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ABSTRACT. Let L2
a denote the Bergman space of the open unit ball Bn in Cn,

for n ≥ 1. The Toeplitz algebra T is the C∗−algebra generated by all Toeplitz
operators Tf with f ∈ L∞. It was proved by D. Suárez that for n = 1, the closed
bilateral commutator ideal generated by operators of the form Tf Tg − TgTf ,
where f , g ∈ L∞, coincides with T. With a different approach, we can show
that for n ≥ 1, the closed bilateral ideal generated by operators of the above
form, where f , g can be required to be continuous on the open unit ball or
supported in a nowhere dense set, is also all of T.
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1. INTRODUCTION

For n ≥ 1, let Cn denote the cartesian product of n copies of C. For any
two points z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn, we use the notations
〈z, w〉 = z1w1 + · · ·+ znwn and |z| =

√
|z1|2 + · · ·+ |zn|2 for the inner product

and the associated Euclidean norm. Let Bn denote the open unit ball which con-
sists of points z ∈ Cn with |z| < 1. Let dν denote the Lebesgue measure on Bn so
normalized that ν(Bn) = 1. Let dµ(z) = (1− |z|2)−n−1 dν(z). Then dµ is invari-
ant under the action of the group of automorphisms Aut(Bn) of Bn. Even though
dµ is an unbounded measure on Bn, it will be very useful for us later.

Let L2 = L2(Bn, dν) and L∞ = L∞(Bn, dν). The Bergman space L2
a is the

subspace of L2 which consists of all holomorphic functions. The orthogonal pro-
jection from L2 onto L2

a is given by

P f (z) =
∫
Bn

f (w)
(1− 〈z, w〉)n+1 dν(w), f ∈ L2, z ∈ Bn.
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The normalized reproducing kernels for L2
a are of the form

kz(w) = (1− |z|2)(n+1)/2(1− 〈w, z〉)−n−1, |z|, |w| < 1.

We have ‖kz‖ = 1 and 〈g, kz〉 = (1− |z|2)(n+1)/2g(z) for all g ∈ L2
a.

Let B(L2
a) be the C∗−algebra of all bounded linear operators on L2

a. Let K
denote the ideal of compact operators on L2

a.
For any η ∈ L∞ let Mη : L2 −→ L2 be the operator of multiplication by η

and Pη = PMη . Then ‖Pη‖ ≤ ‖η‖∞. The Toeplitz operator Tη : L2
a −→ L2

a is the
restriction of Pη to L2

a. For any subset G of L∞, let T(G) denote the C∗−subalgebra
of B(L2

a) generated by {Tη : η ∈ G}. The commutator ideal of this algebra is
denoted by CT(G). It is well-know that CT(C(B̄n)) is contained in K, see [1].
The algebra T(L∞) which is generated by all Toeplitz operators with bounded
symbols is called the full Toeplitz algebra. Its commutator ideal is CT(L∞).

There have been many results on commutator ideals and abelianizations of
Toeplitz algebras acting on Hardy spaces. In contrast with this, there are only few
results for Toeplitz algebras on Bergman spaces. Recently, Suárez showed in [5]
that the Toeplitz algebra T(L∞) on the Bergman space of the unit disk coincides
with its commutator ideal CT(L∞). In his paper, Suárez used some explicit com-
putations and identities which are readily available on the unit disk to construct
a function η ∈ L∞ with the property that η > c > 0 on the disk and Tη is in
the commutator ideal CT(L∞). In higher dimensions, the computations become
more complicated and some of the identities which were used by Suárez are not
available. We could not find a way to get around these difficulties to construct
a function similar to that of Suárez so we tried a different approach. It turns out
that our new approach gives more general results about commutator ideals of the
Toeplitz algebras. Indeed, we do not need G to be all the functions in L∞ to get
CT(G) = T(L∞). We can take G to be L∞ ∩ C(Bn) - the set of all bounded contin-
uous functions on the open unit ball or we can take G to be all the functions in
L∞ which are supported in a set E where E can be a nowhere dense set with ν(E)
as small as we please.

We next describe a metric on the unit ball which we will mainly use in this
paper. For any z ∈ Bn, let ϕz denote the Mobius automorphism of Bn that inter-
changes 0 and z. For any z, w ∈ Bn, let ρ(z, w) = |ϕz(w)|. Then ρ is a metric which
is invariant under the action of the group of automorphisms Aut(Bn) of Bn. These
properties of ρ can be proved by using identities in Theorem 2.2.2 in [4]. Further
discussion of this metric will appear later in Section 2.

