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Abstract. For any subset G of L∞, let T(G) denote the algebra gen-
erated by all Toeplitz operators Tf with f ∈ G. Let CT(G) denote the
closed two-sided ideal of T(G) generated by all commutators TfTg−TgTf

with f, g ∈ G. In this paper we extend our earlier result in [1]. More
specifically, we show that the identity CT(G) = T(G) holds true for a
broader class of G than considered earlier. The main idea is almost the
same as that in [1].

We refer the reader to [1] for definitions and basic results which we will
use in this paper. As in Section 2 in [1], a function f on Bn is called a radial
function if there is a function f̃ defined on [0, 1) so that f(z) = f̃(|z|) for all
z ∈ Bn. For such an f and any real number s ≥ 0, put

ωα(f, s) =
Γ(n + s + α + 1)
Γ(α + 1)Γ(n + s)

1∫
0

rn+s−1(1− r)αf̃(r1/2)dr.

Remark 2.5 in [1] then says that Tf is diagonal with respect to the standard
orthonormal basis. In fact we have

Tf =
∑

m∈Nn

ωα(f, |m|)em ⊗ em. (0.1)

Here for any g, h ∈ A2
α, g ⊗ h denotes the operator on A2

α defined by the
formula (g ⊗ h)(ϕ) = 〈ϕ, h〉αg for all ϕ ∈ A2

α.
Recall that for w ∈ Bn and 0 < r < 1, E(w, r) denotes the ball centered

at w with radius r in the pseudo-hyperbolic metric. If f(z) = χE(0,δ)(z) =
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χ[0,δ)(|z|) for some 0 < δ < 1 then for any s ≥ 0,

ωα

(
χE(0,δ), s

)
=

Γ(n + s + α + 1)
Γ(α + 1)Γ(n + s)

1∫
0

rn+s−1(1− r)αχ[0,δ)(r
1/2)dr

=
Γ(n + s + α + 1)
Γ(α + 1)Γ(n + s)

δ2∫
0

rn+s−1(1− r)αdr.

Since min{1, (1− δ2)α} ≤ (1− r)α ≤ max{1, (1− δ2)α} for all 0 ≤ r ≤ δ2,
we have

min{1, (1− δ2)α} ≤ ωα

(
χE(0,δ), s

)Γ(α + 1)Γ(n + s)
Γ(n + s + α + 1)

(n + s)
δ2(n+s)

≤ max{1, (1− δ2)α}.

This then implies that for any 0 < r < R < 1 and s ≥ 0,

0 ≤
ωα

(
χE(0,r), s

)
ωα

(
χE(0,R), s

) ≤ max{1, (1− r2)α}
min{1, (1−R2)α}

( r

R

)2(n+s)
(0.2)

≤ max{1, (1− r2)α}
min{1, (1−R2)α}

( r

R

)2n
.

Lemma 1. Suppose 0 < R < 1 and δ > 0. Then there exists γ = γ(R, δ) in
(0, 1) so that for all 0 < r < γ, TχE(0,r)

≤ δTχE(0,R)
.

Proof. From (0.1), we have

TχE(0,R)
=

∑
m∈Nn

ωα

(
χE(0,R), |m|

)
em ⊗ em,

and for any 0 < r < 1,

TχE(0,r)
=

∑
m∈Nn

ωα

(
χE(0,r), |m|

)
em ⊗ em.

From equation (0.2) there is a γ in (0, 1) such that for any 0 < r < γ

and all s ≥ 0, we have 0 ≤
ωα

(
χE(0,r), s

)
ωα

(
χE(0,R), s

) ≤ δ. This then implies that

TχE(0,r)
≤ δTχE(0,R)

. �

Theorem 2. Let {zj : j ∈ J} be a separated sequence in Bn where J is
either a non-empty finite set or N. Let 0 < R < R̄ < 1 and M = {Rj :
j ∈ J} ⊂ (0, 1) such that any limit point of M is either 0 or is in the open
interval (R, R̄). Suppose W is a set with non-empty interior that satisfies
the following conditions:

(1) W ⊂ ∪j∈JE(zj , Rj),
(2) There exists 0 < r < 1 such that whenever Rj > R (for some j ∈ J)

we have E(zj , r) ⊂ W .
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Let G be a linear subspace of χW L∞ such that C(B)∩χW L∞ ⊂ G and each
function in G is a linear combinations of positive functions in G. Then we
have K ⊂ CT(G) = T(G).

