P), then F is identically zero in Kn.

Proof. Suppose F is a function that satisfies the hypothesis of the proposi-
tion and that Z(F ) does not have property (P). We will show that F (z) = 0
for all z ∈ Kn by induction on n.

Consider the case n = 1. Write p(|z|) = a0 + · · · + ad|z|d for some
positive integer d. For z ∈ K, since max{|z|, 1} ≤ |z + 1|, we have p(|z|) ≤
(|a0|+ · · ·+ |ad|)|z + 1|d. Let G(z) = F (z)/(z + 1)d for z ∈ K. Then G is a
bounded analytic function on K and Z(G) = Z(F ). Now define

H(z) = G
(1 + z

1− z

)
(|z| < 1).

Then H is a bounded analytic function on the unit disk. We have H(θ) = 0
for all θ = r−1

r+1 with r ∈ Z(G). Since∑
H(θ)=0

(1− |θ|) ≥
∑

r∈Z(G)

(
1−

∣∣r − 1
r + 1

∣∣) =
∑

r∈Z(G)

2
r + 1

=
∑

r∈Z(F )

2
r + 1

= ∞,

Corollary to Theorem 15.23 in [9] shows that H is identically zero on the
unit disk. Thus G is identically zero in K, which implies that F is identically
zero in K.

Now suppose that the conclusion of the proposition holds whenever n ≤ N
for some integer N ≥ 1. Consider the case n = N + 1. Since Z(F ) does not
have property (P), Z̃(F )j does not have property (P) for some 1 ≤ j ≤ N+1.
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Without loss of generality, we may assume that j = N + 1. For any r̃ in
Z̃(F )N+1, put Mr̃ = {s ∈ N∗ : (r̃, s) ∈ Z(F )}. Then

∑
s∈Mr̃

1
s+1 = ∞. Put

Fr̃(ζ) = F (r̃, ζ) for ζ ∈ K. Then Fr̃ is analytic in K with Z(Fr̃) = Mr̃ and
|Fr̃(ζ)| ≤ p(|(r̃, ζ)|) for all ζ ∈ K. Since Mr̃ does not have property (P), the
proposition in the case n = 1 implies that Fr̃(ζ) = 0 for all ζ ∈ K. Hence
we have F (r̃, ζ) = 0 for all ζ ∈ K and all r̃ ∈ Z̃(F )N+1. But Z̃(F )N+1 does
not have property (P), the induction hypothesis shows that F (z̃, ζ) = 0 for
all ζ ∈ K and all z̃ ∈ KN . Thus F is identically zero on KN+1. �

Lemma 3.3. For any function f ∈ L1(Bn,dν) and any l ∈ Zn, put

Z(f, l) = {m ∈ Nn : m + l � 0 and
∫
Bn

f(z)zm+lz̄mdν = 0}.

If Z(f, l) does not have property (P) then it is the set of all m ∈ Nn with
m + l � 0.

Proof. Suppose l = (l1, . . . , ln) where lj ∈ Z for j = 1, . . . , n. Put l∗ =
(|l1|, . . . , |ln|), l+ = 1

2(l∗ + l) and l− = 1
2(l∗ − l). Then l+, l− � 0 and

l = l+ − l−. Also, for any m ∈ Nn, we have m + l � 0 if and only if
m− l− � 0. For m ∈ Z(f, l), put k = m− l−, then k � 0 and

0 =
∫
Bn

f(z)zk+l+ z̄k+l−dν =
∫
Bn

f(z)zl+ z̄l− |z1|2k1 · · · |zn|2kndν (3.1)

=
∫
Bn

|z1|,...,|zn|>0

f(z)zl+ z̄l− |z1|2k1 · · · |zn|2kndν. (3.2)

For any ζ = (ζ1, . . . , ζn) ∈ K̄n, define

F (ζ) =
∫
Bn

|z1|,...,|zn|>0

f(z)zl+ z̄l− |z1|2ζ1 · · · |zn|2ζndν.

Here for a complex number w and a real number t > 0, tw = exp(w log t),
where log is the principle branch of the logarithmic function. Since |tw| ≤ 1
for all 0 < t < 1 and w ∈ C with <(w) ≥ 0, the function F is well-defined,
bounded, and in fact continuous on K̄n. Now an application of Morera’s
Theorem shows that F is analytic on Kn.

