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ON COMPACTNESS OF PRODUCTS OF TOEPLITZ OPERATORS

TRIEU LE, TOMAS MIGUEL RODRIGUEZ, AND SÖNMEZ ŞAHUTOĞLU

ABSTRACT. We study compactness of product of Toeplitz operators with symbols continuous

on the closure of the polydisc in terms of behavior of the symbols on the boundary. For certain

classes of symbols f and g, we show that Tf Tg is compact if and only if f g vanishes on the

boundary. We provide examples to show that for more general symbols, the vanishing of f g on

the whole polydisc might not imply the compactness of Tf Tg. On the other hand, the reverse

direction is closely related to the zero product problem for Toeplitz operators on the unit disc,

which is still open.

Let Ω be a bounded domain in Cn. The Bergman space A2(Ω) consists of all holomorphic

functions on Ω that are square integrable with respect to the Lebesgue volume measure dV.

The orthogonal projection P : L2(Ω) → A2(Ω) is known as the Bergman projection. For a

bounded measurable function f on Ω, the Toeplitz operator Tf : A2(Ω) → A2(Ω) is defined

as

Tf h = P( f h)

for h ∈ A2(Ω). We call f the symbol of Tf .

There is an extensive literature on the study of Toeplitz operators on various domains. In

this paper, we are particularly interested in the case the domain is the polydisc and compact-

ness of product of Toeplitz operators whose symbols are continuous up to the boundary.

A classical approach to compactness of Toeplitz operators involves the Berezin transform.

For finite sum of finite products of Toeplitz operators on the Bergman space of the unit disc,

the Axler-Zheng Theorem [AZ98, Theorem 2.2] characterizes compactness in terms of the

behavior of the Berezin transform of the operator. In higher dimensions, the Axler-Zheng

Theorem is extended to the case of the polydisc as seen in [Eng99] and [CKL09, p. 232], and

the unit ball as shown in [Suá07, Theorem 9.5]. Recently, there have been a few generalizations

of this result in different directions. See, for instance, [ČŞ13, MSW13, ČŞZ18].

In this paper, we study compactness of products of Toeplitz operators in terms of the behav-

ior of the symbols on the boundary. More specifically, we would like to characterize functions

f , g that are continuous on Dn such that Tf Tg is compact.
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Coburn [Cob73, Lemma 2] showed that on the Bergman space over unit ball B, for f a

continuous function on B, the Toeplitz operator Tf is compact if and only if f = 0 on bB. Fur-

thermore, [Cob73, Theorem 1] established a ∗-isomorphism σ : τ(B)/K → C(bB) satisfying

σ(Tf + K ) = f |bB,

where τ(B) is the Toeplitz algebra generated by {Tϕ : ϕ ∈ C(B)} and K is the ideal of com-

pact operators on A2(B). As a consequence, we see that for f1, . . . , fN ∈ C(B), the product

Tf1
· · · TfN

is compact if and only if the product f1 · · · fN = 0 on bB.

On the polydisc Dn, the first author [Le10] showed that, in the context of weighted Bergman

spaces, for f ∈ C(Dn), the Toeplitz operator Tf is compact if and only if f vanishes on bDn.

Generalizing this result, the second and the third authors in [RŞ] proved that compactness of

the Toeplitz operator with a symbol continuous on the closure of a bounded pseudoconvex

domain in Cn with Lipschitz boundary is equivalent to the symbol vanishing on the boundary

of the domain.

Motivated by Coburn’s aforementioned result, one may expect that the necessary and suffi-

cient condition for Tf Tg to be compact is that f g vanishes on bDn, the topological boundary of

Dn. However, we shall see in our results and examples that while the above statement holds

for a certain class of symbols, sufficiency is false in general. On the other hand, necessity is

closely related with the famous “zero product problem” in the theory of Toeplitz operators on

the unit disc, which is still wide open.

MAIN RESULT

Let T = ∑
N
j=1 Tf j,1

· · · Tf j,mj
be a finite sum of finite products of Toeplitz operators with f j,k ∈

C(D). Coburn’s aforementioned result implies that compactness of T on A2(D) is equivalent

to ∑
N
j=1 f j,1 · · · f j,mj

= 0 on the circle. Therefore, throughout the paper we will assume that

n ≥ 2 as the case n = 1 is well understood.

Before we state our results, we define the restriction operator Rk,ξ : C(Dn) → C(Dn−1) for

ξ ∈ T and k = 1, . . . , n as follows.

