
COMMUTANTS OF SEPARATELY RADIAL TOEPLITZ

OPERATORS IN SEVERAL VARIABLES

TRIEU LE

Abstract. If ϕ is a bounded separately radial function on the unit ball,
the Toeplitz operator Tϕ is diagonalizable with respect to the standard
orthogonal basis of monomials on the Bergman space. Given such a ϕ,
we characterize bounded functions ψ for which Tψ commutes with Tϕ.
Several examples are given to illustrate our results.

1. Introduction

Let d ≥ 1 be a fixed integer. For z = (z1, . . . , zd) ∈ Cd, we denote its

Euclidean norm by |z| =
√
|z1|2 + · · ·+ |zd|2. We write B for the open unit

ball consisting of all z ∈ Cd with |z| < 1. Let ν denote the Lebesgue measure
on B normalized so that ν(B) = 1. The Bergman space A2 consists of all
holomorphic functions on B which are square integrable with respect to ν.
Since A2 is a closed subspace of the Hilbert space L2 = L2(B, ν), there is
an orthogonal projection P from L2 onto A2. For any bounded measurable
function ϕ on the ball, the Toeplitz operator Tϕ is defined by Tϕh = P (ϕh)
for h ∈ A2. It is immediate that Tϕ is a bounded linear operator on A2

with ‖Tϕ‖ ≤ ‖ϕ‖∞. If ϕ is holomorphic on B, then Tϕ is the multiplication
operator on A2 with symbol ϕ.

The main goal of this paper is to study the commuting problem of Toeplitz
operators on A2: given a non-constant function ϕ, find the necessary and
sufficient conditions on the function ψ such that TϕTψ = TψTϕ. The com-
muting problem for Toeplitz operators on the Hardy space of the unit disk
was solved completely by Brown and Halmos in their seminal paper [8] back
in the early sixties. Their result has motivated a vast literature on the
studies of commuting Toeplitz operators acting on other Hilbert spaces of
analytic functions: the Bergman space over the unit disk [2, 3, 10], the
Hardy and Bergman spaces over the polydisk or the ball in higher dimen-
sions [9, 11, 16, 17, 22] and the Fock spaces [6, 5, 1], just to list a few. The
interested reader is referred to the above papers for more references. Quite
often, an additional assumption on the function ϕ is imposed. In fact, even
on the Bergman space over the unit disk, the general commuting problem
remains open.
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The motivation of this paper comes from the following results. Recall that
a function ϕ on B is called radial if there exists a function a on [0, 1) such
that ϕ(z) = a(|z|) for a.e. z ∈ B. Čučković and Rao [10] showed that if ϕ is
a non-constant radial function on the unit disk and Tψ commutes with Tϕ
on the Bergman space, then ψ must be a radial function as well. This result
was later generalized to higher dimensions. In [16], among other things, we
showed that for ϕ a bounded radial function on the unit ball, the operators
Tϕ and Tψ commute on the Bergman space if and only if ψ is invariant
under the natural diagonal action of the unit circle on B. That is, for each
complex number λ on the unit circle, we have ψ(λz) = ψ(z) for a.e. z ∈ B.
In this paper we consider a wider class of symbols. We shall assume that ϕ
is separately radial, that is, ϕ(z) = a(|z1|, . . . , |zd|) a.e., for some bounded
measurable function a on ∆ = {(t1, . . . , td) ∈ Rd+ : t21 + · · · + t2d < 1}. We
investigate necessary and sufficient conditions on ψ for which Tψ commutes
with Tϕ. We obtain a complete characterization of such ψ when ϕ is assumed
to be a separately radial polynomial. It turns out that the characterization
depends heavily on the behavior of the function ϕ. We shall see several
examples that illustrate this dependency. We state here our main results.

Theorem A. Let ϕ be a separately radial polynomial in z and z̄. There
then exist tuples of integers u1, . . . ,uk with u1 = (1, . . . , 1) such that for
any bounded functions ψ, the following two statements are equivalent.

(a) Tψ commutes with Tϕ on the Bergman space A2.
(b) For all 1 ≤ j ≤ k and all complex numbers λ with absolute value one,

we have

ψ(λuj,1z1, . . . , λ
uj ,dzd) = ψ(z) for a.e. z ∈ B,

where uj = (uj,1, . . . , uj,d).

A converse of Theorem A also holds, as in the following result.

Theorem B. Let u1 = (1, . . . , 1) and u2, . . . ,uk be given tuples of integers.
Then there exists a separately radial polynomial ϕ in z and z̄ such that for
any bounded functions ψ, the two statements in Theorem A are equivalent.

The paper is organized as follows. In Section 2 we investigate the eigenval-
ues of Toeplitz operators with separately radial symbols. Explicit formulas
are given in the case of polynomials. A preliminary study of the commuting
problem is considered. In Section 3, we obtain a characterization of Toeplitz
operators commuting with a given separately radial Toeplitz operator. The
characterization makes use of the notation of periods of functions holomor-
phic on the right-half space. Section 4 is specially devoted to the case of
polynomial symbols. We offer proofs of the main results in this section.
Various examples are discussed throughout the paper.



SEPARATELY RADIAL TOEPLITZ OPERATORS 3

2. Toeplitz operators with separately radial symbols

We first recall several facts about the Bergman space A2. Denote by Z+

the set of all non-negative integers. For z ∈ Cd and m ∈ Zd+, we use the
standard multiindex notation:

zm = zm1
1 · · · zmdd , m! = m1! · · ·md!, and |m| = m1 + · · ·+md

with the convention that 00 = 1. We write 1 to denote the tuple (1, . . . , 1).
Throughout the paper, we use boldface letters z,w, etc. to denote variables
in Cd and m,k, etc. to denote multiindices in Zd+. On the other hand, z, w,
etc. (respectively, m, k, etc.) denote single complex variables (respectively,
integers).

