COMMUTATOR IDEALS OF SUBALGEBRAS OF TOEPLITZ ALGEBRAS ON WEIGHTED BERGMAN SPACES II

TRIEU LE

Abstract

For any subset G of L^{∞}, let $\mathfrak{T}(G)$ denote the algebra generated by all Toeplitz operators T_{f} with $f \in G$. Let $\mathfrak{C T}(G)$ denote the closed two-sided ideal of $\mathfrak{T}(G)$ generated by all commutators $T_{f} T_{g}-T_{g} T_{f}$ with $f, g \in G$. In this paper we extend our earlier result in 1. More specifically, we show that the identity $\mathfrak{C T}(G)=\mathfrak{T}(G)$ holds true for a broader class of G than considered earlier. The main idea is almost the same as that in 1 .

We refer the reader to 1 for definitions and basic results which we will use in this paper. As in Section 2 in [1], a function f on \mathbb{B}_{n} is called a radial function if there is a function \tilde{f} defined on $[0,1)$ so that $f(z)=\tilde{f}(|z|)$ for all $z \in \mathbb{B}_{n}$. For such an f and any real number $s \geq 0$, put

$$
\omega_{\alpha}(f, s)=\frac{\Gamma(n+s+\alpha+1)}{\Gamma(\alpha+1) \Gamma(n+s)} \int_{0}^{1} r^{n+s-1}(1-r)^{\alpha} \tilde{f}\left(r^{1 / 2}\right) \mathrm{d} r
$$

Remark 2.5 in [1] then says that T_{f} is diagonal with respect to the standard orthonormal basis. In fact we have

$$
\begin{equation*}
T_{f}=\sum_{m \in \mathbb{N}^{n}} \omega_{\alpha}(f,|m|) e_{m} \otimes e_{m} . \tag{0.1}
\end{equation*}
$$

Here for any $g, h \in A_{\alpha}^{2}, g \otimes h$ denotes the operator on A_{α}^{2} defined by the formula $(g \otimes h)(\varphi)=\langle\varphi, h\rangle_{\alpha} g$ for all $\varphi \in A_{\alpha}^{2}$.

Recall that for $w \in \mathbb{B}_{n}$ and $0<r<1, E(w, r)$ denotes the ball centered at w with radius r in the pseudo-hyperbolic metric. If $f(z)=\chi_{E(0, \delta)}(z)=$

[^0]$\chi_{[0, \delta)}(|z|)$ for some $0<\delta<1$ then for any $s \geq 0$,
\[

$$
\begin{aligned}
\omega_{\alpha}\left(\chi_{E(0, \delta)}, s\right) & =\frac{\Gamma(n+s+\alpha+1)}{\Gamma(\alpha+1) \Gamma(n+s)} \int_{0}^{1} r^{n+s-1}(1-r)^{\alpha} \chi_{[0, \delta)}\left(r^{1 / 2}\right) \mathrm{d} r \\
& =\frac{\Gamma(n+s+\alpha+1)}{\Gamma(\alpha+1) \Gamma(n+s)} \int_{0}^{\delta^{2}} r^{n+s-1}(1-r)^{\alpha} \mathrm{d} r .
\end{aligned}
$$
\]

Since $\min \left\{1,\left(1-\delta^{2}\right)^{\alpha}\right\} \leq(1-r)^{\alpha} \leq \max \left\{1,\left(1-\delta^{2}\right)^{\alpha}\right\}$ for all $0 \leq r \leq \delta^{2}$, we have

$$
\begin{aligned}
\min \left\{1,\left(1-\delta^{2}\right)^{\alpha}\right\} & \leq \omega_{\alpha}\left(\chi_{E(0, \delta)}, s\right) \frac{\Gamma(\alpha+1) \Gamma(n+s)}{\Gamma(n+s+\alpha+1)} \frac{(n+s)}{\delta^{2(n+s)}} \\
& \leq \max \left\{1,\left(1-\delta^{2}\right)^{\alpha}\right\} .
\end{aligned}
$$

