
COMPACT TOEPLITZ OPERATORS ON
SEGAL-BARGMANN TYPE SPACES

TRIEU LE AND BO LI

Abstract. We consider Toeplitz operators with symbols enjoying a
uniform radial limit on Segal-Bargmann type spaces. We show that such
an operator is compact if and only if the limiting function vanishes on
the unit sphere. The structure of the C∗-algebra generated by Toeplitz
operators whose symbols admit continuous uniform radial limits is also
analyzed.

1. Introduction

Let ν be a regular Borel probability measure on Cn that is rotation-
invariant. Then there is a regular Borel probability measure µ on [0,∞) so
that the formula∫

Cn
f(z)dν(z) =

∫ ∞
0

∫
S
f(rζ)dσ(ζ)dµ(r) (1.1)

holds for all functions f in L1(Cn, dν), where S is the unit sphere and σ is
the normalized surface area measure on S. Throughout the paper, we also
require that µ satisfy the following three conditions:

(C1) sup{r : r ∈ supp µ} =∞;

(C2) µ̂(m) =
∫ ∞

0
rmdµ(r) <∞ for all m ≥ 0;

(C3) lim
m→∞

(µ̂(2m+ 1))2

µ̂(2m)µ̂(2m+ 2)
= 1.

The first condition means that µ does not have bounded support, while
the second condition assures that the function spaces we are interested in
contain all holomorphic polynomials at least. The necessity of assuming the
third condition will be confirmed by Proposition 2.4 below. While many
Gaussian type measures on Cn satisfy all three conditions above, there are
measures that satisfy (C1) and (C2) but not (C3). See [3, Section 3.3] for
such examples.

The space H = H2(Cn, dν), as a closed subspace of the Hilbert space
L2(Cn, dν) of square integrable functions with respect to ν, is defined to be
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the space of all entire functions f for which

‖f‖2 =
∫

Cn
|f(z)|2dν(z) <∞.

For any multi-index α = (α1, . . . , αn) ∈ Nn
0 (here N0 denotes the set of all

non-negative integers), we write α! = α1! · · ·αn! and |α| = α1 + · · · + αn.
We also write zα = zα1

1 · · · zαnn and z̄α = z̄α1
1 · · · z̄αnn for z = (z1, . . . , zn) in

Cn. Put cα =
∫

S
|ζα|2dσ(ζ) =

(n− 1)!α!
(n− 1 + |α|)!

. We then have

∫
Cn
zαz̄βdν(z) =

∫ ∞
0

r|α|+|β|dµ(r)
∫

S
ζαζ̄βdσ(ζ) =

{
0 if α 6= β;
cαµ̂(2|α|) if α = β

(1.2)

for all multi-indices α and β. This shows that the space H has the orthonor-
mal basis

{
eα(z) = zα√

cαµ̂(2|α|)
: α ∈ Nn

0

}
, which is usually referred to as the

standard orthonormal basis.
Using Cauchy formula and the assumption about µ, we see that for each

compact set Q, there is a constant CQ such that

sup
z∈Q
|f(z)| ≤ CQ‖f‖ (1.3)

for f ∈ H. This implies that the evaluation functional at each point in Cn is
bounded on H. As a consequence, there is a reproducing kernel K(w, z) =
Kz(w) such that f(z) = 〈f,Kz〉 for z ∈ Cn. It follows from (1.3) that
supz∈Q ‖Kz‖ ≤ CQ. It is also standard that K(z, z) =

∑
α |eα(z)|2. See [2]

for a different approach about the existence of the reproducing kernel.
Let P denote the orthogonal projection from L2(Cn, dν) onto H. For

a bounded Borel function f on Cn, the Toeplitz operator Tf : H → H is
defined by

Tf (u) = PMfu = P (fu), u ∈ H.
Here Mf : L2(Cn, dν) → L2(Cn, dν) is the operator of multiplication by
f . The function f is called the symbol of Tf . We also define the Hankel
operator Hf : H → H⊥ by

Hfu = (I − P )Mfu = (I − P )(fu), u ∈ H,

where H⊥ is the orthogonal complement of H in L2(Cn, dν). It is immediate
that ‖Tf‖ ≤ ‖f‖∞ and ‖Hf‖ ≤ ‖f‖∞.

