
COMPACT HANKEL OPERATORS
ON GENERALIZED BERGMAN SPACES

OF THE POLYDISC

TRIEU LE

Abstract. Let ϑ be a measure on the polydisc Dn which is the product
of n regular Borel probability measures so that ϑ([r, 1)n×Tn) > 0 for all
0 < r < 1. The Bergman space A2

ϑ consists of all holomorphic functions
that are square integrable with respect to ϑ. In one dimension, it is
well known that if f is continuous on the closed disc D, then the Hankel
operator Hf is compact on A2

ϑ. In this paper we show that for n ≥ 2

and f a continuous function on Dn, Hf is compact on A2
ϑ if and only

if there is a decomposition f = h + g, where h belongs to A2
ϑ and

limz→∂Dn g(z) = 0.

1. Introduction

Fix a positive integer n ≥ 1. Let Dn be the open unit polydisc in Cn and
let Tn be the n-torus, which is the Shilov boundary of Dn. The closure of
Dn is Dn, the product of n copies of the closed unit disc.

For z = (z1, . . . , zn) ∈ Cn and ζ = (ζ1, . . . , ζn) ∈ Tn, we use z · ζ and ζ · z
to denote the point (z1ζ1, . . . , znζn). We write z = (z1, . . . , zn) and for any
m = (m1, . . . ,mn) in Zn, we write zm = zm1

1 · · · zmnn whenever it is defined.
We use σ to denote the surface measure on Tn which is normalized so that
σ(Tn) = 1. Let µ be a regular Borel probability measure on [0, 1)n. Then
there is a regular Borel probability measure ϑ on Dn so that∫

Dn
f(z)dϑ(z) =

∫
[0,1)n

{∫
Tn
f(r · ζ)dσ(ζ)

}
dµ(r) (1)

for all continuous functions f with compact support on Dn. It then follows
that the above identity holds true for all functions f in L1(Dn, ϑ).

In this paper we are interested in those measures µ which satisfy the
condition µ([r, 1)n) > 0 for 0 < r < 1. This implies that ϑ({z ∈ Dn : |z1| ≥
r, . . . , |zn| ≥ r}) > 0 for 0 < r < 1. We use L2

ϑ to denote L2(Dn, ϑ) and ‖ · ‖2
for the norm on L2

ϑ. The Bergman space A2
ϑ is the closure in L2

ϑ of the space
of all holomorphic polynomials. The above condition on the measure µ will
imply that all functions in A2

ϑ are holomorphic on the polydisc. Let P denote
the orthogonal projection from L2

ϑ onto A2
ϑ. For any function f in L2

ϑ, the
(big) Hankel operator Hf is a densely defined operator from A2

ϑ into L2
ϑ	A2

ϑ
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by Hf (ϕ) = (1−P )(fϕ) for all holomorphic polynomials ϕ. The function f
will be called a symbol of the operator Hf . It is clear that if f is bounded,
then Hf is a bounded operator with ‖Hf‖ ≤ ‖f‖∞. However, there are
unbounded functions f such that Hf extends to a bounded operator on A2

ϑ.
In fact, if f belongs to A2

ϑ, then since fϕ belongs to A2
ϑ for all holomorphic

polynomials ϕ, we conclude that Hf = 0. Conversely, if Hf = 0, then since
0 = Hf (1) = (I − P )(f), we see that f must belong to A2

ϑ. Therefore,
Hf = 0 if and only if f is in A2

ϑ. This shows that a Hankel operator has
many symbols and any two symbols of the same operator differ by a function
in A2

ϑ.
It is well known that if a function g ∈ L2

ϑ vanishes outside a compact sub-
set of Dn, then the Hankel operator Hg is compact. Let ∂Dn be the topologi-
cal boundary of Dn as a subset of Cn. If g ∈ L2

ϑ such that limz→∂Dn g(z) = 0
(this means that for any ε > 0, there is a compact subset M of Dn so that
|g(z)| < ε for ϑ-a.e. z in Dn\M), then an approximation argument shows
that Hg is also a compact operator. This together with the above fact about
zero Hankel operators implies that if f = h+ g, where h belongs to A2

ϑ and
limz→∂Dn g(z) = 0, then Hf is compact.

In the one-dimensional case (n = 1), it is well known that if f is continuous
on D, then Hf is compact. See [10, p. 226] for the case of weighted Bergman
spaces. For generalized Bergman spaces, one can prove this by checking
directly that Hz̄izj is compact for all integers i, j ≥ 0. See Section 3 for more
details. The case n ≥ 2 turns out to be completely different. Not all Hankel
operators with continuous symbols are compact. More surprisingly, we will
show, under the assumption that µ is the product of n measures on [0, 1),
that if f is continuous on Dn, then Hf is compact if and only if f admits a
decomposition f = h+ g, where h belongs to A2

ϑ and limz→∂Dn g(z) = 0.
In the case dµ(r1, . . . , rn) = 2nr1 · · · rndr1 · · · drn, A2

ϑ is the usual Bergman
space of the polydisc. K. Stroethoff [7, 8] and D. Zheng [9] gave necessary
and sufficient conditions on a bounded function f for which Hf is compact.
However, their conditions, which involve the projection P and Mobius trans-
formations, are difficult to check. Indeed, even if a function f is assumed
to be continuous on Dn, it is not clear from their results what geometric
conditions f needs to satisfy in order for Hf to be compact. Our approach
(though works only for continuous functions) is different from theirs and our
result is more transparent.