Next, (3.1) shows that F (k) = 0 for all k ∈ Z(f, l)− l−. Since Z(f, l) does
not have property (P), Z(F ) = {r ∈ Nn

∗ : F (r) = 0} does not have property
(P) either. Proposition 3.2 and the continuity of F on K̄n now imply that
F (ζ) = 0 for all ζ ∈ K̄n. In particular, (3.1) holds for all k ∈ Nn. The
conclusion of the lemma then follows. �
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Corollary 3.4. Suppose f ∈ L1(Bn,dν) such that for all l ∈ Zn the set
Z(f, l) (as in Lemma 3.3) does not have property (P). Then f(z) = 0 for
almost all z ∈ Bn.

Proof. Lemma 3.3 shows that Z(f, l) = Nn ∩ (Nn − l) for all l ∈ Zn. This

implies that
∫
Bn

f(z)zmz̄kdν = 0 for all m, k ∈ Nn. Since the span of {zmz̄k :

m, k ∈ Nn} is dense in C(B̄n) we conclude that f(z) = 0 for almost all
z ∈ Bn. �

Corollary 3.5. Let γ = (γ1, . . . , γn) be an n-tuple of integers and let f be
in L1(Bn,dν). Then the following statements hold true.

(1) If for almost all z ∈ Bn, f(eiγ1θz1, . . . , eiγnθzn) = f(z) for almost all
θ ∈ R, then whenever l = (l1, . . . , ln) ∈ Zn with γ1l1 + · · ·+γnln 6= 0,

we have
∫
Bn

f(z)zm+lz̄mdν(z) = 0 for all m ∈ Nn with m + l � 0.

(2) If the set Z(f, l) = {m ∈ Nn : m + l � 0 and
∫
Bn

f(z)zm+lz̄mdν =

0} does not have property (P) whenever l = (l1, . . . , ln) ∈ Zn with
γ1l1 + · · ·+γnln 6= 0 then for almost all z ∈ Bn, for almost all θ ∈ R,
we have f(eiγ1θz1, . . . , eiγnθzn) = f(z).

Proof. Define g(z) =
1
2π

2π∫
0

f(eiγ1tz1, . . . , eiγntzn)dt, for z ∈ Bn such that the

integral on the right hand side is defined. Since f ∈ L1(Bn,dν), g(z) is
defined for almost all z ∈ Bn and for such z, g(eiγ1θz1, . . . , eiγnθzn) = g(z)
for all θ ∈ R. Now for l ∈ Zn and m ∈ Nn with m + l � 0,∫
Bn

g(z)zm+lz̄mdν(z)

=
∫
Bn

{ 1
2π

2π∫
0

f(eiγ1tz1, . . . , eiγntzn)dt
}
zm+lz̄mdν(z)

=
1
2π

2π∫
0

{ ∫
Bn

f(eiγ1tz1, . . . , eiγntzn)zm+lz̄mdν
}
dt

=
1
2π

2π∫
0

{ ∫
Bn

f(z1, . . . , zn)zm+lz̄mdν
}
e−i(γ1l1+···γnln)tdt

(by the invariance of the measure ν under the action of the n−torus)



12 TRIEU LE

=
( 1
2π

2π∫
0

e−i(γ1l1+···+γnln)tdt
)( ∫

Bn

f(z1, . . . , zn)zm+lz̄mdν
)

=


0 if γ1l1 + · · ·+ γnln 6= 0∫
Bn

f(z1, . . . , zn)zm+lz̄mdν if γ1l1 + · · ·+ γnln = 0.