For f, g bounded Borel functions on Cn, the following basic identities
follow easily from the definition of Toeplitz and Hankel operators:

Tgf − TgTf = H∗ḡHf

and

(Tg)∗ = Tḡ, Taf+bg = aTf + bTg,

where a, b are complex numbers and ḡ denotes the complex conjugate of g.
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When ν is the standard Gaussian measure dν(z) = (2π)−ne−
|z|2
2 dV (z), it

can be verified directly that the associated measure µ satisfies the conditions
(C1)-(C3) and in this case, H is the standard Segal-Bargmann space H2(Cn)
(also known as the Fock space).

It is well known (on H2(Cn) but similar argument still works for general
H) that if f is a bounded function such that f(z)→ 0 as |z| → ∞, then Tf
is compact. The converse of this does not hold in general, but it will hold if
we put some restrictions on the behavior of f near infinity.

We say that a bounded Borel function f defined on Cn has a uniform
radial limit (at infinity) if there is a function f∞ on S such that

lim
r→∞

sup
ζ∈S
|f(rζ)− f∞(ζ)| = 0.

The function f∞ will be called the uniform radial limit of f .
We define S to be the space of all bounded Borel functions on Cn which

have a continuous uniform radial limit. Then S, equipped with the supre-
mum norm, is a C∗-subalgebra of the algebra of all bounded Borel functions
on Cn.

In this note, we will show that for any bounded Borel function f which
has a uniform radial limit f∞, the operator Tf is compact if and only if the
limiting function f∞ vanishes on S. We also study the C∗-algebra generated
by Tf with f ∈ S. We show that this algebra is an extension of the compact
operators by continuous functions on the unit sphere and this extension is
equivalent to a known extension given by Toeplitz operators acting on the
Hardy space of the unit sphere.

This paper is organized as follows. In Section 2, we will give some pre-
liminaries. The main results will be provided in Section 3.

2. Preliminaries

The first result of this section, regarding compactness of Toeplitz and
Hankel operators whose symbols vanish at infinity, is standard. For the
reader’s convenience, we provide here a proof.

Lemma 2.1. Suppose f is bounded on Cn such that lim
|z|→∞

f(z) = 0. Then

the operator Mf |H is compact. As a result, the operators Tf = PMf |H and
Hf = (1− P )Mf |H are both compact on H.

Proof. For any 0 < r < ∞, let Br = {z ∈ Cn : |z| ≤ r} and let fr = fχBr
where χBr is the characteristic function of Br. Then ‖f − fr‖∞ → 0 as
r → ∞, which gives ‖Mf −Mfr‖ → 0 as r → ∞. Thus, it reduces to show
that Mfr |H is compact for each r.
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We will in fact show that Mfr |H is a Hilbert-Schmidt operator. We have

∑
α∈Nn0

‖Mfreα‖2 =
∫

Cn
|fr(z)|2

( ∑
α∈Nn0

|eα(z)|2
)
dν(z)

=
∫

Cn
|fr(z)|2K(z, z)dν(z) =

∫
Br
|f(z)|2K(z, z)dν(z) <∞,

because the function z 7→ K(z, z) is bounded on compact sets. Therefore
Mfr |H is a Hilbert-Schmidt operator. �

Remark 2.2. For f in S with uniform radial limit f∞, we define

g(z) =

{
f∞( z

|z|) if z 6= 0,

0 if z = 0.
(2.1)

Then g is continuous on Cn\{0} by the continuity of f∞ and we have

lim
|z|→∞

|f(z)− g(z)| = lim
r→∞

sup
ζ∈S
|f(rζ)− g(rζ)| = lim

r→∞
sup
ζ∈S
|f(rζ)− f∞(ζ)| = 0.

Lemma 2.1 implies that both Tf − Tg and Hf −Hg are compact.