The inner product and norm on A2 is given by

〈f, g〉 =

∫
B
f(z) g(z) dν(z);

and

‖f‖2 =

∫
B
|f(z)|2 dν(z).

It is well known (see [21, Propositions 1.4.8 and 1.4.9] and [23, Lemma 1.11])
that monomials of different multi-degrees are orthogonal on the Bergman
space and

‖zm‖2 =
m! d!

(|m|+ d)!
.

It follows that the collection{
em(z) =

√
(|m|+ d)!

m! d!
zm : m ∈ Zd+

}
form an orthonormal basis for A2. The reader is referred to [23, Chapter 2]
for more details.

A function ϕ : B→ C is called separately radial if

ϕ(z1, . . . , zd) = a(|z1|, . . . , |zd|)

for some a : ∆ → C, where ∆ = {(t1, . . . , td) ∈ Rd+ : t21 + · · · + t2d < 1}.
Equivalently, ϕ is invariant under the natural action of the torus Td on B.

2.1. Eigenvalues. We begin with the following result that records the well-
known fact that Toeplitz operators with separately radial symbols are diag-
onalizable with respect to the standard orthonormal basis of monomials.

Proposition 2.1. Let ϕ be a bounded separately radial function on B. Then
Tϕem = ϕ̂(m) em for all m ∈ Zd+. The eigenvalue ϕ̂(m) is given by

ϕ̂(m) =

∫
B ϕ(z) |zm|2 dν(z)∫

B |zm|2 dν(z)
=

(|m|+ d)!

m! d!

∫
B
ϕ(z) |zm|2 dν(z).
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Remark 2.2. Let K denote the open right-half plane consisting of all com-
plex numbers whose real parts are positive and K be the close right-half
plane (the closure of K). The formula in Proposition 2.1 shows that ϕ̂ ex-
tends to a function defined on Kd as

ϕ̂(ζ) =

∫
B ϕ(z) |z1|2ζ1 · · · |zd|2ζd dν(z)∫

B |z1|2ζ1 · · · |zd|2ζd dν(z)
, (2.1)

for ζ = (ζ1, . . . , ζd) ∈ Kd
. An application of Fubini’s and Morera’s Theorems

show that ϕ̂ is holomorphic on Kd and is continuous on Kd
. In addition, ϕ̂

is the quotient of two bounded holomorphic functions on Kd.

In the case ϕ is a radial function, the function ϕ̂(m) depends only on |m|.
Toeplitz operators induced by radial symbols and the C∗-algebra generated
by them have been investigated intensively in the literature. See [4, 12, 13,
14], just to name a few. Toeplitz operators induced by separately radial
symbols have also appeared in several papers. In particular, Proposition 2.1
and its more general version on bounded Reinhardt domains can be found
in [18, 19].

In the case ϕ is a polynomial in z and z̄ that is separately radial, the
eigenvalues of Tϕ can be computed more explicitly. Let s be a non-negative
integer. We denote by Rads[z, z̄] the vector space of all separately radial
polynomials in z and z̄ of the form

ϕ(z) =
∑
|α|≤s

cα |zα|2,

where the coefficients cα’s are complex values. It is evident that the set
{|zα|2 : |α| ≤ s} is a linear basis for Rads[z, z̄].

In the lemma below, we show that when the defining symbol is a sepa-
rately radial polynomial, the eigenvalues ϕ̂(m) of the corresponding Toeplitz
operator is a rational function of the multiindex m.

Lemma 2.3. Let ϕ belong to Rads[z, z̄]. Then ϕ̂(m) is a rational function
of m in the form

ϕ̂(m) =
p(m)

(|m|+ d+ 1) · · · (|m|+ d+ s)
,

where p is a holomorphic polynomial of total degree at most s. Consequently,
we may extend ϕ̂(m) from being defined only on Zd+ to ϕ̂(ζ) defined on Cd
except when the denominator is zero.
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Proof. We first compute ϕ̂(m) when ϕ is a separately radial monomial in
the form ϕ(z) = |zα|2 for some α ∈ Zd+. We have

ϕ̂(m) =
(|m|+ d)!

m! d!

∫
B
|zα|2 |zm|2 dν(z) (by Proposition 2.1)

=
(|m|+ d)!

m! d!
· (m +α)! d!

(|m|+ d+ |α|)!
(see [21, Proposition 1.4.9])

=
(m +α)!

m!
· 1

(|m|+ d+ 1) · · · (|m|+ d+ |α|)

=
[(m1 + 1) · · · (m1 + α1)] · · · [(md + 1) · · · (md + αd)]

(|m|+ d+ 1) · · · (|m|+ d+ |α|)
.

In general, a polynomial ϕ ∈ Rads[z, z̄] can be written as

ϕ(z) =
∑
|α|≤s

cα|zα|2.

It follows from Proposition 2.1 and the above computation that

ϕ̂(m) =
∑
|α|≤s

cα
[(m1 + 1) · · · (m1 + α1)] · · · [(md + 1) · · · (md + αd)]

(|m|+ d+ 1) · · · (|m|+ d+ |α|)

=
p(m)

(|m|+ d+ 1) · · · (|m|+ d+ s)
,

where p is a polynomial with total degree at most s. Note that the last ratio
may not be in reduced form. �

Example 2.4. Consider ϕ(z) = c1|z1|2 + · · ·+ cd|zd|2 for complex constants
c1, . . . , cd. The eigenvalues of Tϕ are given by

ϕ̂(m) =
d∑
j=1

cj (mj + 1)

m1 + · · ·+md + d+ 1
=
c1m1 + · · ·+ cdmd + (c1 + · · ·+ cd)

m1 + · · ·+md + d+ 1
.