If for almost all z ∈ Bn, for almost all θ ∈ R, f(eiγ1θz1, . . . , eiγnθzn) = f(z)
then f(z) = g(z) for almost all z ∈ Bn. The above computations then show

that
∫
Bn

f(z)zm+lz̄mdν(z) = 0 for all m ∈ Nn with m + l � 0, whenever

γ1l1 + · · ·+ γnln 6= 0.
Now suppose Z(f, l) does not have property (P) whenever γ1l1 + · · · +

γnln 6= 0. Then from the above computations, for all l ∈ Zn, the set of

all m ∈ Nn with m + l � 0 and
∫
Bn

(f(z) − g(z))zm+lz̄mdν(z) = 0 does not

have property (P). Corollary 3.4 now shows that f(z) = g(z) for almost all
z ∈ Bn. Hence for almost all z ∈ Bn, we have f(eiγ1θz1, . . . , eiγnθzn) = f(z)
for almost all θ ∈ R. �

For ζ = (ζ1, . . . , ζn) ∈ Cn we write Σζ for ζ1 + · · · + ζn. If m =
(m1, . . . ,mn) ∈ Nn is a multi-index then we use the more common nota-
tion |m| for m1 + · · ·+ mn instead of Σm.

For any bounded measurable function g on Bn, any m ∈ Nn, and α > −1,
define

ωα(g,m) = 〈Tgem, em〉α =
∫
Bn

g(z)em(z)ēm(z)dνα(z).

The following theorem characterizes all l ∈ Zn such that the set {m ∈ Nn :
m + l � 0 and ωα(g,m + l) = ωα(g,m)} does not have property (P), when
g has a special form.

Proposition 3.6. Suppose g(z) = |z1|2s1 · · · |zn|2snh(|z|) for z ∈ Bn, where
s1, . . . , sn ≥ 0 and h : [0, 1) → C is a bounded measurable function. Assume
that g is not a constant function on Bn. Then for l = (l1, . . . , ln) ∈ Zn with
Σl = 0 and s1l1 = · · · = snln = 0, we have ωα(g,m + l) = ωα(g,m) for all
m ∈ Nn with m+ l � 0. Conversely, if l = (l1, . . . , ln) ∈ Zn such that the set
{m ∈ Nn : m + l � 0 and ωα(g,m + l) = ωα(g,m)} does not have property
(P) then Σl = 0 and s1l1 = · · · = snln = 0.

Proof. We first notice that when n = 1, if g(z1) = |z1|s1h(|z1|) then we may
rewrite g(z1) = h̃(|z1|) where h̃(t) = ts1h(t) for 0 ≤ t < 1. By this reason
we always assume that s1 = 0 if n = 1.
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We next recall the following formula. For any λ = (λ1, . . . , λn) ∈ Cn with
<(λ1), . . . ,<(λn) > −1, we have∫

Sn

|ζ1|2λ1 · · · |ζn|2λndσ(ζ) =
Γ(n)Γ(λ1 + 1) · · ·Γ(λn + 1)

Γ(n + Σλ)
. (3.3)

The case λ ∈ Nn is in Lemma 1.11 in [10] and in fact the same argument
works also for the general case.

Now for λ = (λ1, . . . , λn) ∈ Cn with <(λ1), . . . ,<(λn) > −1, we have∫
Bn

|z1|2λ1 · · · |zn|2λnh(|z|)dνα(z)

= 2ncα

1∫
0

r2n−1
{∫

Sn

|rζ1|2λ1 · · · |rζn|2λndσ(ζ)
}

h(r)(1− r2)αdr

= 2ncα
Γ(n)Γ(λ1 + 1) · · ·Γ(λn + 1)

Γ(n + Σλ)

1∫
0

r2n+2Σλ−1h(r)(1− r2)αdr

= cα
Γ(n + 1)Γ(λ1 + 1) · · ·Γ(λn + 1)

Γ(n + Σλ)

1∫
0

rn+Σλ−1h(r1/2)(1− r)αdr

=
Γ(n + α + 1)

Γ(α + 1)
Γ(λ1 + 1) · · ·Γ(λn + 1)

Γ(n + Σλ)

1∫
0

rn+Σλ−1h(r1/2)(1− r)αdr,

(3.4)

since cα =
Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
.

Put s = (s1, . . . , sn). For any w ∈ C with <(w) ≥ 1, define

H(w) =
Γ(w + α + 1)
Γ(w + Σs)

1∫
0

rw+Σs−1h(r1/2)(1− r)αdr. (3.5)

Arguing as in the proof of Lemma 3.3 we see that H is analytic on the
half plane <(w) > 1 and is continuous on <(w) ≥ 1. By the asymptotic
behavior of the Gamma function at infinity and the boundedness of h, there
is a polynomial p such that |H(w)| ≤ p(|w|) for all <(w) ≥ 1.

