COMMUTATOR IDEALS OF SUBALGEBRAS OF TOEPLITZ ALGEBRAS ON WEIGHTED BERGMAN SPACES II

TRIEU LE

ABSTRACT. For any subset G of L^{∞} , let $\mathfrak{T}(G)$ denote the algebra generated by all Toeplitz operators T_f with $f \in G$. Let $\mathfrak{CT}(G)$ denote the closed two-sided ideal of $\mathfrak{T}(G)$ generated by all commutators $T_f T_g - T_g T_f$ with $f, g \in G$. In this paper we extend our earlier result in [1]. More specifically, we show that the identity $\mathfrak{CT}(G) = \mathfrak{T}(G)$ holds true for a broader class of G than considered earlier. The main idea is almost the same as that in [1].

We refer the reader to [1] for definitions and basic results which we will use in this paper. As in Section 2 in [1], a function f on \mathbb{B}_n is called a radial function if there is a function \tilde{f} defined on [0, 1) so that $f(z) = \tilde{f}(|z|)$ for all $z \in \mathbb{B}_n$. For such an f and any real number $s \ge 0$, put

$$\omega_{\alpha}(f,s) = \frac{\Gamma(n+s+\alpha+1)}{\Gamma(\alpha+1)\Gamma(n+s)} \int_{0}^{1} r^{n+s-1} (1-r)^{\alpha} \tilde{f}(r^{1/2}) \mathrm{d}r.$$

Remark 2.5 in [1] then says that T_f is diagonal with respect to the standard orthonormal basis. In fact we have

$$T_f = \sum_{m \in \mathbb{N}^n} \omega_\alpha(f, |m|) e_m \otimes e_m.$$
(0.1)

Here for any $g, h \in A^2_{\alpha}$, $g \otimes h$ denotes the operator on A^2_{α} defined by the formula $(g \otimes h)(\varphi) = \langle \varphi, h \rangle_{\alpha} g$ for all $\varphi \in A^2_{\alpha}$.

Recall that for $w \in \mathbb{B}_n$ and 0 < r < 1, E(w, r) denotes the ball centered at w with radius r in the pseudo-hyperbolic metric. If $f(z) = \chi_{E(0,\delta)}(z) =$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B35; Secondary 47B47.

Key words and phrases. Commutator ideals; Toeplitz operators; Weighted Bergman spaces.

 $\chi_{[0,\delta)}(|z|)$ for some $0 < \delta < 1$ then for any $s \ge 0$,

$$\omega_{\alpha}(\chi_{E(0,\delta)},s) = \frac{\Gamma(n+s+\alpha+1)}{\Gamma(\alpha+1)\Gamma(n+s)} \int_{0}^{1} r^{n+s-1}(1-r)^{\alpha}\chi_{[0,\delta)}(r^{1/2})\mathrm{d}r$$
$$= \frac{\Gamma(n+s+\alpha+1)}{\Gamma(\alpha+1)\Gamma(n+s)} \int_{0}^{\delta^{2}} r^{n+s-1}(1-r)^{\alpha}\mathrm{d}r.$$

Since $\min\{1, (1-\delta^2)^{\alpha}\} \le (1-r)^{\alpha} \le \max\{1, (1-\delta^2)^{\alpha}\}$ for all $0 \le r \le \delta^2$, we have

$$\min\{1, (1-\delta^2)^{\alpha}\} \le \omega_{\alpha} \left(\chi_{E(0,\delta)}, s\right) \frac{\Gamma(\alpha+1)\Gamma(n+s)}{\Gamma(n+s+\alpha+1)} \frac{(n+s)}{\delta^{2(n+s)}} \le \max\{1, (1-\delta^2)^{\alpha}\}.$$

This then implies that for any 0 < r < R < 1 and $s \ge 0$,

$$0 \leq \frac{\omega_{\alpha}(\chi_{E(0,r)}, s)}{\omega_{\alpha}(\chi_{E(0,R)}, s)} \leq \frac{\max\{1, (1-r^2)^{\alpha}\}}{\min\{1, (1-R^2)^{\alpha}\}} \left(\frac{r}{R}\right)^{2(n+s)}$$

$$\leq \frac{\max\{1, (1-r^2)^{\alpha}\}}{\min\{1, (1-R^2)^{\alpha}\}} \left(\frac{r}{R}\right)^{2n}.$$

$$(0.2)$$

Lemma 1. Suppose 0 < R < 1 and $\delta > 0$. Then there exists $\gamma = \gamma(R, \delta)$ in (0,1) so that for all $0 < r < \gamma$, $T_{\chi_{E(0,r)}} \leq \delta T_{\chi_{E(0,R)}}$.