This then implies that for any $0<r<R<1$ and $s \geq 0$,

$$
\begin{align*}
0 \leq \frac{\omega_{\alpha}\left(\chi_{E(0, r)}, s\right)}{\omega_{\alpha}\left(\chi_{E(0, R)}, s\right)} & \leq \frac{\max \left\{1,\left(1-r^{2}\right)^{\alpha}\right\}}{\min \left\{1,\left(1-R^{2}\right)^{\alpha}\right\}}\left(\frac{r}{R}\right)^{2(n+s)} \tag{0.2}\\
& \leq \frac{\max \left\{1,\left(1-r^{2}\right)^{\alpha}\right\}}{\min \left\{1,\left(1-R^{2}\right)^{\alpha}\right\}}\left(\frac{r}{R}\right)^{2 n}
\end{align*}
$$

Lemma 1. Suppose $0<R<1$ and $\delta>0$. Then there exists $\gamma=\gamma(R, \delta)$ in $(0,1)$ so that for all $0<r<\gamma, T_{\chi_{E(0, r)}} \leq \delta T_{\chi_{E(0, R)}}$.

Proof. From (0.1), we have

$$
T_{\chi_{E(0, R)}}=\sum_{m \in \mathbb{N}^{n}} \omega_{\alpha}\left(\chi_{E(0, R)},|m|\right) e_{m} \otimes e_{m}
$$

and for any $0<r<1$,

$$
T_{\chi_{E(0, r)}}=\sum_{m \in \mathbb{N}^{n}} \omega_{\alpha}\left(\chi_{E(0, r)},|m|\right) e_{m} \otimes e_{m} .
$$

From equation (0.2) there is a γ in $(0,1)$ such that for any $0<r<\gamma$ and all $s \geq 0$, we have $0 \leq \frac{\omega_{\alpha}\left(\chi_{E(0, r)}, s\right)}{\omega_{\alpha}\left(\chi_{E(0, R)}, s\right)} \leq \delta$. This then implies that $T_{\chi_{E(0, r)}} \leq \delta T_{\chi_{E(0, R)}}$.
Theorem 2. Let $\left\{z_{j}: j \in J\right\}$ be a separated sequence in \mathbb{B}_{n} where J is either a non-empty finite set or \mathbb{N}. Let $0<R<\bar{R}<1$ and $\mathcal{M}=\left\{R_{j}\right.$: $j \in J\} \subset(0,1)$ such that any limit point of \mathcal{M} is either 0 or is in the open interval (R, \bar{R}). Suppose W is a set with non-empty interior that satisfies the following conditions:
(1) $W \subset \cup_{j \in J} E\left(z_{j}, R_{j}\right)$,
(2) There exists $0<r<1$ such that whenever $R_{j}>R($ for some $j \in J)$ we have $E\left(z_{j}, r\right) \subset W$.

Let G be a linear subspace of $\chi_{W} L^{\infty}$ such that $C(\mathbb{B}) \cap \chi_{W} L^{\infty} \subset G$ and each function in G is a linear combinations of positive functions in G. Then we have $\mathcal{K} \subset \mathfrak{C T}(G)=\mathfrak{T}(G)$.

Remark 3. Let W be a subset of \mathbb{B}_{n} that satisfies the conditions in Theorem 2. Applying the theorem with $G=\chi_{W} L^{\infty}$, we see that $\mathfrak{C T}\left(\chi_{W} L^{\infty}\right)=$ $\mathfrak{T}\left(\chi_{W} L^{\infty}\right)$. The case where $R_{j}>R$ for all $j \in J$ is Theorem 1.1 in [1] which extends an earlier result of the author in [2]. What interesting about Theorem 2 is the case where $R_{j} \rightarrow 0$, which is not covered by [1]. In this case the set W is only assumed to have non-empty interior, in addition to the condition that W is a subset of $\cup_{j \in J} E\left(z_{j}, R_{j}\right)$. Theorem 2 gives a necessary condition on W for the identity $\mathfrak{C} \mathfrak{T}\left(\chi_{W} L^{\infty}\right)=\mathfrak{T}\left(\chi_{W} L^{\infty}\right)$ to hold true.