(2.2)

Example 2.5. Consider ϕ1 defined on Cd by ϕ1(z) = |z|2 = |z1|2+· · ·+|zd|2.
The eigenvalues of Tϕ1 are given by

ϕ̂1(m) =
|m|+ d

|m|+ d+ 1
.

Example 2.6. Consider ϕ2 defined on Cd (d ≥ 2) by ϕ2(z) = |z1z2|2. The
eigenvalues of Tϕ2 are given by

ϕ̂2(m) =
(m1 + 1)(m2 + 1)

(|m|+ d+ 1)(|m|+ d+ 2)
.

Example 2.7. To illustrate the difference between the polynomial and the
general cases, we consider in this example a Toeplitz operator with a radial
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rational symbol. Let ϕ3 be defined on C2 by ϕ3(z) = |z2|2
1−|z1|2 . The eigenvalues

of Tϕ3 can be computed via Proposition 2.1 as

ϕ̂3(m) =
(m1 +m2 + 2)!

2!m1!m2!

∫
B

|z1|2m1 |z2|2m2+2

1− |z1|2
dν(z1, z2).

Using polar coordinates zj = rje
iθj (j = 1, 2) and the fact that

dν(z1, z2) =
2!

π2
r1r2 dr1 dr2 dθ1 dθ2,

we compute

1

2!

∫
B

|z1|2m1 |z2|2m2+2

1− |z1|2
dν(z1, z2) =

∫
r21+r22<1

4r2m1+1
1 r2m2+3

2

1− r2
1

dr1 dr2

=

∫
t1+t2<1

tm1
1 tm2+1

2

1− t1
dt1 dt2

(by the change of variables tj = r2
j )

=
1

m2 + 2

∫ 1

0
tm1
1 (1− t1)m2+1dt1

=
m1! (m2 + 1)!

(m2 + 2) (m1 +m2 + 2)!
.

The last equality follows from the well-known identity for the Beta function.
We thus have

ϕ̂3(m) =
m2 + 1

m2 + 2
.

2.2. Preliminaries on the commuting problem. For ϕ a bounded sepa-
rately radial function on B, we would like to characterize bounded functions
ψ for which Tψ commutes with Tϕ on the Bergman space A2. For any

m,k ∈ Zd+, since Tϕz
m = ϕ̂(m)zm and T ∗ϕz

k = ϕ̂(k)zk, we have〈
[Tψ, Tϕ]zm, zk

〉
= 〈TψTϕzm, zk〉 − 〈TϕTψzm, zk〉

=
(
ϕ̂(m)− ϕ̂(k)

)
〈Tψzm, zk〉.

This shows that [Tψ, Tϕ] = 0 on A2 if and only if(
ϕ̂(m)− ϕ̂(k)

)
〈Tψzm, zk〉 = 0 for all m,k ∈ Zd+. (2.3)

We shall need the following result in order to characterize the functions
ψ satisfying (2.3). Let v = (v1, . . . , vd) be a tuple of integers. Then v
gives rise to a diagonal action of the unit circle T on the unit ball B via
γ · z = (γv1z1, . . . , γ

vdzd) for γ ∈ T and z = (z1, . . . , zd) ∈ B.

Lemma 2.8. Let v = (v1, . . . , vd) be an element in Zd and s be an inte-
ger. Let ψ be a bounded measurable function on B. Then the following two
statements are equivalent.
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(a) For each γ ∈ T, we have

ψ(γv1z1, . . . , γ
vdzd) = γs ψ(z) for a.e. z ∈ B.

We say that ψ is v-homogeneous of degree s. If s = 0, we say that ψ is
v-invariant.

(b) For all multiindices m,k ∈ Zd+ such that (m− k) · v + s 6= 0, we have∫
B
ψ(z) zm z̄k dν(z) = 0.

Proof. By the rotation-invariant property of Lebesgue measure, for any uni-
modular complex γ, we have∫

B
ψ(γv1z1, . . . , γ

vdzd) z
m z̄k dν(z) = γ−(m−k)·v

∫
B
ψ(z) zm z̄k dν(z). (2.4)

Assume first (a) holds. Equation (2.4) shows

(γs − γ−(m−k)·v)

∫
B
ψ(z) zm z̄k dν(z) = 0.

If (m− k) · v + s 6= 0, by choosing γ so that the first factor is nonzero, we
conclude that the integral must be zero. This shows that (b) holds and we
have the implication (a)−→(b).

Now assume that (b) holds. Let γ be a complex number of modulus one.
Let m and k be multiindices. If (m− k) · v + s 6= 0, then (b) together with
(2.4) shows that∫

B
ψ(γv1z1, . . . , γ

vdzd) z
m z̄k dν(z) =

∫
B
γs ψ(z) zm z̄k dν(z) (2.5)

since both sides are zero. On the other hand, if (m−k) ·v+s = 0, then (2.5)
is still true by (2.4). We have shown that (2.5) holds for all multiindices m
and k. This forces ψ(γv1z1, . . . , γ

vdzd) = γs ψ(z) for a.e. z ∈ B. Since γ was
arbitrary, we see that (a) holds. �

Remark 2.9. The notion of v-homogeneous polynomials was introduced in
an old paper by E. Fisher. If ψ is a v-homogeneous function of degree 0, we
say that ψ is v-invariant. Such functions were called v-radially symmetric
and were studied in [15], even in the general case where the components of
v are non-integer. We do not need this general notion in our work here.

Using (2.3) and Lemma 2.8, we now analyze several examples.