A collection W = {wj : j ∈ J} of points in Bn is said to be separated if
r = inf{ρ(wj, wk) : j 6= k} > 0. It is a consequence of Lemma 2.1 that in this case
the index set J is necessarily at most countable. The number r is called the degree
of separation of W .

For z ∈ Bn and 0 < r < 1, let

E(z, r) = {w ∈ Bn : ρ(w, z) ≤ r}
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denote the closed r−ball centered at z in the ρ metric.

THEOREM 1.1. Let {wj : j ∈ N} be a separated sequence of points in Bn so
that Bn =

⋃
j∈N

E(wj, R) for some 0 < R < 1. Let η be a measurable function defined

on [0, ∞) with η ≥ 0, η(t) = 0 if t ≥ 1 and ‖η‖∞ = 1. For each 0 < ε < 1
put ηε(z) = z1η(|z|/ε). Let Gε be the set of all functions of the form ∑

j∈F
ηε ◦ ϕwj or

∑
j∈F

ηε ◦ ϕwj where F is a subset of N. Then the operator

Aε = ∑
j∈N

[Tηε◦ϕwj
, Tηε◦ϕwj

]2

belongs to the commutator ideal CT(Gε). Furthermore, for all but countably many ε, the
operator Aε is invertible.

Put Eε =
⋃

j∈N
ϕwj(supp(ηε)).

Then Gε is contained in the subspace {ζ ∈ L∞ : ζ is supported on Eε}. If η
is supported in a nowhere dense subset of [0, 1] then ηε is supported in a nowhere
dense subset of Bn, hence Eε - being a countable union of nowhere dense sets, is
a nowhere dense subset of Bn, too. Furthermore, we will show that for ε > 0,
the Lebesgue measure of Eε is O(ε2n). We will also show that if η is a continuous
function then Gε is a subspace of C(Bn) for all 0 < ε < 1.

The fact that Aε belongs to the ideal CT(Gε) is proved exactly as in Suárez’s
paper. The reason is that all the properties of the metric ρ and the kernel functions
which were crucial for Suárez’s proof hold true in higher dimensions.

The invertibility of Aε follows from a general fact about operators which
are diagonalizable with respect to the standard orthonormal basis of L2

a. In fact,
sums of a ’large enough’ number of operators which are unitarily equivalent to
operators of the above type are invertible. This is the content of Theorem 1.2
which follows.

For any z ∈ Bn, the formula

Uz( f ) = ( f ◦ ϕz)kz, f ∈ L2

defines a bounded operator on L2. It is well-known that Uz is a unitary self-adjoint
operator and UzTηU∗

z = Tη◦ϕz for all z ∈ Bn and all η ∈ L∞, see, for example,
Lemma 7 and 8 in [3].

Also a simple computation reveals that for all z, w ∈ Bn,

Uz(kw) =
(
|1− 〈z, w〉|
1− 〈z, w〉

)n+1

kϕz(w).

This implies

Uz(kw ⊗ kw)U∗
z = kϕz(w) ⊗ kϕz(w).
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Now for any multi-index α = (α1, α2, · · · , αn), let |α| = α1 + · · · αn, α! =
α1! · · · αn! and zα = zα1

1 · · · zαn
n . Put

eα =
(

(n + |α|)!
n!α!

)1/2

zα.

Then {eα : α ∈ Nn} is the standard orthonormal basis for L2
a, see Proposition

1.4.9 in [4].
Recall that for any two elements f and g in L2

a, f ⊗ g denote the rank one
operator ( f ⊗ g)u = 〈u, g〉 f , for all u ∈ L2

a.

THEOREM 1.2. Let {sα : α ∈ Nn} be a bounded set of strictly positive real num-
bers. Let

S = ∑
α∈Nn

sαeα ⊗ eα.

Let {wj : j ∈ N} be a separated sequence of points in Bn so that Bn =
⋃

j∈N
E(wj, R)

for some 0 < R < 1. Then there is a positive constant c so that

∑
j∈N

Uwj SU∗
wj
≥ c > 0.

In the rest of the paper, we will state and prove a couple of lemmas and
propositions before giving the proof for Theorem 1.2 in Section 3 and then Theo-
rem 1.1 in Section 4. Some remarks about Theorem 1.1 will be presented in Section
5.

2. BASIC RESULTS

The following inequalities illustrate the fact that the metric ρ in higher di-
mensions also possesses all the properties used in Suárez’s paper. These results
are well-known but since we are not aware of an appropriate reference, we sketch
here a proof.

LEMMA 2.1. For any z, w in Bn, the followings hold∣∣ |z| − |w|
1− |z||w|

∣∣ ≤ ρ(z, w) ≤ |z− w|
|1− 〈z, w〉 | .