For 1 ≤ j ≤ n, put χj(0) = 0 and χj(z) = zj
|z| if z 6= 0, and χ(z) =

(χ1(z), . . . , χn(z)). We also denote by δj the multi-index (δ1j , . . . , δnj),
where δkl is the usual Kronecker notation.

Lemma 2.3. Let S = Tχ̄1Tχ1 + · · ·+Tχ̄nTχn and T = Tχ1Tχ̄1 + · · ·+TχnTχ̄n.
Then for any multi-index α we have

Seα =
(µ̂(2|α|+ 1))2

µ̂(2|α|)µ̂(2|α|+ 2)
eα,

T eα =

0 if α = 0;
|α|

n+ |α| − 1
× (µ̂(2|α| − 1))2

µ̂(2|α| − 2)µ̂(2|α|)
eα if α 6= 0.

In particular, the operators S and T are diagonal with respect to the standard
orthonormal basis.

Proof. Let j be an integer between 1 and n and α a multi-index. Using the
orthogonality of the set {ζβ : β ∈ Nn

0} with respect to σ on S, we see that
Tχjeα = P (χjeα) is a scalar multiple of eα+δj . To determine the multiple,
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we compute

〈Tχjeα, eα+δj 〉 = 〈χjeα, eα+δj 〉

=

( ∫
[0,∞) t

2|α|+1dµ(t)
)( ∫

S |ζ
α+δj |2dσ(ζ)

)
(
cαcα+δj µ̂(2|α|)µ̂(2|α|+ 2)

)1/2

=
µ̂(2|α|+ 1)cα+δj(

cαcα+δj µ̂(2|α|)µ̂(2|α|+ 2)
)1/2

=
( αj + 1
n+ |α|

× (µ̂(2|α|+ 1))2

µ̂(2|α|)µ̂(2|α|+ 2)

)1/2
.

It now follows that, for β ∈ Nn
0 ,

〈Tχ̄jeα, eβ〉 = 〈P (χ̄jeα), eβ〉 = 〈eα, P (χjeβ)〉

=

0 if α 6= β + δj ;( βj + 1
n+ |β|

× (µ̂(2|β|+ 1))2

µ̂(2|β|)µ̂(2|β|+ 2)

)1/2
if α = β + δj .

This implies

Tχ̄jeα =

0 if αj = 0;( αj
n+ |α| − 1

× (µ̂(2|α| − 1))2

µ̂(2|α| − 2)µ̂(2|α|)

)1/2
eα−δj if αj ≥ 1.

With the above formulas for Tχj and Tχ̄j , we have

Seα =
n∑
j=1

Tχ̄jTχjeα =
( n∑
j=1

αj + 1
n+ |α|

× (µ̂(2|α|+ 1))2

µ̂(2|α|)µ̂(2|α|+ 2)

)
eα

=
(µ̂(2|α|+ 1))2

µ̂(2|α|)µ̂(2|α|+ 2)
eα,

T eα =
n∑
j=1

TχjTχ̄jeα

=

0 if α = 0;(∑n
j=1

αj
n+ |α| − 1

× (µ̂(2|α| − 1))2

µ̂(2|α| − 2)µ̂(2|α|)

)
eα if α 6= 0.

=

0 if α = 0;
|α|

n+ |α| − 1
× (µ̂(2|α| − 1))2

µ̂(2|α| − 2)µ̂(2|α|)
eα if α 6= 0.

�

Let G = {f ∈ L∞(Cn, dν) : Hf is compact on H}. It is immediate that G
is a closed linear subspace of L∞(Cn, dν). Using the identity

Hfg = (I − P )Mfg|H = HfPMg|H + (I − P )MfHg,

we also see that G is a subalgebra of L∞(Cn, dν).
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For standard Gaussian measure dν(z) = (2π)−ne−
|z|2
2 dV (z), a description

of G was given in [1]. It was showed there that G is self-adjoint (that is, f
belongs to G if and only if f̄ belongs to G) and it contains the algebra ESV
of functions that are “eventually slowly varying”, which in turn contains
S. Their approach relied heavily on the explicit form of the measure and
it does not seem to work for general µ. It turns out that the inclusion
S ⊂ G does not always hold unless µ satisfies condition (C3). But curiously,
the condition (C3) was not explicitly used anywhere in [1]. For general µ
satisfying (C3), we do not know whether G is self-adjoint.