Example 2.10. Consider the function ϕ1(z) = |z|2 in Example 2.5. By
(2.3), the operator Tψ commutes with Tϕ1 if and only if for all m,k ∈ Zd+,( |m|+ d

|m|+ d+ 1
− |k|+ d

|k|+ d+ 1

)
〈Tψzm, zk〉 = 0.

Since the first factor is zero if and only if |m| = |k|, we conclude that
〈Tψzm, zk〉 = 0 whenever |m| 6= |k|, that is, (m − k) · (1, . . . , 1) 6= 0. By
Lemma 2.8, this forces ψ to be (1, . . . , 1)-invariant, that is, for any γ on the
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unit circle, we have ψ(γz1, . . . , γzd) = ψ(z) for a.e. z ∈ B. Of course, this
example is just a very special case of a more general result in [16].

Example 2.11. Consider ϕ2(z) = |z1z2|2 as in Example 2.6. By (2.3) again,
Tψ commutes with Tϕ2 if and only if for all m,k ∈ Zd+,{ (m1 + 1)(m2 + 1)

(|m|+ d+ 1)(|m|+ d+ 2)
− (k1 + 1)(k2 + 1)

(|k|+ d+ 1)(|k|+ d+ 2)

}
〈Tψzm, zk〉 = 0.

The set of pairs (m,k) for which the first factor vanishes is now more com-
plicated. It contains such pairs with m1 = k1 and m2 = k2 but also pairs
with m1 = k2 and m2 = k1. As a consequence, the simple approach as in
Example 2.10 does not seem to produce an answer. It turns out, as we shall
see later from our general result, that ψ must be (1, . . . , 1)-invariant and
radial in both z1 and z2. This is equivalent to the condition that for any γ
on the unit circle,

ψ(z) = ψ(|z1|, |z2|, γz3, . . . , γzd) for a.e. z ∈ B.

In particular, in the case d = 2, the function ψ must be separately radial.

Example 2.12. Consider ϕ3(z) = |z2|2/(1−|z1|2) as in Example 2.7. Equa-
tion 2.3 shows that Tψ commutes with Tϕ3 if and only if for all m,k ∈ Zd+,(m2 + 1

m2 + 2
− k2 + 1

k2 + 2

)
〈Tψzm, zk〉 = 0.

The first factor vanishes if and only if m2 = k2, that is, (m− k) · (0, 1) = 0.
We conclude that 〈Tψzm, zk〉 = 0 whenever (m−k) · (0, 1) 6= 0. Lemma 2.8
shows that ψ must be (0, 1)-invariant. That is, ψ(z1, z2) = ψ(z1, |z2|) a.e.
on B. Note that this class of functions includes all holomorphic functions
dependent only on z1. In particular, the analytic Toeplitz operator Tz1
commutes with the non-analytic Tϕ3 . This shows that the result of Axler-

Čučković-Rao [3] does not extend to several variables.

Remark 2.13. A commuting property of Toeplitz operators with symbols
depending only on z1 or |z2|/

√
1− |z1|2, related to Example 2.12, is consid-

ered in a recent paper [7, Lemma 2.2].

3. The commuting problem for separately radial Toeplitz
operators

In order to study the commuting problem with more general separately
radial functions, we need to analyze (2.3) more closely. We require the
following notation and classical results.

Recall that K denotes the open right-half complex plane: K = {z ∈
C : <(z) > 0}. The space H∞(Kd) consists of all bounded holomorphic

functions on Kd. We use A(Kd
) to denote the space of holomorphic functions

that extend continuously to Kd
. The Nevanlinna class N (Kd

) consists of
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functions in A(Kd
) that can be written as a quotient of two members of

H∞(Kd). It is clear that N (Kd
) is a subalgebra of A(Kd

).
We have the following classical result [20, p.102] on the zero set of bounded

holomorphic functions on K.

Proposition 3.1. Let f be a bounded holomorphic function on K that vanish
at the pairwise distinct points a1, a2, . . .. Suppose that infj≥1{<(aj)} > 0 and∑∞

j=1<(1/aj) =∞. Then f is identically zero.

A direct application of Proposition 3.1 together with induction on the

dimension d shows that Zd+ is the uniqueness set for functions in N (Kd
).

Proposition 3.2. Let F be a function in N (Kd
) such that F (m) = 0 for

all m ∈ Zd+. Then F is identically zero on Kd
.

We introduce the following notion, which plays an important role in our

investigation of commuting Toeplitz operators. Let F belong to A(Kd
). We

say that a ∈ Cd is a period of F if

F (ζ + a) = F (ζ) (3.1)

for all ζ ∈ Kd ∩ (−a+Kd
). The identity theorem for holomorphic functions

shows that a is a period for F if (3.1) holds for ζ belonging to a non-empty
open subset of Kd ∩ (−a + Kd). We denote by Per(F ) the set of all periods
of F . It is clear that Per(F ) is closed under addition and multiplication by
−1. Note that in the case F is entire on Cd, we have the usual notion of a
period of F .

Now back to condition (2.3) for the commutativity of Tϕ and Tψ:(
ϕ̂(m)− ϕ̂(k)

)
〈Tψzm, zk〉 = 0 for all m,k ∈ Zd+. (3.2)

Replacing m by m + ` and k by k + ` for m,k, ` ∈ Zd+, we have(
ϕ̂(m + `)− ϕ̂(k + `)

)∫
B
ψ(z)zmz̄k|z`|2 dν(z) = 0 (3.3)

Recall that ϕ̂ extends to a function in N (Kd
). On the other hand, define

for ζ ∈ Kd
,

Ψm,k(ζ) =

∫
B
ψ(z)zmz̄k|z1|2ζ1 · · · |zd|2ζd dν(z).

