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Abstract. We study the commuting problem of Toeplitz operators on
the Fock space over Cn. Given a separately radial polynomial ϕ in z
and z̄, we characterize polynomially bounded functions ψ such that the
operators Tψ and Tϕ commute. Several examples and consequences are
discussed.

1. Introduction

Let L2(Cn, dµ) be the Hilbert space of all square integrable functions in

Cn with respect to the Gaussian measure dµ(z) = π−ne−|z|
2
dV (z). Here

dV is the Lebesgue volume measure on Cn. For any two functions f, g ∈
L2(Cn, dµ), we have the inner product

〈f, g〉 =

∫
Cn
f(z)g(z)dµ(z). (1.1)

The Fock space (also known as the Segal–Bargmann space), denoted by F2
n,

consists of all entire functions that belong to L2(Cn, dµ). It is well known
that F2

n is a closed subspace of L2(Cn, dµ).
Let N0 denote the set of non-negative integers. For k = (k1, . . . , kn) ∈ Nn0

and z = (z1, . . . , zn) ∈ Cn, we write k! = k1! · · · kn! and zk = zk11 · · · zknn . It

is well known that
{
ek(z) = zk/

√
k! : k ∈ Nn0

}
is an orthonormal basis for

F2
n. For more details on F2

n and its variants, see [14].
Let P : L2(Cn, dµ) → F2

n be the orthogonal projection from L2(Cn, dµ)
onto F2

n. For ϕ ∈ L2(Cn, dµ), the Toeplitz operator Tϕ : F2
n → F2

n is defined
by

Tϕ(f) = P (ϕf),

for all f in F2
n for which ϕf belongs to L2(Cn, dµ). The function ϕ is called

the symbol of Tϕ. It is clear that if ϕ is bounded, then Tϕ is a bounded
operator with ‖Tϕ‖ ≤ ‖ϕ‖∞.

Recall that a function ϕ on Cn is polynomially bounded if there exists an
integer d ≥ 0 such that the map z 7→ (1 + |z|d)−1ϕ(z) is bounded. It is
not difficult to see that for such ϕ, the domain of Tϕ contains all analytic
polynomials. In fact, it has been shown by Bauer [3] that if ϕ1, . . . , ϕs are
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polynomially bounded, then the domain of the product Tϕ1 · · ·Tϕs contains
all analytic polynomials.

Our main goal in this paper is to study the commuting problem: given a
non-constant function ϕ, find the necessary and sufficient conditions on the
function ψ such that TϕTψ = TψTϕ. The commuting problem for Toeplitz
operators on the Hardy space of the unit disk was solved by Brown and
Halmos in their seminal paper [6] back in the early sixties. Their result has
motivated a vast literature on the studies of commuting Toeplitz operators
acting on other Hilbert spaces of analytic functions: the Bergman space
over the unit disk [1, 2, 9], the Hardy and Bergman spaces over the polydisk
or the ball in higher dimensions [7, 10, 11, 12, 13], just to list a few. The
interested reader is referred to the above papers for more references.

Recently, Bauer and Lee [5] studied the commuting problem on the Fock
space and they obtained the following results in one dimension (n = 1).

(A) If ϕ is a non-constant analytic polynomial and ψ is assumed to be a
polynomial in z and z̄, then ψ must also be analytic.

(B) If ϕ is a non-constant, polynomially bounded radial function on C, then
ψ must also be radial. Here, a function g is radial if g(z) = g̃(|z|) for
some function g̃ : [0,∞) → C. A higher dimensional version of this
result [4, Proposition 5.6] was also obtained under the assumption that
both ϕ and ψ are polynomials in z and z̄.

The proof of (A) in [5] makes use of a composition formula for Toeplitz
operators with polynomial symbols. For any polynomials ϕ and ψ in z and
z̄, we have TϕTψ = Tϕ]ψ, where ϕ]ψ is a polynomial given by

ϕ]ψ =
∑
γ∈Nn0

(−1)|γ|

γ!

∂|γ|ϕ

∂zγ
∂|γ|ψ

∂z̄γ
.