Proof. Using |〈z, w〉| ≤ |z||w|, we get the inequalities

1− |z− w|2
|1− 〈z, w〉|2 ≤

(1− |z|2)(1− |w|2)
|1− 〈z, w〉|2 ≤ (1− |z|2)(1− |w|2)

(1− |z||w|)2 .

Combining the above inequalities with the identity

1− |ϕz(w)|2 =
(1− |z|2)(1− |w|2)

|1− 〈z, w〉|2 (see Theorem 2.2.2 in [4])
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we obtain

1− |z− w|2
|1− 〈z, w〉|2 ≤ 1− |ϕz(w)|2 ≤ 1− (|z| − |w|)2

(1− |z||w|)2 ,

from which the stated inequalities follow.

From Lemma 2.1 and the invariance of ρ under the action of Aut(Bn), we
have for any z, w, u ∈ Bn,

ρ(z, w) = ρ(ϕu(z), ϕu(w))

≥
∣∣ |ϕu(z)| − |ϕu(w)|
1− |ϕu(z)||ϕu(w)|

∣∣(2.1)

=
|ρ(z, u)− ρ(u, w)|
1− ρ(z, u)ρ(u, w)

.

From the second inequality in Lemma 2.1, we see that if |z|, |w| ≤ R < 1
then

(2.2) ρ(z, w) ≤ |z− w|
|1− 〈z, w〉 | ≤

|z− w|
1− R2 .

For all 0 < r < 1 and all 0 < R < 1, from the compactness of E(0, R) in
the Euclidean metric, there is an M which depends only on n, r and R so that
if {w1, . . . , wm} is a subset of E(0, R) and |wj − wk| ≥ (1 − R2)r for all j 6= k
then m ≤ M. Then (2.2) implies that if {w1 . . . , wm} is a subset of E(0, R) so that
ρ(wj, wk) ≥ r for all j 6= k then m ≤ M.

The above properties of ρ allow us to prove the following characteristic of a
separated collection of points in Bn.

LEMMA 2.2. Let {wj : j ∈ J} be a collection of points in Bn so that ρ(wj, wk) > r
for all j 6= k, where 0 < r < 1. Let 0 < R1, R2 < 1 be given. Then there is an N
depending only on n, r, R1 and R2 so that for any u ∈ Bn the set {j ∈ J : E(u, R1) ∩
E(wj, R2) 6= ∅} has at most N elements.

Proof. By applying the Mobius automorphism that interchanges 0 and u
if necessary, we can assume without loss of generality that u = 0. Let R̃ =
R1 + R2

1 + R1R2
. Suppose z, w ∈ Bn with |w| ≤ R1 and |z| > R̃. Then from Lemma

2.1,

ρ(z, w) ≥ |z| − |w|
1− |w||z| >

R̃− R1

1− R̃R1
= R2.

So E(0, R1) ∩ E(z, R2) 6= ∅ implies that |z| ≤ R̃. Hence, {j ∈ J : E(0, R1) ∩
E(zj, R2) 6= ∅} is a subset of the set {j ∈ J : |wj| ≤ R̃}. From the remark preceding
the lemma, the second set has at most N elements, where N depends only on
n, r, R1 and R2. The conclusion of the lemma follows from here.
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The following lemma is similar to Lemma 2.1 in [5] but somewhat stronger
even though the proof is almost identical. We state here the lemma and give the
proof, too.

LEMMA 2.3. Let W = {wj : j ∈ J} be a separated collection of points in Bn and
0 < σ < 1. Then there is a finite decomposition W = W1 ∪ · · · ∪ WN such that for
every 1 ≤ i ≤ N, E(z, σ) ∩ E(w, σ) = ∅ for all z 6= w in Wi.

Proof. Let W1 ⊂ W be a maximal subset so that E(z, σ) ∩ E(w, σ) = ∅ for
all z 6= w in W1. If W1 = W we are done. Otherwise suppose that m ≥ 2 and
W1, . . . ,Wm−1 are chosen so that E(z, σ) ∩ E(w, σ) = ∅ for all z 6= w in Wi, all
1 ≤ i ≤ m− 1 andW\(W1 ∪ · · · ∪Wm−1) 6= ∅. LetWm ⊂ W\(W1 ∪ · · · ∪Wm−1)
be a maximal subset so that E(z, σ) ∩ E(w, σ) = ∅ for all z 6= w in Wm. By the
maximality at each of the previous steps, if u ∈ Wm then for every 1 ≤ i ≤ m− 1,
there is a ui ∈ Wi so that E(ui, σ) ∩ E(u, σ) 6= ∅. Therefore {u, u1, . . . , um−1} ⊂
{j ∈ J : E(u, σ) ∩ E(wj, σ) 6= ∅}. From Lemma 2.2, there is an N depending on
n, σ and the degree of separation of W so that m ≤ N.