Since ψ is bounded, it follows that Ψm,k is a bounded function belonging to

A(Kd
). Equation (3.3) says that for fixed m,k ∈ Zd+, (ϕ̂(m + ζ) − ϕ̂(k +

ζ))Ψm,k(ζ) = 0 for ζ = ` ∈ Zd+. Proposition 3.1 then implies(
ϕ̂(m + ζ)− ϕ̂(k + ζ)

)
Ψm,k(ζ) = 0 for all ζ ∈ Kd

. (3.4)

Since each factor on the left-hand side is holomorphic, one of them must be

identically zero on Kd
. Note that the first factor is identically zero if and
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only if m−k is a period of ϕ̂. Therefore, if m−k is not a period of ϕ̂, then

Ψm,k vanishes identically on Kd
. In particular, Ψm,k(0) = 0, which gives

〈Tψzm, z̄k〉 =

∫
B
ψ(z)zmz̄k dν(z) = 0. (3.5)

Conversely, if for any m,k ∈ Zd+, either m−k is a period of ϕ̂ or (3.5) holds,
then clearly (3.2) holds. This implies that Tψ and Tϕ commute.

We summarize what we have obtained so far in the following proposition.

Proposition 3.3. Let ϕ be a bounded separately radial function and ψ be
a bounded function on B. Then the operators Tψ and Tϕ commute on the

Bergman space A2 if and only if for any m,k ∈ Zd+, either m−k is a period

of ϕ̂ or

∫
B
ψ(z)zmz̄k dν(z) = 0.

Example 3.4. Recall ϕ2(z) = |z1z2|2 in Example 2.11. The eigenvalue
function is given by

ϕ̂2(ζ) =
(ζ1 + 1)(ζ2 + 1)

(Σζ + d+ 1)(Σζ + d+ 2)

for all ζ ∈ Kd
, where Σζ = ζ1 + · · · + ζd. It can be verified directly that

Per(ϕ̂2) consists of vectors a = (a1, . . . , ad) with a1 = a2 = 0 and a1 + · · ·+
ad = 0. Consequently, for any multiindices m,k, we see that m−k belongs
to Per(ϕ̂2) if and only if m1 = k1, m2 = k2 and |m| = |k|. Proposition 3.3

implies that Tψ commutes with Tϕ2 if and only if

∫
B
ψ(z)zmz̄k dν(z) = 0

whenever m1 6= k1, or m2 6= k2, or |m| 6= |k|. By Lemma 2.8, this is
equivalent to the requirement that ψ be (1, 0, . . . , 0)-, (0, 1, 0, . . . , 0)-, and
(1, . . . , 1)-invariant, which means that for any complex number τ with |τ | =
1, we have

ψ(z1, z2, τz3, . . . , τzd) = ψ(|z1|, |z2|, z3, . . . , zd) for a.e. z ∈ B.

In the case d = 2, the function ψ is actually separately radial.

3.1. Periods of holomorphic functions. Proposition 3.3 shows that in
order to characterize Toeplitz operators commuting with Tϕ, we need to
understand the set of periods of ϕ̂. We first present an important property

of the real periods of general holomorphic functions belonging to N (Kd
).

Proposition 3.5. Let F be in N (Kd
). Let a ∈ Rd be a period of F . Then

γ · a is also a period of F for any complex number γ. As a consequence, if
we define PerZ(F ) = Per(F ) ∩ Zd, then there exist vectors u1, . . . ,uk ∈ Zd
such that

PerZ(F ) =
{
a ∈ Zd : a · uj = 0 for all j = 1, . . . , k

}
. (3.6)

We shall denote the right hand side of (3.6) by
{
u1, . . . ,uk

}⊥
.
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Proof. Write a = (a1, . . . , ad). Put a+ = (a+
1 , . . . , a

+
d ) and a− = (a−1 , . . . , a

−
d ).

Recall that for x a real number, x+ = max{x, 0} and x− = max{−x, 0}.
Note that x = x+ − x− and x+x− = 0. Since a is a period of F , the
equation (3.1) holds for all ζ ∈ Kd ∩ (−a + Kd). In particular, it holds for
ζ = z + a− with z ∈ Kd. This implies

F (z + a+)− F (z + a−) = 0 for all z ∈ Kd.

Consequently, for any integer t ≥ 1, we have

F (z + ta+)− F (z + ta−) = 0 for all z ∈ Kd.

Now fix z ∈ Kd. Define a holomorphic function of one complex variable
G(γ) = F (z + γ a+) − F (z + γ a−) for γ ∈ K. Note that G belongs to
N (K) due to our assumption on F . Because G(t) = 0 for all integers t ≥ 1,
Proposition 3.2 implies that G must be identically zero on K. Consequently,

F (z + γ a+) = F (z + γ a−)

for all γ ∈ K. Since z ∈ Kd was arbitrary, we conclude that γ a = γ a+−γ a−
and −γ a are periods of F for any γ ∈ K.

Let PerQ(F ) = Per(F ) ∩ Q denote the rational periods of F . Then
PerQ(F ) is a vector space over Qd. Consider the standard Euclidean inner
product on Qd and let {u1, . . . ,uk} be a basis for the orthogonal comple-
ment of PerQ(F ). If this orthogonal complement consists of only the zero
vector, we take k = 1 and u1 the zero vector. Multiplying each vector by a
sufficiently large integer if necessary, we may assume that u1, . . . ,uk belong
to Zd. Since PerZ(F ) = PerQ(F ) ∩ Zd, we obtain (3.6). �

Example 3.6. Let c = (c1, . . . , cd) ∈ Kd
. Let

F (z) = 〈z, c〉 = c̄1z1 + · · ·+ c̄dzd for z = (z1, . . . , zd) ∈ Kd
.