See [8, Theorem 2] for a proof. From the composition formula, we see that
TϕTψ = TψTϕ if and only if ϕ]ψ = ψ]ϕ. In one dimensional case, it follows
from this equation (see the proof of [4, Proposition 5.4]) that ψ must be
analytic whenever ϕ is analytic. On the other hand, the situation becomes
much more complicated in higher dimensions. If ϕ is a non-constant analytic
polynomial in zj only, then it can be shown that ψ must be analytic in the
variable zj . One might guess that for each 1 ≤ j ≤ n, if ∂zjϕ 6≡ 0, then
ψ must be analytic in the variable zj . It turns out that this naive guess is
incorrect. In fact, if ϕ(z) = z1 + z2 and ψ(z) = z1 − z2, then one can check
that ϕ]ψ = ϕψ = ψ]ϕ. Consequently, statement (A) is false when n ≥ 2. It
would be interesting to obtain a correct version of (A) in this case but we
have not been aware of such a result.

In [4], Bauer and Le generalized (B) to higher dimensions. They showed
that if both ϕ and ψ are polynomially bounded functions in Cn and ϕ is
radial such that Tψ and Tϕ commute, then ψ(γz1, . . . , γzn) = ψ(z1, . . . , zn)
for a.e. z = (z1, . . . , zn) ∈ Cn and a.e. γ on the unit circle T.
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The main goal of our paper is to generalize (B) to higher dimensions in
a different direction. Let C[z, z̄] denote the space of all polynomials in z
and z̄. We assume that ϕ ∈ C[z, z̄] is separately radial (see Section 2) and
investigate polynomially bounded functions ψ for which Tψ and Tϕ commute.
We give a description of the functions ψ and discuss several examples. An
interesting consequence of our result is that the set of all such functions ψ
forms an algebra. We shall also provide an example which illustrates the
difference between the commuting problem on the Fock space and the same
problem on the Bergman space over the unit ball.

2. Preliminaries and examples

Recall that a function g : Cn → C is called separately radial if

g(z1, . . . , zn) = g̃(|z1|, . . . , |zn|)
for some function g̃ : [0,∞)n → C. In this section, we investigate Toeplitz
operators on F2

n whose symbols are separately radial polynomials. These
operators are unbounded but they are diagonal with respect to the stan-
dard orthonormal basis of monomials. We shall explore their eigenvalues in
details.

The following result is well known but for the reader’s convenience, we
sketch a proof.

Lemma 2.1. Let g be a polynomially bounded function which is separately
radial in the form g(z) = g̃(|z1|, . . . , |zn|) for z ∈ Cn. Then Tg is a diago-
nal operator with respect to the standard orthonormal basis of monomials:
Tgem = ω(g,m)em for all m ∈ Nn0 . The eigenvalue ω(g,m) is given by

ω(g,m) =
1

m!

∫
[0,∞)n

g̃(
√
t1, . . . ,

√
tn)tm1

1 · · · t
mn
n e−(t1+···+tn)dt1 · · · dtn.

Proof. For multi-indices m and k, we compute

〈Tgem, ek〉 = 〈gem, ek〉 = π−n
∫
Cn
g(z)

zm√
m!

zk√
k!
e−|z|

2
dV (z).

Integration in polar coordinates shows that the integral is zero if m 6= k.
For m = k, the integral becomes

〈Tϕem, em〉 =
2n

πnm!

∫
[0,∞)n

g̃(r) r2m1+1
1 · · · r2mn+1

n e−(r
2
1+···+r2n) dr1 · · · drn

=
1

m!

∫
[0,∞)n

g̃(
√
t1, . . . ,

√
tn)tm1

1 · · · t
mn
n e−(t1+···+tn)dt1 · · · dtn.

In the second equality, we have used the change of variables tj = r2j for
1 ≤ j ≤ n. The conclusion of the lemma follows. �

When the function ϕ is a separately radial polynomial, the eigenvalues
of Tϕ can be computed explicitly. The following result shows that these
eigenvalues are polynomials.



4 AMILA APPUHAMY AND TRIEU LE

Lemma 2.2. Let ϕ be a polynomial in C[z, z̄]. If ϕ is separately radial, then
ω(ϕ,m) is a polynomial in m.

Proof. By the hypothesis, ϕ can be written as a linear combination of
monomials of the form |z1|2d1 · · · |zn|2dn for nonnegative integers d1, . . . , dn.
Hence, it suffices to prove the lemma for ϕ being such a monomial. By
Lemma 2.1, we have

ω(ϕ,m) =
1

m!

∫
[0,∞)n

td1+m1
1 · · · tdn+mnn e−(t1+···+tn)dt1 · · · dtn

=
(m1 + d1)! · · · (mn + dn)!

m1! · · ·mn!