To conclude the section, we would like to mention some results on the
compactness of Hankel operators on the Hardy space H2 = H2(Tn). In the
one-dimensional case, it is a classical theorem of Hartman (see [10, Chapter
10]) that Hf can be extended to a compact operator if and only if f = h+g,
where h belongs to H2 and g is continuous on the circle T. On the other
hand, the case n ≥ 2 is much different. It was showed by M. Cotlar and C.
Sadosky in [4] and P. Ahern, E.H. Youssfi and K. Zhu in [1] with a different
approach that if Hf is compact, then f must belong to H2. This means that
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there is no non-zero compact Hankel operator on H2. This result was also
proved in the setting of Hardy-Sobolev spaces on the polydisc by Ahern,
Youssfi and Zhu in the same paper with the same approach. Our analysis in
the present paper was actually motivated by their results and techniques.

2. Preliminaries

In this section we will explain in more details some of the results that we
mentioned in the Introduction. From Cauchy’s formula and the assumption
that µ([r, 1)n) > 0 for all 0 < r < 1, for any compact subset M of Dn,
there is a positive constant CM so that |p(z)| ≤ CM‖p‖2 for all z ∈ M ,
and all holomorphic polynomials p. This implies that for f ∈ A2

ϑ, f is
holomorphic on Dn and we also have |f(z)| ≤ CM‖f‖2 for all z ∈ M . In
fact, it can be showed that A2

ϑ is the space of all functions in L2
ϑ that are

holomorphic on Dn. Since |f(z)| ≤ CM‖f‖2, the valuation map z 7→ f(z) is
a continuous functional on A2

ϑ for any z ∈ Dn. So there is a function Kz in
A2
ϑ such that f(z) = 〈f,Kz〉 for any f ∈ A2

ϑ. The function Kz is called the
reproducing function at z. For any compact subset M and for any z ∈ M ,
since Kz(z) ≤ CM‖Kz‖2 = CM (Kz(z))1/2, we have Kz(z) ≤ C2

M .
From equation (1), the monomials {zm : m ∈ Zn+} are pairwise orthogo-

nal. On the other hand, the linear span of these monomials is dense in A2
ϑ.

Therefore, A2
ϑ has the following orthonormal basis, usually referred to as the

standard orthonormal basis, {em(z) = zm√
cm

: m ∈ Zn+}, where

cm =
∫

Dn
zmz̄mdϑ(z) =

∫
[0,1)n

r2m1
1 · · · r2mn

n dµ(r1, . . . , rn).

Suppose f is a function in L2
ϑ. Then∑

m∈Zn+

‖Hfem‖22 ≤
∑
m∈Zn+

‖fem‖22

=
∫

Dn
|f(z)|2

{ ∑
m∈Zn+

|em(z)|2
}

dϑ(z) (2)

=
∫

Dn
|f(z)|2Kz(z)dϑ(z),

where the last equality follows from the well known formula

Kz(z) = ‖Kz‖22 =
∑
m∈Zn+

|〈Kz, em〉|2 =
∑
m∈Zn+

|em(z)|2.

If f vanishes outside a compact subset M of Dn, then (2) gives∑
m∈Zn+

‖Hfem‖22 ≤ C2
M

∫
M
|f(z)|2dϑ(z) <∞,

since Kz(z) ≤ C2
M < ∞ for all z ∈ M . Thus, Hf is a Hilbert-Schmidt

operator, hence it is compact.
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Suppose f belongs to L2
ϑ so that limz→∂Dn f(z) = 0. Then for any ε > 0,

there is a compact subset Mε ⊂ Dn so that |f(z)| < ε for ϑ-a.e. z ∈ Dn\Mε.
This implies that ‖f − fχMε‖∞ ≤ ε. And hence, ‖Hf −HfχMε

‖ ≤ ε. As we
have showed above, HfχMε

is a compact operator for each ε. Therefore, Hf ,
being the limit of a net of compact operators, is also a compact operator.
Thus we have showed the following well known result.

Proposition 2.1. Suppose f = h + g, where h ∈ A2
ϑ and g ∈ L2

ϑ so that
limz→∂Dn g(z) = 0. Then Hf is a compact operator on A2

ϑ.

In the rest of the section, we study a decomposition of L2
ϑ into pairwise

orthogonal subspaces. If a function belongs to one of these subspaces, the
corresponding Hankel operator has a simple form which we can analyze
easily. This is one of the key points in our study of the compactness of
Hankel operators with continuous symbols.