Proof of Theorem 2. Since W has an empty interior and $C\left(\mathbb{B}_{n}\right) \cap \chi_{W} L^{\infty} \subset$ G, Remark 2.9 in [1] shows that $\mathcal{K} \subset \mathfrak{T}(G)$. This implies that $\mathcal{K} \subset \mathfrak{C T}(G)$.

Next, without loss of generality, we may assume that $R_{j}<\bar{R}$ for all $j \in J$. Choose \widetilde{R} so that $\bar{R}<\widetilde{R}<1$. By Lemma 3.1 in [1] there is a continuous function η which is supported in $E(0, r)$ such that $\left[T_{\eta}, T_{\bar{\eta}}\right]$ is an injective operator which is diagonal with respect to the standard orthonormal basis of A_{α}^{2}.

Let $\delta>0$ be given. By Lemma 1 there is $0<\gamma<R$ such that

$$
\begin{equation*}
T_{\chi_{E(0, \gamma)}} \leq \delta T_{\chi_{E(0, \tilde{R})}} \tag{0.3}
\end{equation*}
$$

By Lemma 2.6 in [1] there is a number λ so that

$$
\begin{equation*}
T_{\chi_{E(0, \bar{R})}} \leq \lambda\left[T_{\eta}, T_{\bar{\eta}}\right]^{2}+\delta T_{\chi_{E(0, \tilde{R})}} \tag{0.4}
\end{equation*}
$$

Now let

$$
N_{1}=\left\{j \in J: R_{j}<\gamma\right\} \quad \text { and } \quad N_{2}=\left\{j \in J: R_{j}>R\right\}
$$

Then by assumption about \mathcal{M}, the set $J \backslash\left(N_{1} \cup N_{2}\right)$ is a finite set (possibly empty). For any $j \in N_{1}$, by applying $U_{z_{j}}$ on both sides of inequality (0.3), we get

$$
T_{\chi_{E\left(z_{j}, \gamma\right)}}=U_{z_{j}} T_{\chi_{E(0, \gamma)}} U_{z_{j}} \leq \delta U_{z_{j}} T_{\chi_{E(0, \tilde{R})}} U_{z_{j}}=\delta T_{\chi_{E\left(z_{j}, \tilde{R}\right)}}
$$

 ing $U_{z_{j}}$ on both sides of inequality 0.4 and arguing as above, we get

$$
T_{\chi_{E\left(z_{j}, \bar{R}\right)}} \leq \lambda\left[T_{\eta \circ \varphi_{z_{j}}}, T_{\bar{\eta} \circ \varphi_{z_{j}}}\right]^{2}+\delta T_{\chi_{E\left(z_{j}, \tilde{R}\right)}}
$$

Hence $T_{\chi_{E\left(z_{j}, R_{j}\right)}} \leq T_{\chi_{E\left(z_{j}, \bar{R}\right)}} \leq \lambda\left[T_{\eta \circ \varphi_{z_{j}}}, T_{\bar{\eta} \circ \varphi_{z_{j}}}\right]^{2}+\delta T_{\chi_{E\left(z_{j}, \tilde{R}\right)}}$. So

$$
\begin{align*}
T_{\chi_{W}} & \leq \sum_{j \in J} T_{\chi_{E\left(z_{j}, R_{j}\right)}} \\
& =\sum_{j \in N_{1}} T_{\chi_{E\left(z_{j}, R_{j}\right)}}+\sum_{j \in N_{2}} T_{\chi_{E\left(z_{j}, R_{j}\right)}}+\sum_{j \in J \backslash N_{1} \cup N_{2}} T_{\chi_{E\left(z_{j}, R_{j}\right)}} \tag{0.5}\\
& \leq \delta \sum_{j \in J} T_{\chi_{E\left(z_{j}, \tilde{R}\right)}}+\lambda \sum_{j \in N_{2}}\left[T_{\eta \circ \varphi_{z_{j}}}, T_{\bar{\eta} \circ \varphi_{z_{j}}}\right]^{2}+\sum_{j \in J \backslash N_{1} \cup N_{2}} T_{\chi_{E\left(z_{j}, R_{j}\right)}}
\end{align*}
$$