= [(m1 + d1) · · · (m1 + 1)] · · · [(mn + dn) · · · (mn + 1)].

This shows that ω(ϕ,m) is a polynomial in m. The term with highest degree

is md1
1 · · ·mdn

n . �

Example 2.3. If ϕ(z) = c0 + c1|z1|2 + · · ·+ cn|zn|2, where c0, c1, . . . , cn are
complex numbers, then

ω(ϕ,m) = c0 + c1(m1 + 1) + · · ·+ cn(mn + 1)

= c1m1 + · · ·+ cnmn + (c0 + · · ·+ cn).

Remark 2.4. Example 2.3 shows that if q(m) is a linear polynomial in
m, then there exists a unique function ϕ of the form ϕ(z) = c0 + c1|z1|2 +
· · · + cn|zn|2 such that ω(ϕ,m) = q(m) for all m ∈ Nn0 . Furthermore, if
q(−1, . . . ,−1) = 0, then c0 = 0.

Now given a separately radial polynomial ϕ ∈ C[z, z̄], we would like to
identify all polynomially bounded functions ψ such that Tϕ and Tψ commute
on analytic polynomials, that is, TϕTψh = TψTϕh for all analytic polynomi-
als h. This is equivalent to

〈TϕTψem, ek〉 = 〈TψTϕem, ek〉, (2.1)

for all multi-indices m, k in Nn0 .

Since Tϕek = ω(ϕ, k) ek = ω(ϕ, k) ek by Lemma 2.1, the left hand side
becomes

〈TϕTψem, ek〉 = 〈Tψem, Tϕek〉 = ω(ϕ, k)〈Tψem, ek〉.
Combining with the identity Tϕem = ω(ϕ,m)em, we rewrite (2.1) as(

ω(ϕ, k)− ω(ϕ,m)
)
〈Tψem, ek〉 = 0

⇐⇒
(
ω(ϕ, k)− ω(ϕ,m)

) ∫
Cn
ψ(z)zmzk dµ(z) = 0. (2.2)

We have shown that Tψ commutes with Tϕ on analytic polynomials if and
only if (2.2) holds for all multi-indices m, k in Nn0 . This shows that our
commuting problem reduces to the study of functions ψ that satisfies (2.2).
As we shall see in the examples below, the following result plays an important
role in our analysis.
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Definition 2.5. Let l = (l1, . . . , ln) be an n-tuple of integers. A function
ψ is said to be l -invariant if ψ(γl1z1, . . . , γ

lnzn) = ψ(z) for a.e. z ∈ Cn and
a.e. γ ∈ T.

Lemma 2.6 (Lemma 3.2 in [4]). Let l ∈ Zn be given. Suppose ψ is a
polynomially bounded function on Cn. Then the following statements are
equivalent.

(a) ψ is l-invariant.

(b)

∫
Cn
ψ(w)wmwk dµ(w) = 0 for all multi-indices m, k ∈ Nn0 satisfying the

condition (k −m) · l = (k1 −m1)l1 + · · ·+ (kn −mn)ln 6= 0.

Let us now consider two examples. In each example, a separately radial
polynomial ϕ is given and we need to identify all polynomially bounded
functions ψ such that Tψ commutes with Tϕ. While the first example can
be analyzed with the help of Equation (2.2) and Lemma 2.6, the second
example is more subtle and can only be fully explained after we present our
main result.

Example 2.7. Let ϕ1(z) = |z1|2 + 2|z2|2 on C2. Characterize all polynomi-
ally bounded functions ψ such that Tϕ1 and Tψ commute.

The calculation in Example 2.3 gives ω(ϕ1,m) = m1 + 2m2 + 3. Now
equation (2.2) shows that Tψ commutes with Tϕ1 if and only if(

k1 + 2k2 −m1 − 2m2

)∫
C2

ψ(z)zmzk dµ(z) = 0, (2.3)

for all multi-indicies m = (m1,m2) and k = (k1, k2) in N2
0.

The necessary and sufficient condition for (2.3) to hold for all m, k is
that whenever (k − m) · (1, 2) = k1 + 2k2 − m1 − 2m2 6= 0, we have∫
C2 ψ(z)zmzk dµ(z) = 0. By Lemma 2.6, this is equivalent to ψ being (1, 2)-

invariant, that is,

ψ(γz1, γ
2z2) = ψ(z1, z2)

for a.e. z ∈ C2 and a.e. γ ∈ T. Separately radial functions as well as the
function z21z2 are examples of such ψ.