Proposition 2.4. The inclusion S ⊂ G holds if and only if

lim
m→∞

(µ̂(2m+ 1))2

µ̂(2m)µ̂(2m+ 2)
= 1. (2.2)

Proof. Suppose S is contained in G. Then in particular, Hχj is compact for
all j = 1, . . . , n. This shows that the operator

n∑
j=1

H∗χjHχj =
n∑
j=1

(
T|χj |2 − Tχ̄jTχj

)
= I −

n∑
j=1

Tχ̄jTχj (2.3)

is compact. It now follows from Lemma 2.3 that (2.2) holds.
Now suppose that (2.2) holds. We need to show S ⊂ G. It follows from

Remark 2.2 that we only need to show that G contains functions of the
form (2.1). It suffices to prove that χj and χ̄j belong to G for j = 1, . . . , n
since G is a closed subalgebra of L∞(Cn, dν). Now Lemma 2.3 together with
(2.3) and (2.2) implies that H∗χ1

Hχ1 + · · ·+H∗χnHχn is compact. Therefore
H∗χjHχj , and hence Hχj , is compact for all j = 1, . . . , n. Similar argument
shows that Hχ̄1 , . . . ,Hχ̄n are all compact. �

Using the basic identity relating Toeplitz and Hankel operators, our as-
sumption about µ and Proposition 2.4, we obtain

Corollary 2.5. For any f ∈ S and h ∈ L∞, the semi-commutators Tfh −
TfTh and Tfh − ThTf are both compact on H.

Recall that the Hardy space H2(S) is the closure of the span of analytic
monomials {ζα : α ∈ Nn

0} in L2(S) = L2(S, dσ). Since analytic monomials
of different degrees are orthogonal and cα =

∫
S |ζ

α|2dσ(ζ), the set {ẽα(ζ) =
ζα√
cα

: α ∈ Nn
0} is an orthonormal basis for H2(S). There is a natural unitary

operator U : H → H2(S) given by Ueα = ẽα.
Let P̃ be the orthogonal projection from L2(S) onto H2(S). For any

bounded Borel function g on S, the Toeplitz operator T̃g is defined by T̃gh =
P̃ (gh) for h ∈ H2(S).

The next theorem shows that condition (2.2) is equivalent to the com-
pactness of certain differences of Toeplitz operators on H and H2(S). The
case n = 1 appeared in [2], where condition (2.2) was first (as far as we
know) discussed.
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Theorem 2.6. The operator Tf −U∗T̃f∞U is compact on H for any f ∈ S
with uniform radial limit f∞ if and only if (2.2) holds.

Proof. Recall that for 1 ≤ j ≤ n, χj(z) = zj
|z| if |z| 6= 0 and χj(0) = 0. A

calculation as in Lemma 2.3 shows that for any multi-index α,

{Tχ1 − U∗T̃ζ1U}eα =
( α1 + 1
n+ |α|

) 1
2
[ µ̂(2|α|+ 1)

(µ̂(2|α|)µ̂(2|α|+ 2))
1
2

− 1
]
eα+δ1 .

This implies that (2.2) holds if the operator Tχ1 − U∗T̃ζ1U is compact.
Now suppose (2.2) holds. Similar to the proof of Lemma 3 in [4], we write

Tχ1 − U∗T̃ζ1U = DSδ1 , where Sδ1eα = eα+δ1 , Deα = 0 if α1 = 0 and

Deα+δ1 =
( α1 + 1
n+ |α|

) 1
2
[ µ̂(2|α|+ 1)

(µ̂(2|α|)µ̂(2|α|+ 2))
1
2

− 1
]
eα+δ1 .