Remark 3. Let W be a subset of Bn that satisfies the conditions in Theo-
rem 2. Applying the theorem with G = χW L∞, we see that CT(χW L∞) =
T(χW L∞). The case where Rj > R for all j ∈ J is Theorem 1.1 in [1]
which extends an earlier result of the author in [2]. What interesting about
Theorem 2 is the case where Rj → 0, which is not covered by [1]. In this case
the set W is only assumed to have non-empty interior, in addition to the
condition that W is a subset of ∪j∈JE(zj , Rj). Theorem 2 gives a necessary
condition on W for the identity CT(χW L∞) = T(χW L∞) to hold true.

Proof of Theorem 2. Since W has an empty interior and C(Bn) ∩ χW L∞ ⊂
G, Remark 2.9 in [1] shows that K ⊂ T(G). This implies that K ⊂ CT(G).

Next, without loss of generality, we may assume that Rj < R̄ for all j ∈ J .
Choose R̃ so that R̄ < R̃ < 1. By Lemma 3.1 in [1] there is a continuous
function η which is supported in E(0, r) such that [Tη, Tη̄] is an injective
operator which is diagonal with respect to the standard orthonormal basis
of A2

α.
Let δ > 0 be given. By Lemma 1 there is 0 < γ < R such that

TχE(0,γ)
≤ δTχ

E(0, eR)
. (0.3)

By Lemma 2.6 in [1] there is a number λ so that

TχE(0,R̄)
≤ λ[Tη, Tη̄]2 + δTχ

E(0, eR)
. (0.4)

Now let

N1 = {j ∈ J : Rj < γ} and N2 = {j ∈ J : Rj > R}.

Then by assumption about M, the set J\(N1 ∪N2) is a finite set (possibly
empty). For any j ∈ N1, by applying Uzj on both sides of inequality (0.3),
we get

TχE(zj ,γ)
= UzjTχE(0,γ)

Uzj ≤ δUzjTχ
E(0, eR)

Uzj = δTχ
E(zj , eR)

.

This then implies TχE(zj ,Rj)
≤ TχE(zj ,γ)

≤ δTχ
E(zj , eR)

. For any j ∈ N2, apply-

ing Uzj on both sides of inequality (0.4) and arguing as above, we get

TχE(zj ,R̄)
≤ λ[Tη◦ϕzj

, Tη̄◦ϕzj
]2 + δTχ

E(zj , eR)
.
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Hence TχE(zj ,Rj)
≤ TχE(zj ,R̄)

≤ λ[Tη◦ϕzj
, Tη̄◦ϕzj

]2 + δTχ
E(zj , eR)

. So

TχW ≤
∑
j∈J

TχE(zj ,Rj)

=
∑
j∈N1

TχE(zj ,Rj)
+

∑
j∈N2

TχE(zj ,Rj)
+

∑
j∈J\N1∪N2

TχE(zj ,Rj)
(0.5)

≤ δ
∑
j∈J

Tχ
E(zj , eR)

+ λ
∑
j∈N2

[Tη◦ϕzj
, Tη̄◦ϕzj

]2 +
∑

j∈J\N1∪N2

TχE(zj ,Rj)

Since {zj : j ∈ J} is a separated sequence, we can decompose J =
J1 ∪ · · · ∪ JM for some integer M so that E(zl, R̃) ∩ E(zk, R̃) = ∅ for any
l 6= k in Js, where 1 ≤ s ≤ M (see Lemma 2.3 in [2]). From this we
have

∑
j∈J

Tχ
E(zj , eR)

≤ M . For any j ∈ J , the function η ◦ ϕzj is contin-

uous and supported in E(zj , r), hence it is in G. Proposition 2.3 in [1]
shows that

∑
j∈N2∩Js

[Tη◦ϕzj
, Tη̄◦ϕzj

]2 belongs to CT(G) for 1 ≤ s ≤ M . Thus∑
j∈N2

[Tη◦ϕzj
, Tη̄◦ϕzj

]2 belongs to CT(G). Also since TχE(zj ,Rj)
is compact for

any j in the finite set J\N1 ∪ N2,
∑

j∈J\N1∪N2

TχE(zj ,Rj)
is compact, hence,

in CT(G). Let π denote the canonical quotient map from T(G) onto the
quotient algebra T(G)/CT(G). We then have

π(
∑

j∈N2∩Js

[Tη◦ϕzj
, Tη̄◦ϕzj

]2) = 0 = π(
∑

j∈J\N1∪N2

TχE(zj ,Rj)
).

Let 0 ≤ f ≤ 1 be any function in G. Then since f ≤ χW , (0.5) gives

0 ≤ π(Tf ) ≤ π(TχW ) ≤ δM.

But δ was arbitrary, so we conclude that π(Tf ) = 0 for any f ∈ G with
0 ≤ f ≤ 1. Since any function in G is a linear combination of positive
functions in G, we see that π(Tf ) = 0 for all f ∈ G. So CT(G) = T(G). �
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