For any n-tuple l ∈ Zn, let Hl be the space of all functions f in L2
ϑ such

that f(ζ · z) = ζ lf(z) for all ζ ∈ Tn and ϑ-a.e. z ∈ Dn. Each function in
Hl will be called quasi-homogeneous of multi-degree l. It is clear that Hl
is a closed subspace of L2

ϑ. Let Ql denote the orthogonal projection from
L2
ϑ onto Hl. The following lemma shows that these projections are pairwise

orthogonal and they constitute a partition of the identity.

Lemma 2.2. For s ∈ Zn and f ∈ L2
ϑ, we have

(Qsf)(z) =
∫

Tn
f(z · ζ)ζ̄sdσ(ζ), (3)

for ϑ-a.e. z ∈ Dn. Furthermore, Hl⊥Hs (which implies QlQs = 0) whenever
l 6= s, and L2

ϑ =
⊕

s∈Zn Qs(L
2
ϑ) =

⊕
s∈Zn Hs.

Proof. Since f belongs to L2
ϑ, the integral on the right hand side of (3) is

well-defined for ϑ-a.e. z ∈ Dn. For such z, let fs(z) be the value of the
integral. For other values of z, let fs(z) = 0. We will show Qsf = fs by
proving that fs ∈ Hs and (f−fs)⊥Hs. For z and any γ ∈ Tn, if the integral
in (3) is defined, by the rotation invariance of σ, we have

fs(z · γ) =
∫

Tn
f((z · γ) · ζ)ζ̄sdσ(ζ) =

∫
Tn
f(z · (γ · ζ))ζ̄sdσ(ζ)

=
∫

Tn
f(z · ζ)γsdσ(ζ) = γsfs(z).

If the integral in (3) is not defined, then fs(z ·γ) = γsfs(z) because they are
both zero. Therefore, fs belongs to Hs.
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Now suppose g is a function in Hs. Then∫
Dn
fs(z)ḡ(z)dϑ(z) =

∫
Dn

∫
Tn
f(z · ζ)ζ̄sḡ(z)dσ(ζ)dϑ(z)

=
∫

Tn

∫
Dn
f(z · ζ)ζ̄sḡ(z)dϑ(z)dσ(ζ)

=
∫

Tn

∫
Dn
f(z · ζ)ḡ(z · ζ)dϑ(z)dσ(ζ)

(since g(z · ζ) = ζsg(z) for ϑ-a.e. z)

=
∫

Tn

∫
Dn
f(z)ḡ(z)dϑ(z)dσ(ζ)

=
∫

Dn
f(z)ḡ(z)dϑ(z).

This shows that 〈f − fs, g〉 = 0 for all g ∈ Hs. Since fs belongs to Hs, we
conclude that fs = Qsf .

Next, suppose l 6= k. Let f ∈ Hl and g ∈ Hk. For any ζ ∈ Tn, we have∫
Dn
ζ l−kf(z)ḡ(z)dϑ(z) =

∫
Dn
f(z · ζ)ḡ(z · ζ)dϑ(z)

=
∫

Dn
f(z)ḡ(z)dϑ(z).

Since l 6= k, we conclude that
∫

Dn
f(z)ḡ(z)dϑ(z) = 0. Thus, Hl⊥Hk.

To show L2
ϑ =

⊕
l∈Zn Hl, it suffices to show that for any f ∈ L2

ϑ, the
identity ‖f‖22 =

∑
l∈Zn
‖Ql(f)‖22 holds true. Indeed, for f ∈ L2

ϑ,

‖f‖22 =
∫

Dn
|f(z)|2dϑ(z)

=
∫

Dn

∫
Tn
|f(z · ζ)|2dσ(ζ)dϑ(z)

=
∫

Dn

∑
l∈Zn

∣∣∣ ∫
Tn
f(z · ζ)ζ̄ ldσ(ζ)

∣∣∣2dϑ(z)

(since {ζ l : l ∈ Zn} is an orthonormal basis for L2(Tn, σ))

=
∑
l∈Zn

∫
Dn

∣∣∣ ∫
Tn
f(z · ζ)ζ̄ ldσ(ζ)

∣∣∣2dϑ(z)

=
∑
l∈Zn
‖Ql(f)‖22. �

It follows from the proof of Lemma 2.2 that for each s ∈ Zn, there is
a function fs such that fs(z · γ) = γsfs(z) for all z ∈ Dn and all ζ ∈ Tn
and Qs(f)(z) = fs(z) for ϑ-a.e. z. If f is continuous on the closed polydisc
Dn, then the integral in (3) is well-defined for all z in Dn and fs is also
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continuous on Dn. We have seen that the series
∑

s∈Zn fs converges to f

in the L2
ϑ-norm. In general, for f in C(Dn), the series does not converge

uniformly to f . However, the Cesàro means of the functions {fs : s ∈ Zn}
do converge uniformly to f as we will see next.