Example 2.8. Let ϕ2(z) = |z1|2|z2|2 on C2. By Lemma 2.1, we have

ω(ϕ2,m) = (m1 + 1)(m2 + 1).

Therefore, Tψ commutes with Tϕ2 if and only if for all m = (m1,m2) and
k = (k1, k2) in N2

0, we have(
(k1 + 1)(k2 + 1)− (m1 + 1)(m2 + 1)

)∫
C2

ψ(z)zmzk dµ(z) = 0. (2.4)

The set of all m, k for which the first factor vanishes is more complicated
than that in Example 2.7. It includes the cases (m1,m2) = (k1, k2) and
(m1,m2) = (k2, k1). A sufficient condition for (2.4) to hold is that ψ be
separately radial. It turns out, even though not obvious, that this condition
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is also necessary. We shall provide a complete argument after discussing the
general result.

In analyzing Equation (2.2), we need another result which shows that for
a special class of analytic functions on the half space Kn ⊂ Cn, the values
of the functions on the lattice Nn uniquely determine the functions. Here,
K denotes the right half-plane in C.

We recall a definition from [4]. For a polynomially bounded function f
on Cn, we define

Mf(ζ) =

∫
Cn
f(z)|z1|2ζ1 · · · |zn|2ζn dν(z),

for any ζ = (ζ1, . . . , ζn) ∈ Kn
. It can be checked that Mf is analytic

on Kn and continuous on Kn
. The following result is a special case of [4,

Proposition 3.1].

Lemma 2.9. Let f be a polynomially bounded function and p be an analytic
polynomial on Cn. Let G(ζ) = p(ζ) · (Mf)(ζ) for ζ ∈ Kn

. If G(k) = 0 for

all k ∈ Nn, then G(ζ) = 0 for all ζ ∈ Kn
.

As a consequence of this result, we show that a much stronger version of
Equation (2.2) holds.

Proposition 2.10. Let ϕ ∈ C[z, z̄] be separately radial and ψ be polynomi-
ally bounded on Cn such that Tϕ and Tψ commute on analytic polynomials.
Then for any m, k ∈ Nn0 ,(
ω(ϕ,m+ ζ)− ω(ϕ, k + ζ)

)∫
Cn
ψ(z)zmz̄k|zζ |2 dµ(z) = 0 for all ζ ∈ Kn

.

Consequently, if ω(ϕ,m+ ζ)−ω(ϕ, k+ ζ) is not identically zero for ζ ∈ Kn
,

then ∫
Cn
ψ(z)zmz̄k dµ(z) = 0.

Proof. Since Tψ commutes with Tϕ, Equation (2.2) holds for all multi-indices
m, k ∈ Nn0 . Using the substitution m 7→ m+ ζ and k 7→ k + ζ with ζ ∈ Nn0 ,
we obtain(

ω(ϕ, k + ζ)− ω(ϕ,m+ ζ)
)
·
∫
Cn
ψ(z)zmzk|zζ |2dµ(z) = 0.

By Lemma 2.9, the above identity also holds for all ζ ∈ Kn
. Since both

factors are analytic in ζ, it follows that one of them must be identically zero
on Kn

. As a result, if ω(ϕ,m+ ζ)− ω(ϕ, k+ ζ) is not identically zero, then∫
Cn
ψ(z)zmz̄k|zζ |2 dµ(z) = 0

for all ζ ∈ Kn
. Setting ζ = 0, we obtain the conclusion of the proposition.

�
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Proposition 2.10 suggests that we consider multi-indicesm and k for which
the polynomials ω(ϕ,m+ζ) and ω(ϕ, k+ζ) are identically equal for ζ ∈ Kn

.
This leads to a definition for general analytic polynomials in several complex
variables.

We shall let C[ζ] denote the space of all analytic polynomials in ζ =
(ζ1, . . . , ζn). Let q be a polynomial in C[ζ]. Define

Per(q) =
{
a ∈ Cn : q(a+ ζ) = q(ζ) for all ζ ∈ Cn

}
.