From now to the end of this section, fix an r ∈ (0, 1) and a sequence of points
W = {wj : j ∈ N} in Bn so that E(wj, r) ∩ E(wk, r) = ∅ for all j 6= k in N.

Now we state a couple of lemmas which are in Suárez’s paper for the case
n = 1 and for Lp

a with 1 < p < ∞, see Lemma 2.4-2.6 in [5]. Here we are interested
in the case n ≥ 2 and p = 2. The conclusions of those lemmas in our case still hold
true with no major changes in the proofs.

LEMMA 2.4. Let 0 < β < 1 and r < R < 1 and let

Φ(z, w) = ∑
j∈N

χE(wj ,r)(z)χBn\E(wj ,R)(w)|1− 〈z, w〉|−n−1.

Then ∫
Bn

Φ(z, w)(1− |z|2)−β dν(z) ≤ c1(β)(1− |w|2)−β,

where c1(β) > 0.

LEMMA 2.5. Let 0 < β < 1 and r < R < 1 and Φ(z, w) as in Lemma 2.4. Then∫
Bn

Φ(z, w)(1− |w|2)−β dν(w) ≤ c2(β, R)(1− |z|2)−β,

where c2(β, R) → 0 when R → 1.

LEMMA 2.6. Suppose that R ∈ (r, 1) and aj, Aj ∈ L∞ are functions of norm ≤ 1
such that

supp aj ⊂ E(wj, r) and supp Aj ⊂ Bn\E(wj, R).

Then the operator ∑
j∈N

Maj PMAj is bounded on L2, with norm bounded by some

constant k(R) → 0 when R → 1.
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The following proposition is the case n ≥ 1 and p = 2 of Proposition 2.9 in
[5]. Since we have all the needed properties of the metric ρ and all the necessary
lemmas, the proof is identical to that of Suárez.

PROPOSITION 2.7. For each j ∈ N, let c1
j , . . . , cl

j, aj, bj, d1
j , . . . , dm

j ∈ L∞ be func-
tions of norm ≤ 1 supported on E(wj, r). Then

∑
j∈N

Tc1
j

. . . Tcl
j
(Taj Tbj

− Tbj
Taj)Td1

j
· · · Tdm

j

belongs to the commutator ideal CT(L∞) of the full Toeplitz algebra.

In the proof of Proposition 2.7, we are dealing only with Toeplitz operators
with symbols in the subset G of L∞ which consists of functions of the form ∑

j∈F
f j,

where F is a subset of N and f is one of the symbols c1, . . . , cl , a, b, d1, . . . , dm. So
in the above conclusion, we can replace CT(L∞) by the smaller ideal CT(G).

3. INVERTIBILITY OF SUMS OF RANK ONE PROJECTIONS

From now to the end of this section, fix a bounded set {sα : α ∈ Nn} of
strictly positive real numbers.

LEMMA 3.1. Fix 0 < R < 1 and ε > 0 so that (1 + ε)R < 1. Let δ > 0 be given.
Then there is a constant C(δ) > 0 so that for all |z| ≤ R,

(3.1) kz ⊗ kz ≤ C(δ) ∑
α∈Nn

sα eα ⊗ eα + δ
∫

|w|<(1+ε)R

kw ⊗ kw dµ(w).

Proof. Let f be in L2
a and |z| ≤ R. Let J be a finite subset of Nn.

Put

gJ = ∑
α∈J

〈 f , eα〉eα and hJ = ∑
α∈Nn\J

〈 f , eα〉eα.

Then

〈(kz ⊗ kz) f , f 〉 = |〈 f , kz〉|2

= |〈gJ , kz〉+ 〈hJ , kz〉|2

≤ 2(|〈gJ , kz〉|2 + |〈hJ , kz〉|2).

(3.2)
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Now,∣∣〈hJ , kz〉
∣∣2 =

∣∣ ∑
α∈Nn\J

〈 f , eα〉〈eα, kz〉
∣∣2

= (1− |z|2)n+1∣∣ ∑
α∈Nn\J

〈 f , eα〉eα(z)
∣∣2

≤
∣∣ ∑
α∈Nn\J

〈 f , eα〉eα(z)
∣∣2

≤
(

∑
α∈Nn\J

|〈 f , eα〉|
( (n + |α|)!

n!α!

)1/2
|zα|

)2

≤
(

∑
α∈Nn\J

|〈 f , eα〉|2((1 + ε)R)2|α|
)

×
(

∑
α∈Nn\J

(n + |α|)!
n!α!

|zα|2((1 + ε)R)−2|α|
)

.