For any integer N ≥ 1, the Cesàro mean ΛN (f) is defined by the formula

ΛN (f)(z)

=
∑

|s1|,...,|sn|≤N

(
1− |s1|

N + 1
)
· · ·
(
1− |sn|

N + 1
)
fs1,...,sn(z)

=
∫

Tn

{ ∑
|s1|,...,|sn|≤N

(
1− |s1|

N + 1
)
· · ·
(
1− |sn|

N + 1
)
ζs11 · · · ζ

s1
n

}
f(z · ζ)dσ(ζ)

=
∫

Tn
FN (ζ1) · · ·FN (ζn)f(z · ζ)dσ(ζ),

where FN is the Nth Fejér’s kernel. It now follows from a well known result
in harmonic analysis (see, for example, Sections 2.2 and 9.2 in [5]) that
ΛN (f)→ f uniformly on Dn as N →∞ if f is continuous on Dn.

3. Hankel operators with quasi-homogeneous symbols

Recall from Section 2 that A2
ϑ has the standard orthonormal basis con-

sisting of monomials {em(z) = zm√
cm

: m ∈ Zn+}, where

cm =
∫

[0,1)n
r2m1

1 · · · r2mn
n dµ(r1, . . . , rn).

We also recall that Ql for l ∈ Zn is the orthogonal projection from L2
ϑ onto

the subspace Hl of quasi-homogeneous functions of multi-degree l.
For two n-tuples of integers l = (l1, . . . , ln) and s = (s1, . . . , sn), we write

l � s if lj ≥ sj for all 1 ≤ j ≤ n and l � s if otherwise. We will also use
0 to denote (0, . . . , 0). For m ∈ Zn+ and l ∈ Zn, Ql(em) is either 0 (when
l 6= m) or em (when l = m). Thus, Ql(A2

ϑ) = {0} if l � 0 and Ql(A2
ϑ) = Cel

if l � 0. This shows that A2
ϑ is an invariant subspace for Ql, hence it is

also a reducing subspace since Ql is a projection. Let P be the orthogonal
projection from L2 onto A2

ϑ. Then we have PQl = QlP and this in turn
shows that Hl is a reducing subspace for P .

Lemma 3.1. Let s be in Zn. Suppose f is a bounded function on Dn so
that we have f(r1ζ1, . . . , rnζn) = ζsf(r1, . . . , rn) for all z = (r1ζ1, . . . , rnζn)
in Dn. Then H∗fHf is a diagonal operator with respect to the standard
orthonormal basis. The eigenvalues of H∗fHf are given by

λm =
1
cm

∫
[0,1)n

|f(t1, . . . , tn)|2t2m1
1 · · · t2mnn dµ(t1, . . . , tn)
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if m+ s � 0 and

λm =
1
cm

∫
[0,1)n

|f(t1, . . . , tn)|2t2m1
1 · · · t2mnn dµ(t1, . . . , tn)

− 1
cmcm+s

∣∣∣ ∫
[0,1)n

f(t1, . . . , tn)t2m1+s1
1 · · · t2mn+sn

n dµ(t1, . . . , tn)
∣∣∣2

if m+ s � 0.

Proof. For any m ∈ Zn+, fem belongs to Hs+m, which is an invariant sub-
space for P . Therefore, P (fem) and Hfem = fem − P (fem) also belong to
Hs+m. We have

P (fem) =
∑
k∈Zn+

〈P (fem), ek〉ek =

{
0 if s+m � 0,
〈fem, es+m〉es+m if s+m � 0.

Now for k 6= m, 〈H∗fHfem, ek〉 = 〈Hfem, Hfek〉 = 0 since Hfem ∈ Hm+s,
Hfek ∈ Hk+s and Hm+s⊥Hk+s by Lemma 2.2. Thus, H∗fHf is a diagonal
operator with respect to the standard orthonormal basis {em : m ∈ Zn+}.
The eigenvalues of H∗fHf are given by

λm = 〈H∗fHfem, em〉 = ‖Hfem‖22
= ‖fem‖22 − ‖P (fem)‖22

=

{
‖fem‖22 if s+m � 0,
‖fem‖22 − |〈fem, es+m〉|2 if s+m � 0,

for m ∈ Zn+. Since

‖fem‖22 =
1
cm

∫
[0,1)n

|f |2(t1, . . . , tn)t2m1
1 · · · t2mnn dµ(t1, . . . , tn),

and

〈fem, es+m〉 =
1

√
cmcs+m

∫
[0,1)n

f(t1, . . . , tn)t2m1+s1
1 · · · t2mn+sn

n dµ(t1, . . . , tn),

the conclusion of the lemma follows. �

Remark 3.2. Let us consider the case n = 1 and f(z) = ziz̄j for integers
i, j ≥ 0. We see that f belongs to Hs with s = i − j. From Lemma 3.1,
H∗fHf is a diagonal operator with eigenvalues λm for m ∈ Z+. For all
positive integers m ≥ j − i, we have

λm =

∫
[0,1) t

2m+2(i+j)dµ(t)∫
[0,1) t

2mdµ(t)
−

∣∣ ∫
[0,1) t

2m+2idµ(t)
∣∣2

(
∫

[0,1) t
2mdµ(t))(

∫
[0,1) t

2m+2(i−j)dµ(t))
.