R1,ξ f (z1, . . . , zn−1) = f (ξ, z1, . . . , zn−1),

Rn,ξ f (z1, . . . , zn−1) = f (z1, . . . , zn−1, ξ),

and

Rk,ξ f (z1, . . . , zn−1) = f (z1, . . . , zk−1, ξ, zk, . . . , zn−1)

for 2 ≤ k ≤ n − 1 and f ∈ C(Dn).

In our main result, we give a characterization of compactness of the finite sum of finite

products of Toeplitz operators in terms of the vanishing of the operator restricted to the poly-

discs in the boundary.
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Theorem 1. Let T = ∑
N
j=1 Tf j,1

· · · Tf j,mj
be a finite sum of finite products of Toeplitz operators on

A2(Dn) for f j,k ∈ C(Dn) with n ≥ 2. Then T is compact on A2(Dn) if and only if

N

∑
j=1

TRk,ξ f j,1
· · · TRk,ξ f j,mj

= 0

on A2(Dn−1) for all ξ ∈ T and 1 ≤ k ≤ n.

As an immediate corollary we get the following.

Corollary 1. Let f j ∈ C(Dn) for 1 ≤ j ≤ m. Assume that for each ξ ∈ T and 1 ≤ k ≤ n there exists

j such that Rk,ξ f j = 0 on Dn−1. Then Tfm
· · · Tf1

is compact on A2(Dn).

APPLICATIONS

Let ϕ and ψ be two functions in C(D). We define f (z, w) = ϕ(w) and g(z, w) = ψ(w) for

z, w ∈ D. Then for any ξ ∈ T,

R1,ξ f (w) = f (ξ, w) = ϕ(w), R1,ξ g(w) = g(ξ, w) = ψ(w) for w ∈ D

and

R2,ξ f (z) = ϕ(ξ), R2,ξ g(z) = ψ(ξ) for z ∈ D.

By Theorem 1, the product Tf Tg is compact on A2(D2) if and only if TϕTψ = 0 on A2(D)

and ϕ(ξ)ψ(ξ) = 0 for all ξ ∈ T. Since the second condition is actually a consequence of the

first, we conclude that for such f and g, the product Tf Tg is compact on A2(D2) if and only if

TϕTψ = 0 on A2(D), which is equivalent to Tf Tg = 0 on A2(D2).

Example 1. Let

ϕ(w) =





1 − 2|w| for 0 ≤ |w| ≤ 1
2

0 for |w| > 1
2 ,

and

ψ(w) =





0 for 0 ≤ |w| ≤ 1
2

2|w| − 1 for |w| > 1
2 .

One can check that both operators Tϕ and Tψ are diagonalizable with respect to the standard

orthonormal basis and their eigenvalues are all strictly positive. Hence TϕTψ 6≡ 0 on A2(D).

On the other hand, ϕψ = 0 on D. Then for f (z, w) = ϕ(w) and g(z, w) = ψ(w), we have

f g = 0 on D2 but Tf Tg is not compact on A2(D2) as TϕTψ 6≡ 0. This example shows that the

vanishing of f g on bD2 (or even on D2) does not imply the compactness of Tf Tg.

Example 2. Take f as in Example 1 and define

g(z, w) = ϕ(z) + ψ(w).
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Then f g is not identically zero on D2 because f (0, 0) = g(0, 0) = 1 and f g = 0 on bD2. Yet,

by Theorem 1, the product Tf Tg is not compact since for ξ ∈ T,

TR1,ξ f TR1,ξ g = TϕTψ

is not the zero operator on A2(D).

Remark 1. From the previous examples we see that f g = 0 on bD2 is not a sufficient condition

for the compactness of Tf Tg. Is it a necessary condition? It turns out this question is related

to the zero-product problem for Toeplitz operators on the disc. More specifically, as in Example

1, we see that with f (z, w) = ϕ(w) and g(z, w) = ψ(w), if the product Tf Tg is compact on

A2(D2), then TϕTψ = 0 on A2(D) (which gives ϕψ = 0 on T). However, it is not known if

this condition implies that ϕψ = 0 on D. For ξ ∈ T and z, w ∈ D, we have f (ξ, w)g(ξ, w) =

ϕ(w)ψ(w) and f (z, ξ)g(z, ξ) = ϕ(ξ)ψ(ξ). So f g = 0 on bD2 if and only if ϕψ = 0 on D.