Then D is compact, so is Tχ1 − U∗T̃ζ1U . Hence, by symmetry, Tχj −
U∗T̃ζjU is compact for all 1 ≤ j ≤ n. It also follows that Tχ̄j − U∗T̃ζ̄jU
is compact. Using the identity T̃ζ̄βζα = T̃ β1

ζ̄1
· · · T̃ βn

ζ̄n
T̃α1
ζ1
· · · T̃αnζn , we see that

T β1
χ̄1
· · ·T βnχ̄n T

α1
χ1
· · ·Tαnχn −U

∗T̃ζ̄βζαU is compact for all multi-indices α and β.
On the other hand, Tχ̄βχα − T β1

χ̄1
· · ·T βnχ̄n T

α1
χ1
· · ·Tαnχn is also compact by

Corollary 2.5. We then conclude that Tχ̄βχα − U∗T̃ζ̄βζαU is compact for
multi-indices α, β. A standard approximation argument using polynomials
in ζ and ζ̄ on S shows that Tg−U∗T̃f∞U is compact for all g given by (2.1),
where f∞ is continuous on S. Remark 2.2 then implies that Tf − U∗T̃f∞U
is compact for all f ∈ S with uniform radial limit f∞. �

We close the section with the following elementary result, which will be
useful in proving one of our main theorems in the next section.

Lemma 2.7. Suppose ϕ is a real-valued function which is locally integrable
on [0,∞) with respect to µ. Then we have

lim inf
k→∞

∫
[0,∞) ϕ(t)tkdµ(t)∫

[0,∞) t
kdµ(t)

≥ lim inf
t→∞

ϕ(t). (2.4)

As a consequence, if lim
t→∞

ϕ(t) exists or ∞ or −∞, then

lim
k→∞

∫
[0,∞) ϕ(t)tkdµ(t)∫

[0,∞) t
kdµ(t)

= lim
t→∞

ϕ(t). (2.5)

Proof. There is nothing to prove if the the right hand side of (2.4) is −∞,
so we may assume that it is a finite real number or ∞. Let α be any real
number such that α < lim inf

t→∞
ϕ(t). Then there is a number r > 0 so that
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ϕ(t)− α ≥ 0 for all t ≥ r. We then have∫
[0,∞)

ϕ(t)tkdµ(t) = α

∫
[0,∞)

tkdµ(t) +
∫

[0,∞)
(ϕ(t)− α)tkdµ(t)

≥ α
∫

[0,∞)
tkdµ(t) +

∫
[0,r)

(ϕ(t)− α)tkdµ(t)

≥ α
∫

[0,∞)
tkdµ(t)− rk

∫
[0,r)
|ϕ(t)− α|dµ(t).

On the other hand,∫
[0,∞)

tkdµ(t) ≥
∫

[2r,∞)
tkdµ(t) ≥ (2r)kµ([2r,∞)) > 0.

Therefore, ∫
[0,∞) ϕ(t)tkdµ(t)∫

[0,∞) t
kdµ(t)

≥ α−
rk
∫

[0,r) |ϕ(t)− α|dµ(t)∫
[0,∞) t

kdµ(t)

≥ α−
rk
∫

[0,r) |ϕ(t)− α|dµ(t)

(2r)kµ([2r,∞))
.

Taking liminf as k →∞, we see that the left hand side of (2.4) is at least α.
Since α is arbitrarily smaller than lim inf

t→∞
ϕ(t), the inequality in (2.4) holds.

To obtain (2.5), apply (2.4) to both ϕ and −ϕ. �

3. Main Results

Our first result gives a necessary condition for the compactness of the
Toeplitz operator Tf , when the radial limit at infinity of f exists almost
everywhere.

Theorem 3.1. Suppose that f is a bounded function on Cn so that the
radial limit g(ζ) = limr→∞ f(rζ) exists for σ−almost every ζ ∈ S. If Tf is
compact on H, then g(ζ) = 0 for σ−almost every ζ ∈ S.