The periods of F are exactly those a = (a1, . . . , ad) ∈ Cd with 〈a, c〉 = 0,
that is, a1c̄1 + · · ·+ adc̄d = 0.

In the simple example below, we see that the conclusion of Proposition
3.5 may not hold if the components of a are not all real.

Example 3.7. Let F (z) = e−2z1−z2 for z = (z1, z2) ∈ K2
. Then F is a

bounded holomorphic function on K2
. The periods of F are exactly those

a = (a1, a2) ∈ C2 with 2a1 + a2 = 2kπi for some integer k. This shows that
while a = (0, 2πi) is a period, γ · a = (0, 2γπi) is a period if and only if γ is
an integer.

3.2. The main result. Combining Propositions 3.3 and 3.5, we obtain the
main result of this section. This will be used in the proof of Theorem A
stated in the Introduction.

Theorem 3.8. Let ϕ be a bounded separately radial function on B. There
then exist tuples of integers u1, . . . ,uk such that for any bounded functions
ψ, the following two statements are equivalent.
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(a) Tψ commutes with Tϕ on the Bergman space A2.
(b) ψ is uj-invariant for all 1 ≤ j ≤ k.

Proof. Since ϕ̂ belongs to N (Kd
), Proposition 3.5 shows the existence of

vectors u1, . . . ,uk in Zd such that

PerZ(ϕ̂) = {u1, . . . ,uk}⊥.

By Lemma 2.8, we see that statement (b) is equivalent to the statement

that

∫
B
ψ(z)zmzk dν(z) = 0 whenever m− k /∈ PerZ(ϕ̂).

Now assume that (a) holds. Proposition 3.3 shows that for m,k ∈ Zd+
such that m−k does not belong to PerZ(ϕ̂), we have

∫
B
ψ(z)zmzk dν(z) = 0,

hence (b) holds.
Assume that (b) holds. Let m,k be any multiindices. If m − k belongs

to PerZ(ϕ̂) then ϕ̂(m) − ϕ̂(k) = 0. If m − k does not belong to PerZ(ϕ̂)

then

∫
B
ψ(z)zmzk dν(z) = 0. It follows that in any case condition (2.3) is

satisfied. Hence, Tϕ and Tψ commute. �

4. Toeplitz operators with separately radial polynomial
symbols

In this section we investigate in detail separately radial polynomial sym-
bols. We obtain a characterization of the eigenvalue functions of the cor-
responding Toeplitz operators. We then offer proofs of Theorems A and
B.

Let Pols[ζ] be the vector space of all holomorphic polynomials in ζ ∈ Cd
(note that powers of ζ̄ are not allowed) of total degree at most s. It is clear
that {ζα : |α| ≤ s} forms a linear basis for Pols[ζ]. We see that the vector
spaces Rads[z, z̄] and Pols[ζ] have the same dimension, which is equal to
the number of multiindices α’s for which |α| ≤ s. Consequently, the map
|zα|2 7→ ζα extends naturally to a vector space isomorphism from Rads[z, z̄]
onto Pols[ζ]. Via the eigenvalues of Toeplitz operators with separately radial
polynomial symbols, we exhibit another isomorphism from Rads[z, z̄] onto
Pols[ζ].

For ζ ∈ Cd, write Σζ = ζ1 + · · ·+ ζd. Note that Σm = |m| for m ∈ Zd+.

Proposition 4.1. Define the map L : Rads[z, z̄]→ Pols[ζ] by the formula

L(ϕ) = (Σζ + d+ 1) · · · (Σζ + d+ s) ϕ̂(ζ).

Then L is a vector space isomorphism. Consequently, for any polynomial
p in Pols[ζ], there exists a separately radial polynomial ϕ ∈ Rads[z, z̄] such
that

ϕ̂(m) =
p(m)

(|m|+ d+ 1) · · · (|m|+ d+ s)
for all m ∈ Zd+.
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Proof. For any ϕ ∈ Rads[z, z̄], Lemma 2.3 shows that L(ϕ) is indeed a
polynomial in ζ of total degree at most s. The linearity of L comes from
the eigenvalue formula in Proposition 2.1. Since the spaces Rads[z, z̄] and
Pols[ζ] have the same dimension, to show that L is an isomorphism, it
suffices to show that L is injective.

Suppose ϕ belongs to ker(L). Then ϕ̂(m) = 0 for all m ∈ Zd+, which
shows that Tϕ is the zero operator on A2. Consequently, ϕ = 0. It follows
that L is an injection as required. �

In the following lemma, we characterize rational functions on Cd that can
be represented as eigenvalues of a Toeplitz operator with a separately radial
polynomial symbol.

Lemma 4.2. Let r be a rational function on Cd given in a reduced form

r(ζ) = p(ζ)
q(Σζ) , where p is a polynomial of ζ and q is a polynomial of a

single variable. Then there exists a separately radial polynomial ϕ such
that ϕ̂(m) = r(m) for all multiindices m if and only if the following two
conditions are satisfied:

(i) total deg(p) ≤ deg(q);
(ii) q has only simple roots, each of which is an integer smaller than or

equal to −d− 1.

Proof. The necessity follows from Lemma 2.3. We only need to prove the
sufficiency. Assume that both conditions (i) and (ii) are satisfied. By (ii),
there exists a positive integer s such that

f(ζ) = (Σζ + d+ 1) · · · (Σζ + d+ s) · r(ζ)

is a polynomial in ζ. By (i), the total degree of f is at most s. Proposition
4.1 shows the existence of a separately radial polynomial ϕ ∈ Rads[z, z̄] such
that

ϕ̂(m) =
f(m)

(|m|+ d+ 1) · · · (|m|+ d+ s)
= r(m)

for all multiindices m. This completes the proof of the lemma. �

We are now investigating the integer periods of rational functions arising
as eigenvalues of Toeplitz operators with separately radial polynomial sym-
bols. It turns out that except in the trivial case, all periods must always
perpendicular to the vector 1.