Proof. From (0.1), we have

$$T_{\chi_{E(0,R)}} = \sum_{m \in \mathbb{N}^n} \omega_{\alpha} \big(\chi_{E(0,R)}, |m| \big) e_m \otimes e_m,$$

and for any 0 < r < 1,

$$T_{\chi_{E(0,r)}} = \sum_{m \in \mathbb{N}^n} \omega_{\alpha} \big(\chi_{E(0,r)}, |m| \big) e_m \otimes e_m.$$

From equation (0.2) there is a γ in (0,1) such that for any $0 < r < \gamma$ and all $s \ge 0$, we have $0 \le \frac{\omega_{\alpha}(\chi_{E(0,r)}, s)}{\omega_{\alpha}(\chi_{E(0,R)}, s)} \le \delta$. This then implies that $T_{\chi_{E(0,r)}} \le \delta T_{\chi_{E(0,R)}}$.

Theorem 2. Let $\{z_j : j \in J\}$ be a separated sequence in \mathbb{B}_n where J is either a non-empty finite set or \mathbb{N} . Let $0 < R < \overline{R} < 1$ and $\mathcal{M} = \{R_j : j \in J\} \subset (0,1)$ such that any limit point of \mathcal{M} is either 0 or is in the open interval (R, \overline{R}) . Suppose W is a set with non-empty interior that satisfies the following conditions:

- (1) $W \subset \bigcup_{j \in J} E(z_j, R_j),$
- (2) There exists 0 < r < 1 such that whenever $R_j > R$ (for some $j \in J$) we have $E(z_j, r) \subset W$.

2

Let G be a linear subspace of $\chi_W L^{\infty}$ such that $C(\mathbb{B}) \cap \chi_W L^{\infty} \subset G$ and each function in G is a linear combinations of positive functions in G. Then we have $\mathcal{K} \subset \mathfrak{CT}(G) = \mathfrak{T}(G)$.

Remark 3. Let W be a subset of \mathbb{B}_n that satisfies the conditions in Theorem 2. Applying the theorem with $G = \chi_W L^{\infty}$, we see that $\mathfrak{CT}(\chi_W L^{\infty}) = \mathfrak{T}(\chi_W L^{\infty})$. The case where $R_j > R$ for all $j \in J$ is Theorem 1.1 in [1] which extends an earlier result of the author in [2]. What interesting about Theorem 2 is the case where $R_j \to 0$, which is not covered by [1]. In this case the set W is only assumed to have non-empty interior, in addition to the condition that W is a subset of $\cup_{j\in J} E(z_j, R_j)$. Theorem 2 gives a necessary condition on W for the identity $\mathfrak{CT}(\chi_W L^{\infty}) = \mathfrak{T}(\chi_W L^{\infty})$ to hold true.

Proof of Theorem 2. Since W has an empty interior and $C(\mathbb{B}_n) \cap \chi_W L^{\infty} \subset G$, Remark 2.9 in [1] shows that $\mathcal{K} \subset \mathfrak{T}(G)$. This implies that $\mathcal{K} \subset \mathfrak{CT}(G)$.

Next, without loss of generality, we may assume that $R_j < R$ for all $j \in J$. Choose \tilde{R} so that $\bar{R} < \tilde{R} < 1$. By Lemma 3.1 in [1] there is a continuous function η which is supported in E(0,r) such that $[T_{\eta}, T_{\bar{\eta}}]$ is an injective operator which is diagonal with respect to the standard orthonormal basis of A^2_{α} .

Let $\delta > 0$ be given. By Lemma 1 there is $0 < \gamma < R$ such that

$$T_{\chi_{E(0,\gamma)}} \le \delta T_{\chi_{E(0,\tilde{R})}}.\tag{0.3}$$

By Lemma 2.6 in [1] there is a number λ so that

$$T_{\chi_{E(0,\bar{R})}} \le \lambda [T_{\eta}, T_{\bar{\eta}}]^2 + \delta T_{\chi_{E(0,\tilde{R})}}.$$
 (0.4)

Now let

$$N_1 = \{j \in J : R_j < \gamma\}$$
 and $N_2 = \{j \in J : R_j > R\}.$

Then by assumption about \mathcal{M} , the set $J \setminus (N_1 \cup N_2)$ is a finite set (possibly empty). For any $j \in N_1$, by applying U_{z_j} on both sides of inequality (0.3), we get

$$T_{\chi_{E(z_j,\gamma)}} = U_{z_j} T_{\chi_{E(0,\gamma)}} U_{z_j} \le \delta U_{z_j} T_{\chi_{E(0,\widetilde{R})}} U_{z_j} = \delta T_{\chi_{E(z_j,\widetilde{R})}}.$$