Since $\left\{z_{j}: j \in J\right\}$ is a separated sequence, we can decompose $J=$ $J_{1} \cup \cdots \cup J_{M}$ for some integer M so that $E\left(z_{l}, \widetilde{R}\right) \cap E\left(z_{k}, \widetilde{R}\right)=\emptyset$ for any $l \neq k$ in J_{s}, where $1 \leq s \leq M$ (see Lemma 2.3 in [2]). From this we have $\sum_{j \in J} T_{\chi_{E\left(z_{j}, \tilde{R}\right)}} \leq M$. For any $j \in J$, the function $\eta \circ \varphi_{z_{j}}$ is continuous and supported in $E\left(z_{j}, r\right)$, hence it is in G. Proposition 2.3 in [1] shows that $\sum_{j \in N_{2} \cap J_{s}}\left[T_{\eta \circ \varphi_{z_{j}}}, T_{\bar{\eta} \circ \varphi_{z_{j}}}\right]^{2}$ belongs to $\mathfrak{C T}(G)$ for $1 \leq s \leq M$. Thus $\sum_{j \in N_{2}}\left[T_{\eta \circ \varphi_{z_{j}}}, T_{\bar{\eta} \circ \varphi_{z_{j}}}\right]^{2}$ belongs to $\mathfrak{C T}(G)$. Also since $T_{\chi_{E\left(z_{j}, R_{j}\right)}}$ is compact for any j in the finite set $J \backslash N_{1} \cup N_{2}, \sum_{j \in J \backslash N_{1} \cup N_{2}} T_{\chi_{E\left(z_{j}, R_{j}\right)}}$ is compact, hence, in $\mathfrak{C T}(G)$. Let π denote the canonical quotient map from $\mathfrak{T}(G)$ onto the quotient algebra $\mathfrak{T}(G) / \mathfrak{C T}(G)$. We then have

$$
\pi\left(\sum_{j \in N_{2} \cap J_{s}}\left[T_{\eta \circ \varphi_{z_{j}}}, T_{\bar{\eta} \circ \varphi_{z_{j}}}\right]^{2}\right)=0=\pi\left(\sum_{j \in J \backslash N_{1} \cup N_{2}} T_{\chi_{E\left(z_{j}, R_{j}\right)}}\right) .
$$

Let $0 \leq f \leq 1$ be any function in G. Then since $f \leq \chi_{W}$, (0.5) gives

$$
0 \leq \pi\left(T_{f}\right) \leq \pi\left(T_{\chi_{W}}\right) \leq \delta M .
$$

But δ was arbitrary, so we conclude that $\pi\left(T_{f}\right)=0$ for any $f \in G$ with $0 \leq f \leq 1$. Since any function in G is a linear combination of positive functions in G, we see that $\pi\left(T_{f}\right)=0$ for all $f \in G$. So $\mathfrak{C T}(G)=\mathfrak{T}(G)$.

References

[1] Trieu Le, Commutator ideals of subalgebras of Toeplitz algebras on weighted Bergman spaces, J. Operator Theory, to appear, available at http://www.math.uwaterloo.ca/~t29le/Papers.htm.
[2] _, On the commutator ideal of the Toeplitz algebra on the Bergman space of the unit ball in \mathbb{C}^{n}, J. Operator Theory 60 (2008), no. 1, 149-163.

Trieu Le, Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

E-mail address: t291e@math.uwaterloo.ca

[^0]: 2000 Mathematics Subject Classification. Primary 47B35; Secondary 47B47.
 Key words and phrases. Commutator ideals; Toeplitz operators; Weighted Bergman spaces.