Recall that for F a function defined on the closed right-half space Kd
, the

set PerZ(F ) consists of all a ∈ Zd such that

F (ζ + a) = F (ζ) for all ζ ∈ Kd ∩ (−a + Kd
).

Proposition 4.3. Suppose F is a non-polynomial rational function of the
form

F (ζ) =
p(ζ)

q(Σζ)
,
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where p ∈ C[ζ] and q ∈ C[t]. Then PerZ(F ) = {1}⊥ ∩ PerZ(p) and there
exists {u1, . . . ,uk} ⊂ Zd with u1 = 1 such that PerZ(F ) = {u1, . . . ,uk}⊥.

Proof. We first show that any element in PerZ(F ) is perpendicular to 1.
Let v be an element in PerZ(F ). Proposition 3.5 shows that sv is also an
element in PerZ(F ) for any positive real number s. Fix ζ in the domain of
F . Then ζ + sv also belongs to the domain of F for sufficiently large s. It
follows that F (ζ) = F (ζ + sv) for all sufficiently large s. Taking limit as
s→∞ gives

F (ζ) = lim
s→∞

F (ζ + sv) = lim
s→∞

p(ζ + sv)

q(Σζ + sΣv)
, (4.1)

for each fixed ζ in the domain of F . Dividing both numerator and denomina-
tor by a constant if necessary, we may assume that q is a monic polynomial.
Let µ denote the degree of q. If Σv 6= 0, then the leading coefficient of
q(Σζ + sΣv) as a polynomial of s is (Σv)µ, which is independent of ζ. This
would imply that the limit in (4.1) is a polynomial of ζ, which contradicts
the assumption that F is not a polynomial. Therefore, we have Σv = 0 as
desired.

It is clear that {1}⊥∩PerZ(p) ⊂ PerZ(F ). To prove the reverse inclusion,
let v be in PerZ(F ). We have showed that Σv = 0. It follows that for
ζ ∈ Kd ∩ (−v + Kd),

p(ζ + v) = q(Σζ + Σv)F (ζ + v) = q(Σζ)F (ζ) = p(ζ).

Therefore, v belongs to PerZ(p).
By Proposition 3.5, there are tuples u2, . . . ,uk ∈ Zd such that PerZ(p) =

{u2, . . . ,uk}⊥. The conclusion of the proposition then follows. �

We are now ready for the proof of Theorem A stated in Introduction. We
restate the result here with a slight modification.

Theorem 4.4. Let ϕ be a non-constant separately radial polynomial. Write
PerZ(ϕ̂) = {u1, . . . ,uk}⊥, where u1 = 1 and u2, . . . ,uk belong to Zd. Let ψ
be a bounded function on B. Then the following statements are equivalent.

(a) Tψ commutes with Tϕ on the Bergman space A2.
(b) ψ is uj-invariant for all 1 ≤ j ≤ k.

Proof. Since ϕ is a separately radial polynomial, ϕ̂ satisfies the hypothesis of
Proposition 4.3. The existence of the tuples u1 = 1,u2, . . . ,uk then follows.
Theorem 3.8 now completes the proof. �

Corollary 4.5. Let ϕ be a non-constant separately radial polynomial and ψ
be a bounded holomorphic function on B. If Tϕ and Tψ commutes, then ψ
must be a constant function.

Proof. By Theorem 4.4, ψ is 1-invariant. Since ψ is holomorphic, it must
be a constant function. �
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Remark 4.6. Example 2.12 shows that the conclusion of Theorem 4.4 may
not hold if ϕ is not a polynomial.

We are now in a position to prove Theorem B. We actually provide a
more explicit construction.

Theorem 4.7. Let u1 = 1 and u2, . . . ,uk be given tuples of integers. There
then exists a separately radial polynomial ϕ(z) = c1|z1|2 + · · ·+ cd|zd|2 such
that for any bounded function ψ, the two statements in Theorem 4.4 are
equivalent.

Proof. Take λ1, . . . , λk to be any k real numbers that are linearly indepen-
dent over Q and define u = λ1u1 + · · ·+λkuk. Then u is a non-zero vector.
Let ϕ be the separately radial polynomial given by

ϕ(z) = 〈e1,u〉|z1|2 + · · ·+ 〈ed,u〉|zd|2.
Here {e1, . . . , ed} is the standard basis of Cd. Since u is not the zero vector,
ϕ is not a constant function. A direct calculation using Example 2.4 shows
that

ϕ̂(m) =

∑d
j=1〈ej ,u〉(mj + 1)

|m|+ d+ 1
=
〈m,u〉+ 〈1,u〉
|m|+ d+ 1

.

This implies ϕ̂(ζ) = (〈ζ,u〉+ 〈1,u〉)/(Σζ + d+ 1) for ζ ∈ Kd. We compute

PerZ
(
〈ζ,u〉+ 〈1,u〉

)
= PerZ

(
〈ζ,u〉

)
= {a ∈ Zd : 〈a,u〉 = 0} (by Example 3.6)

= {a ∈ Zd : λ1〈a,u1〉+ · · ·+ λk〈a,uk〉 = 0}

= {a ∈ Zd : 〈a,u1〉 = · · · = 〈a,uk〉 = 0}
(since λ1, . . . , λk are linearly independent over Q)

= {u1, . . . ,uk}⊥.