This then implies $T_{\chi_{E(z_j,R_j)}} \leq T_{\chi_{E(z_j,\gamma)}} \leq \delta T_{\chi_{E(z_j,\tilde{n})}}$. For any $j \in N_2$, applying U_{z_j} on both sides of inequality (0.4) and arguing as above, we get

$$T_{\chi_{E(z_j,\bar{R})}} \leq \lambda [T_{\eta \circ \varphi_{z_j}}, T_{\bar{\eta} \circ \varphi_{z_j}}]^2 + \delta T_{\chi_{E(z_j,\tilde{R})}}.$$

Hence $T_{\chi_{E(z_j,R_j)}} \leq T_{\chi_{E(z_j,\bar{R})}} \leq \lambda [T_{\eta \circ \varphi_{z_j}}, T_{\bar{\eta} \circ \varphi_{z_j}}]^2 + \delta T_{\chi_{E(z_j,\tilde{R})}}$. So

$$T_{\chi_W} \leq \sum_{j \in J} T_{\chi_{E(z_j,R_j)}}$$

$$= \sum_{j \in N_1} T_{\chi_{E(z_j,R_j)}} + \sum_{j \in N_2} T_{\chi_{E(z_j,R_j)}} + \sum_{j \in J \setminus N_1 \cup N_2} T_{\chi_{E(z_j,R_j)}}$$
(0.5)
$$\leq \delta \sum_{j \in J} T_{\chi_{E(z_j,\tilde{R})}} + \lambda \sum_{j \in N_2} [T_{\eta \circ \varphi_{z_j}}, T_{\bar{\eta} \circ \varphi_{z_j}}]^2 + \sum_{j \in J \setminus N_1 \cup N_2} T_{\chi_{E(z_j,R_j)}}$$

Since $\{z_j : j \in J\}$ is a separated sequence, we can decompose $J = J_1 \cup \cdots \cup J_M$ for some integer M so that $E(z_l, \tilde{R}) \cap E(z_k, \tilde{R}) = \emptyset$ for any $l \neq k$ in J_s , where $1 \leq s \leq M$ (see Lemma 2.3 in [2]). From this we have $\sum_{j \in J} T_{\chi_{E(z_j, \tilde{R})}} \leq M$. For any $j \in J$, the function $\eta \circ \varphi_{z_j}$ is continuous and supported in $E(z_j, r)$, hence it is in G. Proposition 2.3 in [1] shows that $\sum_{j \in N_2 \cap J_s} [T_{\eta \circ \varphi_{z_j}}, T_{\bar{\eta} \circ \varphi_{z_j}}]^2$ belongs to $\mathfrak{CT}(G)$ for $1 \leq s \leq M$. Thus $\sum_{j \in N_2} [T_{\eta \circ \varphi_{z_j}}, T_{\bar{\eta} \circ \varphi_{z_j}}]^2$ belongs to $\mathfrak{CT}(G)$. Also since $T_{\chi_{E(z_j, R_j)}}$ is compact for any j in the finite set $J \setminus N_1 \cup N_2$, $\sum_{j \in J \setminus N_1 \cup N_2} T_{\chi_{E(z_j, R_j)}}$ is compact, hence, in $\mathfrak{CT}(G)$. Let π denote the canonical quotient map from $\mathfrak{T}(G)$ onto the quotient algebra $\mathfrak{T}(G)/\mathfrak{CT}(G)$. We then have

$$\pi(\sum_{j\in N_2\cap J_s} [T_{\eta\circ\varphi_{z_j}}, T_{\bar{\eta}\circ\varphi_{z_j}}]^2) = 0 = \pi(\sum_{j\in J\setminus N_1\cup N_2} T_{\chi_{E(z_j,R_j)}}).$$

Let $0 \le f \le 1$ be any function in G. Then since $f \le \chi_W$, (0.5) gives

$$0 \le \pi(T_f) \le \pi(T_{\chi_W}) \le \delta M.$$

But δ was arbitrary, so we conclude that $\pi(T_f) = 0$ for any $f \in G$ with $0 \leq f \leq 1$. Since any function in G is a linear combination of positive functions in G, we see that $\pi(T_f) = 0$ for all $f \in G$. So $\mathfrak{CT}(G) = \mathfrak{T}(G)$. \Box

References

- Trieu Le, Commutator ideals of subalgebras of Toeplitz algebras on weighted Bergman spaces, J. Operator Theory, to appear, available at http://www.math.uwaterloo.ca/~t29le/Papers.htm.
- [2] _____, On the commutator ideal of the Toeplitz algebra on the Bergman space of the unit ball in \mathbb{C}^n , J. Operator Theory **60** (2008), no. 1, 149–163.

TRIEU LE, DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, 200 UNIVERSITY AVENUE WEST, WATERLOO, ONTARIO, CANADA N2L 3G1

E-mail address: t291e@math.uwaterloo.ca