Since µ([r, 1)) > 0 for all 0 < r < 1, it can be showed that limm→∞ λm = 0
(see Lemma 3.3 below). Therefore, H∗fHf is a compact operator, which
implies that Hf is also a compact operator. Thus, for any polynomial
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p = p(z, z̄), Hp is compact. Since any function g in C(Dn) can be uni-
formly approximated by polynomials, we conclude that Hg is also a compact
operator.

Our characterization of compactness of Hankel operators depends on the
following lemma. For a sketch of its proof when α = β = (0, . . . , 0), see
Lemma 2.4 in [6]. The proof for arbitrary α, β is similar.

Lemma 3.3. Suppose µ1, . . . , µN are positive measures on [0, 1) so that
µj([r, 1)) > 0 for all 0 < r < 1, all 1 ≤ j ≤ N . Suppose ϕ is a function on
[0, 1)N so that lim

(r1,...,rN )→(1,...,1)
ϕ(r1, . . . , rN ) = α. Then for any N -tuples of

real numbers δ = (δ1, . . . , δN ) and β = (β1, . . . , βN ), we have

lim
(m1,...,mN )→(∞,...,∞)

∫
[0,1)N ϕ(r)rm1+δ1

1 · · · rmN+δN
N dµ(r)∫

[0,1)N r
m1+β1
1 · · · rmN+βN

N dµ(r)
= α.

In the rest of the paper, we will consider only measures µ of the form
dµ(r1, . . . , rn) = dµ1(r1) · · · dµn(rn), where µ1, . . . , µn are regular Borel
probability measures on the interval [0, 1) such that µj([r, 1)) > 0 for all
0 < r < 1 and 1 ≤ j ≤ n. Recall that ϑ is the measure on Dn that is
related to µ by equation (1). We now define a measure γ on the topologi-
cal boundary ∂Dn associated with ϑ. It is clear that ∂Dn is the disjoint of
union of 2n − 1 parts of the form A1 × · · · × An, where Aj is either T or
D and not all are D. Suppose W = A1 × · · · × An is a part of ∂Dn. Let
1 ≤ j1 < · · · < jp ≤ n be integers so that Aj1 = · · · = Ajp = D and Aj = T
if j /∈ {j1, . . . , jp}. We define γ to be the unique regular Borel measure on
W that satisfies∫
W
f(w)dγ(w)

=
∫

[0,1)p

{∫
Tn
f(ζ1, . . . , rj1ζj1 . . . , rjpζjp , . . . , ζn)dσ(ζ)

}
dµj1(rj1) · · · dµjp(rjp)

for all f ∈ Cc(W ).
The following theorem characterizes compact Hankel operators with con-

tinuous quasi-homogeneous symbols when n ≥ 2.

Theorem 3.4. Suppose n ≥ 2 and s ∈ Zn. Suppose f ∈ Hs is continuous
on Dn such that Hf is compact. If s � 0, then f(z) = f(1, . . . , 1)zs for
γ-a.e. z in ∂Dn. If s � 0, then f(z) = 0 for γ-a.e. z in ∂Dn.

Proof. By the remark after the proof of Lemma 2.2, we may assume that
f(ζ1z1, . . . , ζnzn) = ζsf(z1, . . . , zn) for all ζ ∈ Tn and all z ∈ Dn. In partic-
ular, for all z = (r1ζ1, . . . , rnζn) in Dn, we have

f(r1ζ1, . . . , rnζn) = ζsf(r1, . . . , rn). (4)

Suppose W = Dj × Tn−j , for some 1 ≤ j < n, is a part of ∂Dn. Let
m1 = max{0,−s1}, . . . ,mj = max{0,−sj}. Since Hf is compact, H∗fHf is
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also compact. By Lemma 3.1, H∗fHf is diagonal and its eigenvalues are λm’s
for m � 0. Therefore, lim(mj+1,...,mn)→(∞,...,∞) λm = 0. Using the formula
for λm (when m + s � 0) in Lemma 3.1 together with Lemma 3.3 and the
fact that cm =

∫
[0,1)n t

2m1
1 · · · t2mnn dµ1(t1) · · · dµn(tn), we conclude that∫

[0,1)j
|f |2(t1, . . . , tj , 1, . . . , 1)t2m1

1 · · · t2mjj dµ1(t1) · · · dµj(tj)

=

∣∣∣ ∫[0,1)j f(t1, . . . , tj , 1, . . . , 1)t2m1+s1
1 · · · t2mj+sjj dµ1(t1) · · · dµj(tj)

∣∣∣2∫
[0,1)j t

2m1+2s1
1 · · · t2mj+2sj

j dµ1(t1) · · · dµj(tj)
.