(3.3)

On the other hand, the homogeneity of the eα’s shows that

f ((1 + ε)Rζ) = ∑
α∈Nn

〈 f , eα〉((1 + ε)R)|α|eα(ζ)

so that the change-of-variable w = (1 + ε)Rζ gives∫
|w|<(1+ε)R

〈(kw ⊗ kw) f , f 〉 dµ(w) =
∫

|w|<(1+ε)R

| f (w)|2 dν(w)

= ((1 + ε)R)2n
∫
Bn

| f (1 + ε)Rζ|2 dν(ζ)

= ((1 + ε)R)2n ∑
α∈Nn

|〈 f , eα〉|2((1 + ε)R)2|α|(3.4)

≥ ((1 + ε)R)2n ∑
α∈Nn\J

|〈 f , eα〉|2((1 + ε)R)2|α|.

This implies
(3.5)

∑
α∈Nn\J

|〈 f , eα〉|2((1 + ε)R)2|α| ≤ (1 + ε)R)−2n
∫

|w|<(1+ε)R

〈(kw ⊗ kw) f , f 〉 dµ(w).

Inequalities (3.3) and (3.5) imply

|〈hJ , kz〉|2 ≤
(

∑
α∈Nn\J

(n + |α|)!
n!α!

|zα|2((1 + ε)R)−2|α|
)

((1 + ε)R)−2n

×
∫

|z|<(1+ε)R

〈(kw ⊗ kw) f , f 〉 dµ(w).
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Now from the identity

Kw(ζ) = ∑
α∈Nn

eα(w)eα(ζ),

for w, ζ ∈ Bn, where Kw(ζ) is the Bergman reproducing kernel, we have

∑
α∈Nn

|eα(w)|2 = Kw(w) =
1

(1− |w|2)n+1 .

If we take w = z/((1 + ε)R), where |z| ≤ R, we obtain

∑
α∈Nn

(n + |α|)!
n!α!

|zα|2((1 + ε)R)−2|α| = ∑
α∈Nn

|eα(z/((1 + ε)R))|2

≤ 1
(1− 1/(1 + ε)2)n+1 .

(3.6)

So there is a finite subset J of Nn which is independent of z so that

∑
α∈Nn\J

(n + |α|)!
n!α!

|zα|2((1 + ε)R)−2|α| ≤ δ

2
((1 + ε)R)2n.

Hence for this J,

(3.7) |〈hJ , kz〉|2 ≤
δ

2

∫
|w|<(1+ε)R

〈(kw ⊗ kw) f , f 〉 dµ(w).

Also,

|〈gJ , kz〉|2 ≤ ‖gJ‖2 = ∑
α∈J

|〈 f , eα〉|2.(3.8)

From inequalities (3.2), (3.7) and (3.8), we conclude that

〈(kz ⊗ kz) f , f 〉 ≤ 2 ∑
α∈J

〈(eα ⊗ eα) f , f 〉+ δ
∫

|w|<(1+ε)R

〈(kw ⊗ kw) f , f 〉 dµ(w).

Since sα > 0 for all α ∈ J and J is finite, there is a constant C(δ) > 0 so that
C(δ)sα ≥ 2 for all α ∈ J. Then for any f ∈ L2

a, and any |z| ≤ R,

〈(kz ⊗ kz) f , f 〉 ≤ C(δ) ∑
α∈J

sα〈(eα ⊗ eα) f , f 〉+ δ
∫

|w|<(1+ε)R

〈(kw ⊗ kw) f , f 〉 dµ(w)

≤ C(δ) ∑
α∈Nn

sα〈(eα ⊗ eα) f , f 〉+ δ
∫

|w|<(1+ε)R

〈(kw ⊗ kw) f , f 〉 dµ(w).

In other words, for any |z| ≤ R,

kz ⊗ kz ≤ C(δ) ∑
α∈Nn

sαeα ⊗ eα + δ
∫

|w|<(1+ε)R

kw ⊗ kw dµ(w).
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Proof of Theorem 2. Let S = ∑
α∈Nn

sα eα ⊗ eα and W = {wj : j ∈ N} be as in

the hypothesis of Theorem 1.2. Choose an ε > 0 so that (1 + ε)R < 1.
For each a ∈ Bn, apply Ua to the left and U∗

a to the right of both sides of
inequality (3.1) in Lemma 3.1, we get

Ua(kz ⊗ kz)U∗
a ≤ C(δ)UaSU∗

a + δ
∫

|w|<(1+ε)R

Ua(kw ⊗ kw)U∗
a dµ(w)