Proof. Using formula (1.1) as in the proof of Proposition 3.1 of [6], we have

1
µ̂(2m)

∫ ∞
0

[ ∫
S
f(rζ)dσ(ζ)

]
r2mdµ(r) =

(n− 1)!m!
(n− 1 +m)!

∑
|α|=m

〈Tfeα, eα〉.

Let ψ(r) =
∫

S f(rζ)dσ(ζ). Then by our assumption and Lebesgue Domi-
nated Convergence Theorem, limr→∞ ψ(r) =

∫
S g(ζ)dσ(ζ).

Since Tf is compact, lim|α|→∞〈Tfeα, eα〉 = 0. It follows that

lim
m→∞

1
µ̂(2m)

∫ ∞
0

ψ(r)r2mdµ(r) = lim
m→∞

(n− 1)!m!
(n− 1 +m)!

∑
|α|=m

〈Tfeα, eα〉 = 0.
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Here we have used the fact that the set {α ∈ Nn
0 : |α| = m} has cardinality

(n−1+m)!
(n−1)!m! . Now applying Lemma 2.7 to the real part and imaginary part of
ψ respectively, we obtain∫

S
g(ζ)dσ(ζ) = lim

r→∞
ψ(r) = lim

m→∞

1
µ̂(2m)

∫ ∞
0

ψ(r)r2mdµ(r) = 0.

For any multi-indices α, β, we have Tfχαχ̄β = H∗
f̄
Hχαχ̄β + TfTχαχ̄β . (Recall

that χ(z) = (χ1(z), . . . , χn(z)) = z
|z| for z 6= 0 and χ(0) = 0.) Therefore,

Tfχαχ̄β is compact by the compactness of Tf and Hχαχ̄β (by Proposition
2.4). Since

lim
r→∞

f(rζ)χ(rζ)αχ̄(rζ)β = g(ζ)ζαζ̄β

for σ−almost every ζ ∈ S, the preceding argument implies
∫

S g(ζ)ζαζ̄β = 0.
Because this holds true for any multi-indices α and β, we conclude that
g(ζ) = 0 for σ−almost every ζ ∈ S. �

Corollary 3.2. Let f be a bounded function on Cn with uniform radial limit
f∞ on S. Then Tf is compact if and only if f∞ vanishes on S.

Proof. The “only if” part is a direct consequence of the above theorem. The
“if” part is Lemma 2.1. �

Remark 3.3. If the limiting function f∞ is assumed to be continuous on S,
one may prove the “only if” part of Corollary 3.2 by using Theorem 2.6. In
fact, the compactness of Tf on H implies that T̃f∞ is compact on the Hardy
space H2(S). By [4, Lemma 2], f∞ vanishes on S.

When f∞ is not continuous, the “only if” part of Corollary 3.2 seems to
be new even for the standard Segal-Bargmann space.

Remark 3.4. The limit in Corollary 3.2 must be uniform in ζ. We will
construct a bounded function f such that limr→∞ f(rζ) = 0 for each ζ ∈ S
but Tf is not compact on the standard Segal-Bargmann space H2(Cn).

We first observe the following fact. For any ζ ∈ S and any r > 0, if
R ≥ 1+2/r then any ray from the origin passing through a point in B(Rζ, 1)
intersects the unit sphere S at a point belonging to B(ζ, r). In fact, let z be
in B(Rζ, 1). Then the ray from the origin passing through z intersects the
unit sphere at z/|z|. Since |z −Rζ| < 1 and |ζ| = 1, we obtain∣∣∣ z|z| − ζ∣∣∣ =

∣∣∣z − |z|ζ|z|

∣∣∣ ≤ |z −Rζ|+ |R− |z|||z|
≤ 2|z −Rζ|

|z|
<

2
R− 1

≤ r.