Let F (t) = f(t1, . . . , tj , 1, . . . , 1)tm1
1 · · · t

mj
j and G(t) = tm1+s1

1 · · · tmj+sjj for
t = (t1, . . . , tj) ∈ [0, 1)j . Then the above identity shows that{∫

[0,1)j
|F (t)|2dµ1(t1) · · · dµj(tj)

}{∫
[0,1)n

G2(t)dµ1(t1) · · · dµj(tj)
}

=
∣∣∣ ∫

[0,1)j
(FG)(t)dµ1(t1) · · · dµj(tj)

∣∣∣2.
Therefore, we have F (t) = αG(t), or equivalently,

f(t1, . . . , tj , 1, . . . , 1)tm1
1 · · · t

mj
j = αtm1+s1

1 · · · tmj+sjj (5)

for µ1 × · · · × µj-a.e. t = (t1, . . . , tj) ∈ [0, 1)j , where α is a constant.
Since 1 belongs to the support of all the measures µ1, . . . , µj , we may
let t1 = · · · = tj = 1 to obtain α = f(1, . . . , 1). Recall that in (5),
m1 = max{0,−s1}, . . . ,mj = max{0,−sj}.

Suppose first s1, . . . , sn ≥ 0. Since m1 = · · · = mj = 0, we obtain from
(5) that f(t1, . . . , tj , 1, . . . , 1) = f(1, . . . , 1)ts11 · · · t

sj
j for µ1×· · ·×µj-a.e. t =

(t1, . . . , tj) ∈ [0, 1)j . This together with (4) implies that f(z) = f(1, . . . , 1)zs

for γ-a.e. z in W = Dj × Tn−j .
Now suppose sp < 0 for some 1 ≤ p ≤ n. We will show that in this case

f(1, . . . , 1) = 0. Without loss of generality, we may assume p = 1. For all
large positive integers m2, . . . ,mn, let m = (0,m2, . . . ,mn) (the assumption
that n ≥ 2 is needed here). Since m+ s � 0,

λm =

∫
[0,1)n |f(t1, . . . , tn)|2t2m2

2 · · · t2mnn dµ1(t1) · · · dµn(tn)∫
[0,1)n t

2m2
2 · · · t2mnn dµ1(t1), · · · ,dµn(tn)

.

Letting (m2, . . . ,mn) → (∞, . . . ,∞) and using Lemma 3.3 together with
the fact that λm → 0, we conclude that

0 =
∫

[0,1)
|f(t1, 1, . . . , 1)|2dµ1(t1).

This implies f(t1, 1, . . . , 1) = 0 for µ1-a.e. t1 on [0, 1). Since 1 is in the
support of µ1 and f is continuous at the point (1, . . . , 1), it follows that
f(1, . . . , 1) = 0.
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Now (5) gives f(t1, . . . , tj , 1, . . . , 1)tm1
1 . . . t

mj
j = 0 for µ1 × · · · × µj-a.e.

t = (t1, . . . , tj) in [0, 1)j . For such t, if tm1
1 · · · t

mj
j 6= 0, then we have

f(t1, . . . , tj , 1 . . . , 1) = 0. Otherwise, there exists 1 ≤ i ≤ j so that ti = 0
and mi > 0. But mj = max{0,−si}, so si < 0. Since ti = 0 = tiζi for any
|ζi| = 1, we have

f(t1, . . . , ti, . . . , tj , 1, . . . , 1) = f(t1, . . . , tiζi, . . . , tj , 1, . . . , 1)

= ζsii f(t1, . . . , ti, . . . , tj , 1, . . . , 1).

This implies f(t1, . . . , tj , 1, . . . , 1) = 0 because ζi can be chosen so that ζsii 6=
1. Therefore, f(t1, . . . , tj , 1, . . . , 1) = 0 for µ1 × · · · × µj-a.e. t = (t1, . . . , tj)
in [0, 1)j , which implies f(z) = 0 for γ-a.e. z ∈W = Dj × Tn−j .

The same argument applies to other parts of ∂Dn which are different from
Tn. On Tn, (4) gives f(ζ) = ζsf(1, . . . , 1). If sp < 0 for some 1 ≤ p ≤ n
then since f(1, . . . , 1) = 0 as showed above, we conclude that f(ζ) = 0 for
ζ ∈ Tn. So the conclusions of the proposition also hold for z in Tn ⊂ ∂Dn.
The proof of the proposition is now completed. �

4. Compact Hankel operators with more general symbols

We have seen that any f in L2
ϑ admits the decomposition f =

∑
l∈Zn fl,

where fl = Ql(f) is the orthogonal projection of f on the space of quasi-
homogeneous functions of multi-degree l. The next proposition shows that
the compactness of Hf implies the compactness of each Hfl . We are then
able to apply the results in the previous section. The Hardy space version
of the proposition was proved in [1]. Our proof here, which also works for
the Hardy space, is more direct.