For ζ = (ζ1, . . . , ζn) ∈ Cn with <(ζj) ≥ 0, define

F (ζ) =
1

Γ(α + 1)

n∏
j=1

Γ(ζj + sj + 1)
Γ(ζj + 1)

H(n + Σζ).
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Then F is analytic in the interior of its defining domain and for any m =
(m1, . . . ,mn) in Nn, we have

ωα(g,m)

= 〈Tgem, em〉α

=
Γ(n + |m|+ α + 1)

Γ(n + α + 1)
∏n

j=1 Γ(mj + 1)

∫
Bn

g(z)zmz̄mdνα(z)

=
Γ(n + |m|+ α + 1)

Γ(n + α + 1)
∏n

j=1 Γ(mj + 1)

∫
Bn

|z1|2(s1+m1) · · · |zn|2(sn+mn)h(|z|)dνα(z)

=
1

Γ(α + 1)

n∏
j=1

Γ(mj + sj + 1)
Γ(mj + 1)

H(n + |m|) (by (3.4) and (3.5))

= F (m).

Suppose l = (l1, . . . , ln) ∈ Zn such that s1l1 = · · · = snln = 0 and

Σl = 0. Then for all m ∈ Nn with m + l � 0 we have
Γ(mj + sj + 1)

Γ(mj + 1)
=

Γ(mj + lj + sj + 1)
Γ(mj + lj + 1)

for 1 ≤ j ≤ n, and |m + l| = |m|+ Σl = |m|. Hence we

have ωα(g,m + l) = F (m + l) = F (m) = ωα(g,m) for all such m.
Conversely, suppose l = (l1, . . . , ln) ∈ Zn such that the set {m ∈ Nn :

m + l � 0 and ωα(g,m + l) = ωα(g,m)} does not have property (P). Then
the set {m ∈ Nn : m + l � 0 and F (m + l) = F (m)} does not have property
(P). By Proposition 3.2, we see that F (ζ + l) = F (ζ) for all ζ ∈ Cn with
<(ζj) > max{0,−lj}, j = 1, . . . , n. This implies that for such ζ,

n∏
j=1

Γ(ζj + sj + lj + 1)
Γ(ζj + lj + 1)

H(n+Σζ+Σl) =
n∏

j=1

Γ(ζj + sj + 1)
Γ(ζj + 1)

H(n+Σζ). (3.6)

We now show that s1l1 = 0. If s1 = 0, there is nothing to show. So
suppose s1 > 0 (then we must have n ≥ 2). We will show that l1 = 0.
Assume for contradiction that l1 6= 0. We consider here only the case l1 > 0.
The case l1 < 0 can be handled is a similar fashion. Since l1 ≥ 1, equation
(3.6) gives

(ζ1 + s1 + 1) · · · (ζ1 + s1 + l1)
n∏

j=2

Γ(ζj + sj + lj + 1)
Γ(ζj + lj + 1)

H(n + Σζ + Σl)

= (ζ1 + 1) · · · (ζ1 + l1)
n∏

j=2

Γ(ζj + sj + 1)
Γ(ζj + 1)

H(n + Σζ). (3.7)

Now choose m̃ = (m2, . . . ,mn) such that mj ≥ max{1, 1 − lj} for all j =

2, . . . ,m and such that

1∫
0

rn+|m̃|+Σl+Σs−2h(r1/2)(1−r)αdr 6= 0. It is possible
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to do so since h is not identically zero on [0, 1). Then with ζ = (ζ1, m̃), (3.7)
gives

(ζ1 + s1 + 1) · · · (ζ1 + s1 + l1)
n∏

j=2

Γ(mj + sj + lj + 1)
Γ(mj + lj + 1)

H(n + ζ1 + |m̃|+ Σl)

= (ζ1 + 1) · · · (ζ1 + l1)
n∏

j=2

Γ(mj + sj + 1)
Γ(mj + 1)