Proposition 4.3 then implies PerZ(ϕ̂) = {u1, . . . ,uk}⊥. Theorem 4.4 now
completes the proof. �

We illustrate the above construction by the following concrete example.

Example 4.8. Let u1 = (1, 1, 1) and u2 = (1, 0, 0) in Z3. Choose λ1 = 1
and λ2 =

√
2. Then u = u1 +

√
2u2 = (1 +

√
2, 1, 1). The polynomial ϕ is

ϕ(z) = (1 +
√

2)|z1|2 + |z2|2 + |z3|2 = |z|2 +
√

2|z1|2.
Theorem 4.7 shows that for any bounded function ψ on B, the operators Tψ
and Tϕ commute if and only if ψ is (1, 1, 1)- and (1, 0, 0)-invariant, which
implies that for any |τ | = 1,

ψ(z) = ψ(|z1|, τz2, τz3) for a.e. z ∈ B.

Combining Theorems 4.4 and 4.7 we obtain the following interesting fact
about the commuting problem for separately radial polynomials.
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Corollary 4.9. Let ϕ be a separately radial polynomial in z and z̄. There
then exists a polynomial ϕ̃ of the form ϕ̃(z) = c1|z1|2 + · · · + cd|zd|2 such
that for any function ψ bounded, Tψ commutes with Tϕ if and only if Tψ
commutes with Tϕ̃.

5. Remarks on the weighted cases

In this section we briefly discuss our results on weighted Bergman spaces
over the unit ball. For λ > −1, let dνλ(z) = cλ(1 − |z|2)λ dν(z) be the
normalized radially weighted Lebesgue measure on B parametrized by λ.
Here, cλ is the normalizing constant whose exact value is not important
to us. Let A2

λ denote the corresponding weighted Bergman space. The
standard orthonormal basis of A2

λ is given by{
eλ,m(z) =

√
Γ(|m|+ d+ λ+ 1)

m! Γ(d+ λ+ 1)
zm : m ∈ Zd+

}
.

As in the unweighted case, if ϕ is a bounded separately radial function
on B, then the corresponding Toeplitz operator Tλ,ϕ acting on A2

λ is also

diagonalizable: Tλ,ϕeλ,m = ϕ̂(λ,m)eλ,m for all m ∈ Zd+. In this case, the
eigenvalues are given by

ϕ̂(λ,m) =
Γ(|m|+ d+ λ+ 1)

m! Γ(d+ λ+ 1)

∫
B
ϕ(z) |zm|2 dνλ(z).

A calculation as in Lemma 2.3, making use of [23, Lemma 1.11], shows that
for

ϕ(z) =
∑
|α|≤s

bα|zα|2,

we have

ϕ̂(λ,m) =
∑
|α|≤s

bα
[(m1 + 1) · · · (m1 + α1)] · · · [(md + 1) · · · (md + αd)]

(|m|+ d+ λ+ 1) · · · (|m|+ d+ λ+ |α|)

=
p(λ,m)

(|m|+ d+ λ+ 1) · · · (|m|+ d+ λ+ s)
, (5.1)

where p(λ,m) is a polynomial of total degree at most s in m. This shows
that ϕ̂(λ,m) extends to Cd as a rational function of the form considered
in Proposition 4.3. As a result, Theorems A and B in Introduction remain
valid on A2

λ.
Since the spectral sequence of Tλ,ϕ depends on λ, it is expected that the

tuples of integers u1, . . . ,uk in Theorem A depend on λ. More precisely, the
set

Mλ(ϕ) =
{
ψ bounded : Tλ,ψ commutes with Tλ,ϕ on A2

λ

}
depends on λ. It turns out that in the case ϕ is a radial function (depending
only on |z|), [16, Theorem 1.2] shows that Mλ(ϕ) is independent of λ. In
addition, this is also the case for all examples of ϕ that we have considered
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so far. However, the following example shows that λ plays an important role
in the description of Mλ(ϕ).

Example 5.1. Let ϕ(z) = −2|z1|2 + 3|z1|4 + 2|z1|2|z2|2 + |z3|4 on C3 (so
d = 3). Formula (5.1) and a direct calculation give

ϕ̂(λ,m) =
(m1 −m3)(m1 −m3 − 1)− 2λ(m1 + 1)

(|m|+ λ+ 4)(|m|+ λ+ 5)
.

We see that ϕ̂(λ,m) extends to C3 as a rational function of the form

ϕ̂(λ, ζ) =
p(λ, ζ)

(Σζ + λ+ 4)(Σζ + λ+ 5)
,

where p(λ, ζ) = (ζ1−ζ3)(ζ1−ζ3−1)−2λ(ζ1 +1). Proposition 4.3 shows that
PerZ(ϕ̂(λ, ·)) = {1}⊥ ∩ PerZ(p(λ, ·)). On the other hand, it can be verified
that

PerZ(p(λ, ·) =

{
{(1, 0,−1)}⊥ if λ = 0,

{(1, 0, 0), (0, 0, 1)}⊥ if λ 6= 0.

Consequently,

PerZ(ϕ̂(λ, ·)) =

{
{(1, 1, 1), (1, 0,−1)}⊥ if λ = 0,

{(1, 1, 1), (1, 0, 0), (0, 0, 1)}⊥ = {0} if λ 6= 0.

Theorem 4.4 asserts that for λ 6= 0, the setMλ(ϕ) consists of only separately
radial functions. On the other hand,M0(ϕ) contains functions that are not
separately radial, such as ψ(z) = z1z̄

2
2z3.

For a general separately radial polynomial ϕ, it may be interesting to
describe the dependency ofMλ(ϕ) on λ. However, Example 5.1 shows that
this problem may be quite difficult. We leave this open for future research.
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