= C(δ)UaSU∗
a + δ

∫
|w|<(1+ε)R

kϕa(w) ⊗ kϕa(w) dµ(w)

= C(δ)UaSU∗
a + δ

∫
|ϕa(ζ)|<(1+ε)R

kζ ⊗ kζ dµ(ζ)

(by the change-of-variable w = ϕa(ζ))

= C(δ)UaSU∗
a + δ

∫
E(a,(1+ε)R)

kζ ⊗ kζ dµ(ζ),

for |z| ≤ R.
Since Ua(kz ⊗ kz)U∗

a = kϕa(z) ⊗ kϕa(z), the above implies

(3.9) kϕa(z) ⊗ kϕa(z) ≤ C(δ)UaSU∗
a + δ

∫
E(a,(1+ε)R)

kζ ⊗ kζ dµ(ζ).

For each |z| ≤ R, let

T(z) = ∑
j∈N

kϕwj (z) ⊗ kϕwj (z).

Then (3.9) gives

(3.10) T(z) ≤ C(δ) ∑
j∈N

Uwj SU∗
wj

+ δ ∑
j∈N

∫
E(wj ,(1+ε)R)

kζ ⊗ kζ dµ(ζ),

for |z| ≤ R.
Decompose W = W1 ∪ · · · ∪WN as in Lemma 2.3, where N depends only

on n, (1 + ε)R and the degree of separation of W . Then

∑
j∈N

∫
E(wj ,(1+ε)R)

kζ ⊗ kζ dµ(ζ) ≤
N

∑
i=1

∑
w∈Wi

∫
E(w,(1+ε)R)

kζ ⊗ kζ dµ(ζ)

≤
N

∑
i=1

∫
Bn

kζ ⊗ kζ dµ(ζ) = N.

Hence for |z| ≤ R,

(3.11) T(z) ≤ C(δ) ∑
j∈N

Uwj SU∗
wj

+ δN.
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By integrating T(z) with respect to dν(z) over the ball |z| < R, we get∫
|z|<R

T(z) dν(z) ≥ (1− R2)n+1
∫

|z|<R

T(z)(1− |z|2)−(n+1) dν(z)

= (1− R2)n+1
∫

|z|<R

T(z) dµ(z)

= (1− R2)n+1 ∑
j∈N

∫
|z|<R

kϕwj (z) ⊗ kϕwj (z) dµ(z)

= (1− R2)n+1 ∑
j∈N

∫
E(wj ,R)

kζ ⊗ kζ dµ(ζ)

≥ (1− R2)n+1
∫
Bn

kζ ⊗ kζ dµ(ζ)

(since Bn =
⋃
j∈N

E(wj, R))

= (1− R2)n+1.

(3.12)

Inequalities (3.11) and (3.12) together imply

C(δ) ∑
j∈N

Uwj SU∗
wj

+ δN ≥ (1− R2)n+1R−2n.

Now choose δ so small that

δN ≤ 2−1(1− R2)n+1R−2n.

Then we have

(3.13) C(δ) ∑
j∈N

Uwj SU∗
wj
≥ 2−1(1− R2)n+1R−2n > 0.

4. PROOF OF THE MAIN THEOREM

Suppose ηε(z) = z1η(|z|/ε) for all z = (z1, . . . , zn) ∈ Bn as in the hypothesis
of Theorem 1.1. We will compute directly [Tηε , Tηε

] to see that it is a diagonal
operator with respect to the standard orthonormal basis.

For any multi-indices α and β in Nn, we have

〈Tηε eα, eβ〉 =
∫
Bn

ηε(z)eα(z)eβ(z) dν(z)

=
∫

|z|<ε

η(|z|/ε)z1eα(z)eβ(z) dν(z).
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Now,

z1eα(z) =
(

(n + |α|)!
n!α!

)1/2

z1zα

=
(

(n + |α|)!
n!α!

n!(α + (1, 0, . . . , 0))!
(n + |α|+ 1)!

)1/2

eα+(1,0,...,0)(z)

=
(

α1 + 1
n + |α|+ 1

)1/2

eα+(1,0,...,0)(z).