H(n + ζ1 + |m̃|),

for all ζ1 ∈ Cn with <(ζ1) > 0. Since each side of the above identity is in
fact an analytic function of ζ1 on <(ζ1) > max{1−n−|m̃|−Σl, 1−n−|m̃|}
(which contains −1), the identity still holds true for ζ1 = −1. Therefore, we
get

s1(s1 + 1) · · · (s1 + l1 − 1)
n∏

j=2

Γ(mj + sj + lj + 1)
Γ(mj + lj + 1)

H(n + |m̃|+ Σl − 1) = 0,

which is a contradiction because the left hand side is nonzero by the choice
of m2, . . . ,mn. Thus we have l1 = 0. Similarly, we have sjlj = 0 for any
j = 2, . . . , n. Now equation (3.6) becomes H(n + Σζ + Σl) = H(n + Σζ) for
all ζ ∈ Cn with <(ζj) > max{0,−lj}, j = 1, . . . , n. Let w = n + Σζ. Then
<(w) > max{n, n− Σl} and H(w + Σl) = H(w).

We now show that Σl = 0. Assume for contradiction that Σl 6= 0. By
changing w to w + Σl if necessary, we may assume that Σl > 0. Since H is
periodic and analytic in <(w) > n, it extends to a periodic entire function on
C which we still denote by H. Now for a complex number w with <(w) ≤ n,
choose a number k ∈ N such that <(w) + k(Σl) ≤ n < <(w) + (k + 1)(Σl).
Then we have

|H(w)| = |H(w + (k + 1)(Σl))| ≤ p(|w + k(Σl) + Σl|) ≤ q(|w + k(Σl)|),

for some polynomial q with nonnegative coefficients. Now since k(Σl) <
n−<(w) ≤ n + |w|, we have q(|w + k(Σl)|) ≤ q(|w|+ k(Σl)) ≤ q(n + 2|w|).
Hence |H(w)| ≤ q(n + 2|w|) when <(w) ≤ n. Now when <(w) > n, we have
|H(w)| ≤ p(|w|). In general, for any w ∈ C, |H(w)| ≤ q(n + 2|w|) + p(|w|).
Since H is entire, it must be a polynomial. But H is also periodic, so it
must be a constant function. We conclude that there is a constant c so that

Γ(w + α + 1)
Γ(w + Σs)

1∫
0

rw+Σs−1h(r1/2)(1− r)αdr = H(w) = c

for all w ∈ C with <(w) ≥ 1.
Suppose Σs = 0 (hence s1 = · · · = sn = 0). Then from the identity

1 =
Γ(w + α + 1)
Γ(w)Γ(α + 1)

1∫
0

rw−1(1− r)αdr,
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we conclude that

1∫
0

(
h(r1/2)− c

Γ(α + 1)

)
rw−1(1− r)αdr = 0 for all w ∈ C

with <(w) ≥ 1. Thus, h(t) =
c

Γ(α + 1)
for almost all t ∈ [0, 1). This shows

that g(z) = h(|z|) is a constant function on Bn, which is a contradiction.
Now suppose Σs > 0. Then for w = u ∈ R with u ≥ 1, we have

|c| =
∣∣∣Γ(u + α + 1)

Γ(u + Σs)

1∫
0

ru+Σs−1h(r1/2)(1− r)αdr
∣∣∣

≤ ‖h‖∞
Γ(u + α + 1)
Γ(u + Σs)

1∫
0

ru+Σs−1(1− r)αdr

= ‖h‖∞
Γ(u + α + 1)
Γ(u + Σs)

Γ(α + 1)Γ(u + Σs)
Γ(u + Σs + α + 1)

= ‖h‖∞
Γ(α + 1)Γ(u + α + 1)

Γ(u + Σs + α + 1)

≈ ‖h‖∞Γ(α + 1)u−Σs,

by Stirling’s formula for the Gamma function. Let u →∞, we get c = 0. So

we have

1∫
0

rw+Σs−1h(r1/2)(1− r)αdr = 0 for all w ∈ C with <(w) ≥ 1. This

implies that h(r) = 0 for almost all r ∈ [0, 1). Hence g(z) = 0 for almost all
z ∈ Bn, which is again a contradiction. Thus we have Σl = 0. �

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. Since g(z1, . . . , zn) = g(|z1|, . . . , |zn|) for almost all
z ∈ Bn, Theorem 3.1 in [7] shows that the Toeplitz operator Tg is diago-
nal with respect to the standard orthonormal basis. The eigenvalues of Tg

are given by ωα(g,m) = 〈Tgem, em〉α for m ∈ Nn. Note that ωα(ḡ,m) =
ω̄α(g,m) for all such m.