Proposition 4.1. Suppose f ∈ L2
ϑ so that the operator Hf is compact on

A2
ϑ. Then for each s ∈ Zn, the operator Hfs is compact, where fs = Qs(f).

Proof. For any m ∈ Zn+, we have

Hfem = (I − P )(fem) = (I − P )((
∑
l∈Zn

fl)em)

=
∑
l∈Zn

(I − P )(flem) =
∑
l∈Zn

Hflem.

Since Qs+m(Hflem) = 0 if l 6= s and Qs+m(Hfsem) = Hfsem, we obtain
Qs+m(Hfem) = Hfsem. From Lemma 3.1, H∗fsHfs is a diagonal operator
with eigenvalues λm given by

λm = ‖Hfsem‖22 = ‖Qs+m(Hfem)‖22 ≤ ‖Hfem‖22.

Since Hf is compact, we have lim|m|→∞ ‖Hfem‖2 = 0 (here |m| = m1 + · · ·+
mn). This implies lim|m|→∞ λm = 0 and hence, H∗fsHfs is compact. Thus,
Hfs is a compact operator. �
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Suppose g belongs to A2
ϑ. It was showed by Axler [2] that when n = 1

and ϑ is the Lebesgue measure on the disk D, Hg is compact if and only if g
is in the little Bloch space, that is, lim|z|↑1(1− |z|2)g′(z) = 0. For n ≥ 2 and
ϑ is the Lebesgue measure on the polydisc Dn, a special case of [3, Theorem
D] gives that Hg is compact if and only if g is a constant function and in
this case, Hg = 0. The following corollary to Proposition 4.1 shows that this
holds true for more general ϑ.

Corollary 4.2. Suppose n ≥ 2. Let g be a function in A2
ϑ so that Hg is

compact. Then g is a constant function and hence Hḡ = 0.

Proof. Write g =
∑

m∈Zn+
cmem. For m ∈ Zn+, since Q−m(g) = c̄mēm and Hg

is compact, Proposition 4.1 implies that Hc̄mēm is compact. Theorem 3.4
then shows that c̄m = 0 for all m 6= 0. Thus, g is a constant function. �

Theorem 4.3. Suppose n ≥ 2. Let f be continuous on Dn so that Hf is a
compact operator. Then there is a function h which is continuous on Dn and
holomorphic on Dn, and a function g ∈ L2

ϑ which satisfies limz→∂Dn g(z) = 0
so that f(z) = h(z) + g(z) for ϑ-a.e. z in Dn.

Proof. For any s ∈ Zn, Proposition 4.1 shows that Hfs is compact. Since
f is continuous, each fs is also continuous. By Theorem 3.4, there is a
holomorphic monomial hs so that (fs − hs)(w) = 0 for γ-a.e. w ∈ ∂Dn. (In
fact, hs = 0 if s � 0 and hs(w) = fs(1, . . . , 1)ws if s � 0).

For each integer N ≥ 1, define

pN (z) =
∑

|s1|,...,|sn|≤N

(
1− |s1|

N + 1
)
· · ·
(
1− |sn|

N + 1
)
hs1,...,sn(z) for z ∈ Dn.

Then pN is a holomorphic polynomial and pN (w) = ΛN (f)(w) for γ-a.e.
w ∈ ∂Dn, where ΛN (f) is the Nth Cesàro mean of f . Since γ restricted on
Tn ⊂ ∂Dn is the surface measure and pN −ΛN (f) is continuous, we actually
have pN (w) = ΛN (f)(w) for all w ∈ Tn. By the remark at the end of Section
2, ΛN (f) converges to f uniformly on Dn. In particular, pN |Tn = ΛN (f)|Tn
converges to f |Tn uniformly. This implies that there is a function h which
is continuous on Dn and holomorphic on Dn so that pN converges uniformly
to h on Dn. Since pN (w) = ΛN (f)(w) for γ-a.e. w ∈ ∂Dn for each N , we
conclude that h(w) = f(w) for γ-a.e. w ∈ ∂Dn. Let g̃ = f − h. Then g̃

is continuous on Dn and g̃(w) = 0 for γ-a.e. w on ∂Dn. By Lemma 2.1
in [6], there is a function g such that g̃(z) = g(z) for ϑ-a.e. z in Dn and
limz→w g(z) = 0 for all w ∈ ∂Dn. From the compactness of ∂Dn, it follows
that limz→∂Dn g(z) = 0. We then have f(z) = h(z) + g̃(z) = h(z) + g(z)
for ϑ-a.e. z ∈ Dn and h, g satisfy the requirements in the conclusion of the
theorem. �

In general, the continuity of f on Dn in Theorem 4.3 cannot be dropped.
There are bounded functions f which are continuous on Dn such that Hf is
compact and no decomposition f = h+g with h ∈ A2

ϑ and limz→∂Dn g(z) = 0
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is possible. In the rest of the section, we will give a construction of such a
function.