So

〈Tηε eα, eβ〉

=
(

α1 + 1
n + |α|+ 1

)1/2 ∫
|z|<ε

η(|z|/ε)eα+(1,0,...,0)(z)eβ(z) dν(z)

=
(

α1 + 1
n + |α|+ 1

)1/2 ε∫
0

(2n)r2n−1η(r/ε)
∫
Sn

eα+(1,0,...,0))(rζ)eβ(rζ) dσ(ζ) dr

=
(

α1 + 1
n + |α|+ 1

)1/2

×


0 if β 6= α + (1, 0, . . . , 0)

ε∫
0

(2n)r2n−1η(r/ε)
(n + |α|+ 1

n
)
r2|α|+2 dr if β = α + (1, 0, . . . , 0)

(see Proposition 1.4.9 in [4])

We have
ε∫

0

(2n)r2n−1η(r/ε)(
n + |α|+ 1

n
)
r2|α|+2 dr

=
ε∫

0

2(n + |α|+ 1)r2n+2|α|+1η(r/ε) dr

= ε2n+2|α|+2
1∫

0

(n + |α|+ 1)tn+|α|η(t1/2) dt

(by the change-of-variable r = εt1/2.)

For m ≥ 0, put γm =
1∫

0
(m + 1)tmη(t1/2) dt > 0. Note that γm depends only

on m and the function η. We then have
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Tηε eα =
(

α1 + 1
n + |α|+ 1

)1/2

ε2n+2|α|+2γn+|α| eα+(1,0,...,0).

From this we see that for any multi-index α,

Tηε
eα =

(
α1

n + |α|

)1/2

ε2n+2|α|γn+|α|−1 eα−(1,0,...,0)

if α1 ≥ 1 and Tηε
eα = 0 if α1 = 0.

Now for multi-indices α with α1 ≥ 1,

Tηε Tηε
eα

= Tηε

(( α1

n + |α|

)1/2
ε2n+2|α|γn+|α|−1 eα−(1,0...,0)

)
=

( α1

n + |α|

)1/2
ε2n+2|α|γn+|α|−1

( α1

n + |α|

)1/2
ε2n+2|α|γn+|α|−1 eα

=
α1

n + |α| ε
4(n+|α|)γ2

n+|α|−1 eα,

and

Tηε
Tηε eα

= Tηε

(( α1 + 1
n + |α|+ 1

)1/2
ε2n+2|α|+2γn+|α| eα+(1,0,...,0)

)
=

( α1 + 1
n + |α|+ 1

)1/2
ε2n+2|α|+2

( α1 + 1
n + |α|+ 1

)1/2
ε2n+2|α|+2γn+|α| eα

=
α1 + 1

n + |α|+ 1
ε4(n+|α|+1)γ2

n+|α| eα.

Therefore,

[Tηε , Tηε
]eα

=
(

α1

n + |α| ε
4(n+|α|)γ2

n+|α|−1 −
α1 + 1

n + |α|+ 1
ε4(n+|α|+1)γ2

n+|α|

)
eα

=
(

α1

α1 + 1
n + |α|+ 1

n + |α|
γ2

n+|α|−1

γ2
n+|α|

− ε4
)

α1 + 1
n + |α|+ 1

ε4(n+|α|)γ2
n+|α| eα.

This formula also holds for multi-indices α with α1 = 0.
For all 0 < ε < 1 so that

ε4 /∈
{

α1

α1 + 1
n + |α|+ 1

n + α|
γ2

n+|α|−1

γ2
n+|α|

: α = (α1, . . . , αn) ∈ Nn

}
,

the operator T = [Tηε , Tηε
]2 can be written as

T = ∑
α∈Nn

sα eα ⊗ eα,
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where sα > 0 for all α.
Since {wj : j ∈ N} is separated and Bn =

⋃
j∈N

E(wj, R) for some 0 < R < 1,

Theorem 1.2 implies that there is a positive number c so that

Aε = ∑
j∈N

Uwj TU∗
wj

= ∑
j∈N

Uwj [Tηε , Tηε
]2U∗

wj
≥ c > 0.

Now for each j ∈ N,

Uwj [Tηε , Tηε
]U∗

wj
= Uwj

(
Tηε Tηε

− Tηε
Tηε

)
U∗

wj

= Uwj Tηε Tηε
U∗

wj
−Uwj Tηε

Tηε U∗
wj

=
(

Uwj Tηε U∗
wj

)(
Uwj Tηε

U∗
wj

)
−

(
Uwj Tηε

U∗
wj

)(
Uwj Tηε U∗

wj

)
= Tηε◦ϕwj

Tηε◦ϕwj
− Tηε◦ϕwj

Tηε◦ϕwj

= [Tηε◦ϕwj
, Tηε◦ϕwj

].

Hence Aε = ∑
j∈N

[Tηε◦ϕwj
, Tηε◦ϕwj

]2.

Note that for each j, the function ηε ◦ ϕwj is supported in the set

{z ∈ Bn : |ϕwj(z)| ≤ ε} = {z ∈ Bn : ρ(z, wj) ≤ ε} = E(wj, ε).