Then 0 is always an element of Per(q) and any a 6= 0 belonging to Per(q) is
a period of q. Since q is a polynomial, it follows that if q(a + ζ) = q(ζ) for
all ζ in a half-plane of the form u+ Kn for some u ∈ Cn, then a belongs to
Per(q). We also define PerZ(q) = Per(q) ∩ Zn.

Remark 2.11. With the above notation, the conclusion of Proposition
2.10 can be restated as: for any m, k ∈ Nn0 , if m − k does not belong to
PerZ(ω(ϕ, ζ)), then ∫

Cn
ψ(z)zmz̄k dµ(z) = 0.

In the following result, we establish a linear structure of Per(q) and
PerZ(q). This structure will play an important roll in our main result.

Proposition 2.12. Let q be a polynomial in C[ζ]. Then the following state-
ments hold.

(a) The set Per(q) is a vector subspace of Cn.
(b) There exist d vectors u1, . . . , ud ∈ Zn (1 ≤ d ≤ n) such that

PerZ(q) =
{
u1, . . . , ud

}⊥
=
{
u ∈ Zn : u · uj = 0 for all j = 1, . . . , d

}
.

Proof. The proof of (a) is straightforward and we leave it for the interested
reader. We only sketch a proof of (b). Let PerQ(q) = Per(q) ∩ Qn. It
follows from (a) that PerQ(q) is a linear subspace of Qn. Now consider the
standard Euclidean inner product defined on Qn and take {u1, . . . , ud} to be
a basis of the orthogonal complement of PerQ(q). Multiplying each vector
by a sufficiently large integer if necessary, we may assume that u1, . . . , ud
belong to Zn. Since PerZ(q) = PerQ(q) ∩ Zn, the conclusion of the lemma
follows. �

We conclude this section with some examples.

Example 2.13. Let q1(ζ) = ζ1 + 2ζ2 + 3 for ζ = (ζ1, ζ2) ∈ C2. Recall from
Example 2.7 that q1(ζ) = ω(ϕ1, ζ), where ϕ1(z) = |z1|2 + 2|z2|2. We have

PerZ(q1) =
{

(a1, a2) ∈ Z2 : q1(a1 + ζ1, a2 + ζ2) = q1(ζ1, ζ2) for all ζ ∈ C2
}

=
{

(a1, a2) ∈ Z2 : a1 + 2a2 = 0
}

=
{

(1, 2)
}⊥
.
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Example 2.14. Let q2(ζ) = (ζ1 + 1)(ζ2 + 1). This polynomial appeared in
Example 2.8 in which q2(ζ) = ω(ϕ2, ζ), where ϕ2(z) = |z1|2|z2|2. We have

PerZ(q2) =
{

(a1, a2) ∈ Z2 : q2(a+ ζ) = q2(ζ) for all ζ ∈ C2
}

=
{

(a1, a2) ∈ Z2 : (ζ1 + 1)a2 + (ζ2 + 1)a1 + a1a2 = 0 for all ζ ∈ C2
}

= {(0, 0)}

= {(1, 0), (0, 1)}⊥.

Example 2.15. Let ϕ3(z) = |z1|2 +
√

3|z2|2 on C2. Lemma 2.1 gives

q3(ζ) = ω(ϕ3, ζ) = ζ1 +
√

3 ζ2 + (1 +
√

3) for ζ ∈ C2.

It then follows that

PerZ(q3) =
{

(a1, a2) ∈ Z2 : (a1 + ζ1) +
√

3(a2 + ζ2) = ζ1 +
√

3 ζ2,

for all ζ ∈ C2
}

=
{

(a1, a2) ∈ Z2 : a1 +
√

3 a2 = 0
}

= {(0, 0)}

= {(1, 0), (0, 1)}⊥.

3. Main results and examples

We are now in a position to state and prove our main result. We shall
offer several examples and interesting consequences.

Theorem 3.1. Let ϕ ∈ C[z, z̄] be a separately radial polynomial. Then there
are vectors u1, . . . , ud (1 ≤ d ≤ n) in Zn such that for any polynomially
bounded function ψ, the following statements are equivalent.

(a) ψ is uj-invariant for all j = 1, . . . , d.
(b) TψTϕ = TϕTψ on analytic polynomials.