Let 0 < r1 < r2 < · · · be an increasing sequence of positive real numbers
that converges to 1. Set j1 = 1. Since (rj1 , 1)n = ∪∞j=j1+1(rj1 , rj)

n and
µ((rj1 , 1)n) > 0, there is an integer j2 ≥ j1 + 1 so that µ((rj1 , rj2)n) > 0.
Since (rj2 , 1)n = ∪∞j=j2+1(rj2 , rj)

n and µ((rj2+1, 1)n) > 0, there is an integer
j3 ≥ j2 + 1 so that µ((rj2 , rj3)n) > 0. Continuing this process, we find a
sequence of integers {jk}∞k=1 such that jk+1 ≥ jk+1 and µ((rjk , rjk+1

)n) > 0
for all k = 1, 2, . . .. For each k, let Rk = (rjk , rjk+1

)n. Choose an open
subset Vk of Tn so that 0 < σ(Vk) < 1/k and

∫
Ek
Kz(z)dϑ(z) < 1/k2, where

Ek = {r · ζ : r ∈ Rk, ζ ∈ Vk}. The existence of Vk follows from the fact that
the function z 7→ Kz(z) is bounded on compact sets. Since Ek is open in
Dn and ϑ(Ek) > 0, using the regularity of ϑ, we can choose a continuous
function 0 ≤ fk ≤ 1 so that fk is supported in Ek and ϑ({z : f(z) = 1}) > 0.
Put f =

∑∞
k=1 fk. Since the sets Ek’s are pairwise disjoint, 0 ≤ f ≤ 1.

We now show that Hf is a Hilbert-Schmidt operator, hence it is compact.
Indeed, from (2),∑

m∈Zn+

‖Hfem‖22 ≤
∫

Dn
|f(z)|2Kz(z)dϑ(z)

≤
∞∑
k=1

∫
Ek

|f(z)|2Kz(z)dϑ(z) <
∞∑
k=1

1
k2

<∞.

For each s ∈ Zn, we will show that limz→∂Dn Qs(f)(z) = 0. Since f ≥ 0,
it follows from formula (3) in Lemma 2.2 that |Qs(f)(z)| ≤ |Q0(f)(z)|. So
it suffices to prove limz→∂Dn Q0(f)(z) = 0. For z = (z1, . . . , zn) ∈ Dn, we
have

Q0(f)(z) =
∫

Tn
f(z · ζ)dσ(ζ) =

∫
Tn
f(|z1|ζ1, . . . , |zn|ζn)dσ(ζ)

≤
∞∑
k=1

∫
Tn
χEk(|z1|ζ1, . . . , |zn|ζn)dσ(ζ).

By the definition of Ek, χEk(|z1|ζ1, . . . , |zn|ζn) = 1 if and only if the n-tuple
(|z1|, . . . , |zn|) belongs to Rk = (rjk , rjk+1

)n and (ζ1, . . . , ζn) belongs to Vk.
Let k0 ≥ 2 be a positive integer. Suppose z = (z1, . . . , zn) so that |zi| > rjk0
for some 1 ≤ i ≤ n. If (|z1|, . . . , |zn|) does not belong to any Rk, k ≥ 1, then
Q0(f)(z) = 0. Otherwise, there is exactly one k so that (|z1|, . . . , |zn|) ∈ Rk,
which is (rjk , rjk+1

)n. Since |zi| > rjk0 , we conclude that rjk+1
> rk0 , which

implies k ≥ k0. Therefore,

|Q0(f)(z)| ≤
∫

Tn
χEk(|z1|ζ1, . . . , |zn|ζn)dσ(ζ) = σ(Vk) ≤

1
k
≤ 1
k0
.

Since this holds true for any z that does not belong to the compact set
[0, rjk0 ]n × Tn, we conclude that limz→∂Dn Q0(f)(z) = 0.
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Suppose there were a decomposition f = h+g, where h ∈ A2
ϑ and g(z)→ 0

as z → ∂Dn. We will show that there would be a contraction. For s � 0,
from formula (3) in Lemma 2.2 we see that Qs(g)(z) → 0 as z → ∂Dn.
This implies Qs(h)(z) = Qs(f)(z) −Qs(g)(z) → 0 as z → ∂Dn. But Qs(h)
is a multiple of zs, as explained at the beginning of Section 3, so we have
Qs(h) = 0 for all s ≥ 0. It follows that h = 0 and hence, f = g. This is
a contradiction because g(z) → 0 as z → ∂Dn but by the construction of
f , for any compact subset M ⊂ Dn, the set {z ∈ Dn\M : f(z) = 1} has
positive ϑ-measure.

References

[1] Patrick Ahern, El Hassan Youssfi, and Kehe Zhu, Compactness of Hankel operators on
Hardy-Sobolev spaces of the polydisk, J. Operator Theory 61 (2009), no. 2, 301–312.

[2] Sheldon Axler, The Bergman space, the Bloch space, and commutators of multiplica-
tion operators, Duke Math. J. 53 (1986), no. 2, 315–332. MR 850538 (87m:47064)
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