We now decompose W = W1 ∪ · · · ∪ WN such that E(z, ε) ∩ E(w, ε) = ∅
for all z 6= w in Wj, for all 1 ≤ j ≤ N as in Lemma 2.3. Hence

Aε =
N

∑
i=1

∑
w∈Wi

[Tηε◦ϕw , Tηε◦ϕw ]2,

where, by Proposition 2.7 and the remark following it, each of the summands is
in CT(Gε). Here we remind the reader that Gε is the subset of L∞ consisting of all
functions of the form ∑

j∈F
ηε ◦ ϕwj or ∑

j∈F
ηε ◦ ϕwj where F is a subset of N.

It then follows that Aε itself belongs to CT(Gε).

5. REMARKS

In this section we are discussing some remarks about Theorem 1.1. Our first
remark is the existence of a separated sequence as in the hypothesis of Theorem
1.1. This is actually a consequence of Zorn’s lemma. In fact, let 0 < r < 1 and Ωr
be the collection of all sets of points {wj : j ∈ J} in Bn so that ρ(wj, wk) > r for
all j 6= k. The sets in Ωr are ordered by inclusion. Apply Zorn’s lemma, we get
a maximal set in Ωr. Denote this set by {wj : j ∈ J}. Since J must be infinite and
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countable, we can assume that J is N. Then for any z ∈ Bn, by maximality there
is a j ∈ N so that ρ(z, wj) ≤ r. Hence Bn =

⋃
j∈N

E(wj, r).

The second remark is about the set Gε. Note that all functions in Gε vanish
on Bn\Eε, where Eε is a subset of Vε =

⋃
j∈N

E(wj, ε). The following lemma gives

an upper estimate for the Lebesgue measure of Vε for small ε > 0.

LEMMA 5.1. Suppose 0 < ε0 < 1 so that E(wj, ε0)∩ E(wl , ε0) = ∅ for all j 6= l.
Then for any ε < ε0,

ν(Vε) ≤
( ε

ε0

)2n
ν(Vε0).

Proof. For any 0 < δ < 1 and z ∈ Bn, we have

ν(E(z, δ)) =
∫

E(z,δ)

dν(w)

=
∫

E(0,δ)

(1− |z|2)n+1

|1− 〈ζ, z〉|2(n+1)
dν(ζ)

(by the change-of-variable w = ϕz(ζ))

= (1− |z|2)n+1
∫

E(0,1)

δ2n dν(ζ)
|1− 〈δζ, z〉|2(n+1)

= (1− |z|2)n+1δ2n
∫

E(0,1)

(1− (δ|z|)2)−n−1|kδz(ζ)|2 dν(ζ)

= (1− |z|2)n+1δ2n(1− (δ|z|)2)−n−1‖kδz‖2

= (1− |z|2)n+1δ2n(1− (δ|z|)2)−n−1.

Now for 0 < ε < ε0 < 1 as in the hypothesis,

ν(Vε) = ∑
j∈N

ν(E(wj, ε))

= ∑
j∈N

(1− |wj|2)n+1ε2n(1− (ε|wj|)2)−n−1

= ∑
j∈N

(1− |wj|2)n+1ε2n
0 (1− (ε0|wj|)2)−n−1( ε

ε0

)2n(1− (ε0|wj|)2

1− (ε|wj|)2

)n+1

≤
( ε

ε0

)2n ∑
j∈N

ν(E(wj, ε0))

(because
1− (ε0|wj|)2

1− (ε|wj|)2 ≤ 1 for ε < ε0)

=
( ε

ε0

)2n
ν(Vε0).
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This lemma implies that if the separated set is fixed then the Lebesgue mea-
sure ν(Vε) can be made as small as we please provided that ε is small.

To conclude the paper, we will show that if η is a continuous function on
[0, 1] then Gε is contained in C(Bn) - the space of continuous functions on the open
unit ball Bn. This remark together with Theorem 1.1 implies that CT(C(Bn)∩ L∞)
coincides with the full Toeplitz algebra T(L∞). The reader should compare this
with the fact that CT(C(B̄n)) is contained in the ideal K of compact operators.

Suppose η is continuous on [0, 1], then for each j ∈ N the function ηε ◦ ϕwi

is continuous and supported in the ball E(wj, ε). Suppose F is a subset of N. Let
f = ∑

j∈F
ηε ◦ ϕwj . Let 0 < R < 1 be given. By Lemma 2.2, all but a finite number of

functions in the series vanish on E(0, R). Thus f - being a finite sum of continuous
functions on E(0, R), is continuous on E(0, R) for all 0 < R < 1. So f is continuous
on the open unit ball Bn. Similarly, functions of the form ∑

j∈F
ηε ◦ ϕwj are also

continuous on Bn.
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