Now choose a sequence ζ1, ζ2, . . . in S and a sequence of positive real
numbers r1, r2, . . . converging to 0 such that the sets B(ζ1, r1),B(ζ2, r2), . . .
are pairwise disjoint. For each j, put Rj = 1 + 2/rj . From the above
observation, we see that for each ζ ∈ S, the ray Lζ = {rζ : r > 0} intersects
the ball B(Rjζj , 1) only if ζ belongs to B(ζj , rj). Therefore, for such a ζ,
there is at most one j so that Lζ intersects B(Rjζj , 1). This shows that the
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function f =
∑∞

j=1 χB(Rjζj ,1) is bounded by 1 (because the sets B(Rjζj , 1)
are pairwise disjoint) and limr→∞ f(rζ) = 0 for all ζ ∈ S.

We claim that Tf is not compact on H2(Cn). Recall that the normalized
kernel functions of H2(Cn) have the form ka(z) = e〈z,a〉/2−|a|

2/4 for a, z ∈ Cn.
It is well known that ka → 0 weakly in H2(Cn) as |a| → ∞.

For each j, put aj = Rjζj . We have

〈Tfkaj , kaj 〉 =
∫

Cn
f |kaj |2dν ≥

∫
B(aj ,1)

|kaj (z)|2(2π)−ne−|z|
2/2dV (z)

=
∫

B(aj ,1)
(2π)−ne−|z−aj |

2/2dV (z) =
∫

B(0,1)
dν = ν(B(0, 1)).

This shows that ‖Tfkaj‖ ≥ ν(B(0, 1)) for all j ≥ 1. Since kaj → 0 weakly as
j →∞, we conclude that Tf is not a compact operator.

In the rest of the paper, we study the structure of the C∗-algebra T(S)
generated by all Toeplitz operators Tf , where f belongs to S.

Recall that a C∗-subalgebra of B(H) is irreducible if its commutant con-
sists of only scalar multiples of the identity operator. Equivalently, the only
reducing subspaces of the subalgebra are {0} and H.

Proposition 3.5. T(S) is irreducible.

Proof. Suppose that Q is an operator on H that commutes with all elements
of T(S). In particular, QTχ̄j = Tχ̄jQ for j = 1, . . . , n. Let ϕ = Q(e0). Using
the computations in the proof of Lemma 2.3 and

0 = QTχ̄j (e0) = Tχ̄jQ(e0) = Tχ̄j (ϕ) =
∑
α

〈ϕ, eα〉Tχ̄jeα,

we obtain 〈ϕ, eα〉 = 0 whenever αj ≥ 1. Since j can be any integer between
1 and n, we conclude that ϕ is a multiple of e0. Thus Q(e0) = ϕ = 〈ϕ, e0〉e0.

It also follows from the proof of Lemma 2.3 that there is a constant dα
such that dα

∏n
j=1(Tχj )

αj (e0) = eα. Then

Q(eα) = dαQ

n∏
j=1

(Tχj )
αj (e0) = dα

n∏
j=1

(Tχj )
αjQ(e0)

= dα

n∏
j=1

(Tχj )
αj (〈ϕ, e0〉e0) = 〈ϕ, e0〉dα

n∏
j=1

(Tχj )
αj (e0) = 〈ϕ, e0〉eα.

So Q = 〈ϕ, e0〉I, which implies that T(S) is irreducible. �

We are now ready for the description of T(S) as an extension of the
compact operators by continuous functions on the unit sphere.

Theorem 3.6. The following statements hold:
(a) The commutator ideal CT of T(S) is the same as the ideal K of

compact operators on H.
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(b) We have T(S) = {Tf +K : f ∈ S and K ∈ K}. Moreover, there is
a short exact sequence

0→ K ι−−−−→ T(S)
ρ−−−−→ C(S)→ 0. (3.1)

Here ι is the inclusion map and ρ(Tf + K) = f∞ for K ∈ K and
f ∈ S with uniform radial limit f∞.

Proof. We have showed that T(S) is irreducible. On the other hand, T(S)
contains a non-zero compact operator (e.g. T|χj |2 − Tχ̄jTχj ). It then follows
from a well known result in the theory of C∗-algebras ([5, Corollary I.10.4])
that T(S) contains the ideal K of compact operators. Thus the commutator
ideal CT contains the commutator ideal of K, which is exactly K.