Now TfTg = TgTf on P if and only if for all l ∈ Zn and m ∈ Nn with
m + l � 0,

0 = 〈(TfTg − TgTf )em+l, em〉α
= 〈ωα(g,m + l)Tfem+l, em〉α − 〈Tfem+l, ωα(ḡ,m)em〉α (3.8)

= (ωα(g,m + l)− ωα(g,m))〈Tfem+l, em〉α.

Suppose f(eiθz) = f(z) for almost all θ ∈ R, almost all z ∈ Bn, and for
1 ≤ j ≤ n with sj 6= 0, f(z1, . . . , zj−1, |zj |, zj+1, . . . , zn) = f(z) for almost
all z ∈ Bn. Let l = (l1, . . . , ln) be in Zn. If Σl 6= 0 or for some 1 ≤ j ≤ n,
sjlj 6= 0 (hence sj 6= 0 and lj 6= 0) then conclusion (1) of Corollary 3.5
shows that 〈Tfem+l, em〉α = 0 for all m ∈ Nn with m + l � 0. If Σl = 0 and
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s1l1 = · · · = snln = 0, Proposition 3.6 shows that ωα(g,m + l) = ωα(g,m)
for all m ∈ Nn with m + l � 0. Thus (3.8) holds for all l ∈ Zn and m ∈ Nn

with m + l � 0. Therefore TfTg = TgTf on P.
Now suppose TfTg = TgTf on P. Let l = (l1, . . . , ln) be in Zn such that

Σl 6= 0 or sjlj 6= 0 for some 1 ≤ j ≤ n. Then Proposition 3.6 shows that
the set {m ∈ Nn : m + l � 0 and ωα(g,m + l) = ωα(g,m)} has property
(P). Since (3.8) holds for all m ∈ Nn with m + l � 0, we conclude that

the set {m ∈ Nn : m + l � 0 and
∫
Bn

f(z)zm+lz̄m(1− |z|2)αdν(z) = 0} does

not have property (P). This is true whenever l ∈ Zn such that Σl 6= 0 or
sjlj 6= 0 for some 1 ≤ j ≤ n. Conclusion (2) of Corollary 3.5 now implies
that for almost all θ ∈ R and almost all z ∈ Bn, we have f(z) = f(eiθz) =
f(z1, . . . , zj−1, eiθzj , zj+1, . . . , zn) for any 1 ≤ j ≤ n with sj 6= 0. This
shows that f(eiθz) = f(z) for almost all θ ∈ R, almost all z ∈ Bn, and for
1 ≤ j ≤ n with sj 6= 0, f(z1, . . . , zj−1, |zj |, zj+1, . . . , zn) = f(z) for almost
all z ∈ Bn. �

Remark 3.7. If s1 = · · · = sn = 0 so that g(z) = h(|z|) for a non-constant
bounded measurable function h on [0, 1), then Theorem 1.2 shows that for
f ∈ L2

α, Tf commutes with Tg if and only if f(eiθz) = f(z) for almost all
z ∈ Bn, almost all θ ∈ R. In the one dimensional case, those functions are
exactly radial functions. So we recover Čučković and Rao’s result.

Remark 3.8. If g(z) = |z1| · · · |zn−1|h(|z|) for some bounded measurable
function h on [0, 1) then Theorem 1.2 shows that for f ∈ L2

α, Tf commutes
with Tg if and only if f(z) = f(eiθz) = f(|z1|, . . . , |zn−1|, zn) for almost all
θ ∈ R and almost all z ∈ Bn . This is equivalent to the condition that
f(z) = f(|z1|, . . . , |zn|) for almost all z ∈ Bn.
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