Furthermore, the vectors u1, . . . , ud are determined by the relation

{u1, . . . , ud}⊥ = PerZ(ω(ϕ, ζ)). (3.1)

Proof. Lemma 2.2 shows that the function ω(ϕ,m) is a polynomial in m. By
Proposition 2.12, we may choose vectors u1, . . . , ud that satisfies (3.1). By
the definition of PerZ(ω(ϕ, ζ)), for each u ∈ Zn, the identity ω(ϕ, u + ζ) =
ω(ϕ, ζ) holds for all ζ ∈ Cn if and only if u ⊥ {u1, . . . , ud}.

We first prove the implication (a) =⇒ (b). Assume that ψ is uj-invariant
for all j = 1, . . . , d. Let m and k be in Nn0 . If (m − k) · uj 6= 0 for some j,
then since ψ is uj-invariant, Lemma 2.6 shows that∫

Cn
ψ(z)zmzk dµ(z) = 0.

If (m − k) · uj = 0 for all 1 ≤ j ≤ d, then m − k belongs to PerZ(ω(ϕ, ζ)).
This implies

ω(ϕ, k) = ω(ϕ, (k −m) +m) = ω(ϕ,m).
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In either case, we have(
ω(ϕ, k)− ω(ϕ,m)

)∫
Cn
ψ(z)zmzk dµ(z) = 0. (3.2)

Consequently, Tϕ and Tψ commute on analytic polynomials.
We now prove (b) =⇒ (a). Assume that Tψ commutes with Tϕ on analytic

polynomials. Proposition 2.10 and Remark 2.11 show that for any m, k in
Nn0 , ∫

Cn
ψ(z)zmzkdµ(z) = 0 (3.3)

whenever m− k does not belong to PerZ(ω(ϕ, ζ)) = {u1, . . . , ud}⊥. Let j be
any integer between 1 and d. Suppose m and k are multi-indices such that
(m− k) · uj 6= 0. Then equation (3.3) holds because m− k does not belong
to PerZ(ω(ϕ, ζ)). Lemma 2.6 now shows that ψ is uj-invariant. Since j was
arbitrary, statement (a) holds. This completes the proof of the theorem. �

Using Theorem 3.1, we re-examine the examples given in Section 2.

Example 3.2. Let ϕ1(z) = |z1|2 + 2|z2|2 on C2 as in Example 2.7. We
showed in Example 2.13 that PerZ(ω(ϕ1, ζ)) = {(1, 2)}⊥. Let ψ be any
polynomially bounded function. It follows from Theorem 3.1 that Tψ com-
mutes with Tϕ if and only if ψ is (1, 2)-invariant. This is consistent with the
conclusion obtained in Example 2.7.

Example 3.3. Let ϕ2(z) = |z1|2|z2|2 on C2 as in Example 2.8. We showed
in Example 2.14 that PerZ(ω(ϕ2, ζ)) = {(1, 0), (0, 1)}⊥. Let ψ be any poly-
nomially bounded function on C2. It follows from Theorem 3.1 that Tψ com-
mutes with Tϕ if and only if ψ is both (1, 0)-invariant and (0, 1)-invariant.
Any such function must be separately radial.

Example 3.4. Let ϕ3(z) = |z1|2 +
√

3|z2|2 on C2 as in Example 2.15. We
have seen that PerZ(ω(ϕ3, ζ)) = {(1, 0), (0, 1)}⊥. The exact same argument
as in the previous example shows that Tψ commutes with Tϕ if and only if
ψ is separately radial.

Example 3.5. Let ϕ4(z) = |z1|2 − |z2|2 on C2. Example 2.3 shows

q4(m) = ω(ϕ4,m) = m1 −m2 for all m = (m1,m2) ∈ N2
0.

This implies that

PerZ(q4) =
{
a ∈ Z2 : q4(a+ ζ) = q4(ζ) for all ζ ∈ C2

}
=
{
a ∈ Z2 : a1 − a2 = 0

}
= {(1,−1)}⊥.

By Theorem 3.1, for any polynomially bounded function ψ on C2, the opera-
tor Tψ commutes with Tϕ4 if and only if ψ is (1,−1)-invariant, which means
ψ(γz1, γ̄z2) = ψ(z1, z2) for a.e. γ ∈ T and a.e. z ∈ C2. Examples of these
functions include separately radial functions as well as analytic functions
such as powers of z1z2.
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Remark 3.6. Example 3.5 illustrates a difference between Toeplitz opera-
tors on F2

n and on the Bergman space of the unit ball. In fact, a result in
[11] shows that on the Bergman space of the unit ball in C2, Tg commutes
with Tz1z2 if and only if g is analytic.