For any f, h ∈ S, the commutator TfTh − ThTf is compact by Corollary
2.5. This implies CT ⊂ K, which finishes the proof of (a).

For the proof of (b), we consider the map Φ : S → T(S)/K defined by
Φ(f) = Tf + K. Corollary 2.5 shows that Φ is a ∗-homomorphism of C∗-
algebras (recall that S with the supremum norm is a C∗-algebra). By a
standard result in the theory of C∗-algebras ([5, Theorem I.5.5]), the range
Φ(S) is a closed C∗-subalgebra. On the other hand, Φ(S) contains the
quotient classes of all generators of T(S). So it follows that Φ(S) = T(S)/K
and T(S) = {Tf +K : f ∈ S and K ∈ K}.

Furthermore, we know from Corollary 3.2 that the kernel of Φ is the ideal
ker(Φ) = {f ∈ S : f∞ = 0 on S, where f∞ is the uniform radial limit of f}.
On the other hand, it can be showed that S/ ker(Φ) is isometrically ∗-
isomorphic to C(S) and the map f + ker(Φ) 7→ f∞ is a ∗-isomorphism.
Thus there is a ∗-isomorphism Φ̃ : C(S) → T(S)/K induced by Φ. This
then gives the required short exact sequence, where ρ = Φ̃−1 ◦ π with
π : T(S) → T(S)/K the quotient map. Also for f ∈ S with radial limit
f∞ and K ∈ K,

ρ(Tf +K) = Φ̃−1(π(Tf +K)) = Φ̃−1(Tf +K) = f∞. �

The short exact sequence in Theorem 3.6 says, in the language of Brown-
Douglas-Fillmore (BDF) Theory (see [5, Chapter IX]), that T(S) is an ex-
tension of the compact operators K by C(S).

Let T̃ be the C∗-algebra generated by all Toeplitz operators T̃g acting on
the Hardy space H2(S), where g is continuous on S. Coburn [4] showed that
T̃ = {T̃g + K : g ∈ C(S) and K ∈ K}, the commutator ideal of T̃ coincides
with the compact operators K and there is a short exact sequence

0→ K ι−−−−→ T̃
ρ̃−−−−→ C(S)→ 0, (3.2)

where ρ̃(T̃g +K) = g, for g ∈ C(S) and K ∈ K.
Out last result shows that the extensions (3.1) and (3.2) are in fact equiv-

alent. This implies that they give rise to the same element of the extension
group of K by C(S).
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Theorem 3.7. There is a ∗-isomorphism Ψ : T̃→ T(S) such that Ψ(K) = K
and ρ ◦Ψ = ρ̃.

Proof. Recall that U : H → H2(S) is the unitary operator defined by Ueα =
ẽα, where {eα : α ∈ Nn

0} (respectively, {ẽα : α ∈ Nn
0}) is the standard

orthonormal basis for H (respectively, H2(S)).
For any A in T̃, define Ψ(A) = U∗AU . Since A = T̃f∞ + K for some

f∞ ∈ C(S) and K ∈ K, using Theorem 2.6 we obtain Ψ(A) = U∗T̃f∞U +
U∗KU = Tf +K ′, where K ′ is compact and f is any function whose uniform
radial limit is f∞. This shows that the image of Ψ is contained in T(S) and

ρ ◦Ψ(A) = ρ(Tf +K ′) = f∞ = ρ̃(T̃f∞ +K) = ρ̃(A).

On the other hand, for any B ∈ T(S), there is a function f ∈ S and a
compact operator K so that B = Tf + K. By Theorem 2.6 again, K ′ =
U∗T̃f∞U − Tf is compact. This shows that the operator A = T̃f∞ + U(K −
K ′)U∗ belongs to T̃ and we have

Ψ(A) = U∗T̃f∞U +K −K ′ = Tf +K = B.

Therefore Ψ is a ∗-isomorphism from T̃ onto T(S). This completes the proof
of the theorem. �
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