We now describe several interesting consequences of Theorem 3.1.

Theorem 3.7. Let ϕ be a separately radial polynomial. Suppose that ψ1,
ψ2 are polynomially bounded functions such that both Tψ1 and Tψ2 commute
with Tϕ. Then Tψ1ψ2 commutes with Tϕ as well. Consequently, the set

X (ϕ) = {ψ : Cn → C is polynomially bounded such that TψTϕ = TϕTψ}
(3.4)

is an algebra.

Remark 3.8. It is clear that the product Tψ1Tψ2 commutes with Tϕ. On the
other hand, since Tψ1ψ2 is not the same as Tψ1Tψ2 in general, the conclusion
of the theorem is quite nontrivial.

Proof. Assume TϕTψ1 = Tψ1Tϕ and TϕTψ2 = Tψ2Tϕ. Then by Theorem 3.1
there exist vectors u1, . . . , ud ∈ Zn such that both ψ1 and ψ2 are uj-invariant
for all 1 ≤ j ≤ d. This implies that the product ψ1ψ2 is also uj-invariant
for all such j. By Theorem 3.1 again, Tψ1ψ2 commutes with Tϕ. This shows
that X (ϕ) is closed under multiplication. On the other hand, it is clear that
X (ϕ) is closed under addition and scalar multiplication. Therefore, X (ϕ) is
an algebra. �

Examples 3.3 and 3.4 illustrate an interesting fact. Even though the
polynomials ϕ2 and ϕ3 are different, the identity X (ϕ2) = X (ϕ3) holds. It
turns out that such phenomenon happens in a more general setting.

Lemma 3.9. Let u1, . . . , ud be in Zn. Then there is a linear polynomial q
such that PerZ(q) = {u1, . . . , ud}⊥. As a consequence, there is a separately
radial polynomial ϕ(z) = c1|z1|2 + · · ·+ cn|zn|2 on Cn so that

PerZ(ω(ϕ, ζ)) = {u1, . . . , ud}⊥.

Proof. Choose d real numbers that are linearly independent over Q, for
example,

√
p1, . . . ,

√
pd, where p1, . . . , pd are distinct primes. Define

q(ζ) =
√
p1(u1 · ζ) + · · ·+√pd(ud · ζ).

Then we have

PerZ(q) =
{
a ∈ Zn : q(a+ ζ) = q(ζ) for all ζ ∈ Cn

}
=
{
a ∈ Zn :

√
p1(u1 · a) + · · ·+√pd(ud · a) = 0

}
=
{
a ∈ Zn : u1 · a = · · · = ud · a = 0}

=
{
u1, . . . , ud

}⊥
.

The existence of the polynomial ϕ follows from Remark 2.4. �
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Theorem 3.10. For any separately radial polynomial ϕ ∈ C[z, z̄], there
exists a separately radial polynomial ϕ̃ of the form

ϕ̃(z) = α1|z1|2 + · · ·+ αn|zn|2

such that X (ϕ̃) = X (ϕ).

Proof. Write PerZ
(
ω(ϕ, ζ)

)
= {u1, . . . , ud}⊥. By Lemma 3.9, there exists ϕ̃

in the required form such that

PerZ(ω(ϕ̃, ζ)) = {u1, . . . , ud}⊥ = PerZ(ω(ϕ, ζ)).

Theorem 3.1 then completes the proof. �

4. Concluding remarks

Throughout the paper, we have restricted our attention to symbols ϕ be-
ing separately radial polynomials. For these symbols, the Toeplitz operator
Tϕ is diagonal with respect to the standard orthonormal basis. The eigen-
value ω(ϕ,m) is a polynomial in m. Our description of Toeplitz operators
commuting with Tϕ relies on the space of periods of this polynomial. Our
result raises the question: what is the situation when ϕ is not a polynomial
(but still is separately radial)? In this case, the eigenvalue ω(ϕ,m) may not
be a polynomial in m. It is still possible to consider the function ω(ϕ, ζ)
with ζ in the right half-space but the periods of this function may not form
a vector space over Q, even though they are still closed under addition.
Consequently, PerZ(ω(ϕ, ζ)) may not have a convenient description as in
Proposition 2.12 (b). Due to this obstacle, difficulties arise in the proof of
Theorem 3.1 and we have not been able to resolve. We leave this problem
for future investigation.
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