In Proposition 1 below, we show that if the symbols are harmonic along the discs in the

boundary, then we have necessary and sufficient conditions for the compactness of the prod-

uct of two Toeplitz operators. A function f ∈ C2(Dn) is said to be n-harmonic if

∆j f = 4
∂2 f

∂zj∂zj
= 0,

for all j = 1, 2, . . . , n. That is, f is harmonic in each variable separately [Rud69, pg. 16].

Proposition 1. Let f , g ∈ C(Dn) (with n ≥ 2) such that for ξ ∈ T, and 1 ≤ k ≤ n, the functions

Rk,ξ f and Rk,ξ g are (n − 1)-harmonic on D
n−1. Then TgTf is compact if and only if f g = 0 on bD

n.

We note that in Example 1, both f and g depend on the same single variable. In Proposition

2 below, we give a characterization when the symbols are product of single-variable functions.

Proposition 2. Let T = ∏
M
k=1 Tfk

be a finite product of Toeplitz operators on A2(Dn) such that

fk(z) = ∏
n
j=1 f j,k(zj) for f j,k ∈ C(D) and z = (z1, . . . , zn) ∈ Dn. Let F = ∏

M
k=1 fk. Then the

following statements hold.

(i) If T is a nonzero compact operator, then F = 0 on bDn.

(ii) If F = 0 on bDn and F is not identically zero on Dn, then T is compact.

Remark 2. We do not know whether (i) in Proposition 2 still holds in the case T is the zero

operator. This is closely related to the zero product problem. More specifically, consider

f (z, w) = ϕ(w) and g(z, w) = ψ(w), where ϕ, ψ ∈ C(D). Then T = Tf Tg = 0 on A2(D2) if

and only if TϕTψ = 0 on A2(D). On the other hand, F = f g = 0 on bDn if and only if ϕψ = 0

on D. It is still an open problem whether TϕTψ = 0 on A2(D) implies that ϕψ = 0 on D.

Remark 3. The conclusion of (ii) in Proposition 2 does not hold if F is identically zero on Dn.

Indeed, the functions f and g in Example 1 are of the type considered here and F = f g = 0

on D2 but Tf Tg is not compact on A2(D2).
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In the proposition below, we show that when all but at most one of the symbols are poly-

nomials, compactness of a Toeplitz product on A2(D2) is equivalent to the vanishing of the

product of the symbols on bD
2. For this result, we need to restrict to dimension two. It would

be interesting to extend the result to all n ≥ 2. See Remark 4.

Proposition 3. Let f1, . . . , fM and g1, . . . , gN be polynomials in z, w and z, w, and h ∈ C(D2). Then

Tf1
· · · TfM

ThTg1
· · · TgN is compact on A2(D2) if and only if

f1 · · · fMhg1 · · · gN = 0 on bD
2.

PROOFS

Let BT(p) denote the Berezin transform of a bounded linear operator T : A2(Dn) →

A2(Dn) at p ∈ Dn. That is,

BT(p) = 〈Tkp , kp〉

where

kp(z) =
K(z, p)√
K(p, p)

is the normalized Bergman kernel of Dn.

We will need the following lemma whose proof is contained in the proof of Theorem 1 in

[ČHŞ]. We provide a sketch of the proof here for the convenience of the reader. We note

that B f denotes BTf whenever f is a bounded function and we use the following notation:

z′ = (z2, . . . , zn) ∈ Cn−1 for z = (z1, . . . , zn) ∈ Cn. For functions h1 defined on D and h2

defined on Dn−1, we use h1h2 to denote the function h1(z1)h2(z
′) on Dn.

Lemma 1. Suppose n ≥ 2 and ψ ∈ C(Dn). Let q = (ζ, q′) ∈ T×Dn−1 and define ψζ(z) = ψ(ζ, z′)

for z ∈ Dn.

(i) If {hp : p ∈ Dn} is a bounded set in L2(Dn−1), then

lim
p→q

∥∥(ψ − ψζ)k
D
p1

hp

∥∥ = 0.

(ii) If ψ1, . . . , ψv ∈ C(Dn) are functions independent of z1 and W is any bounded operator on

L2(Dn), then

lim
p→q

∥∥WTψ−ψζ
Tψ1

· · · Tψv kp

∥∥ = 0.

Proof. (i) Let ǫ > 0 be given. By the uniform continuity of ψ, there exists δ > 0 such that for

all z′ ∈ Dn−1,

|ψ(z1, z′)− ψξ(z1, z′)| <
ǫ

sup{‖hp‖L2(Dn−1)}+ 1
whenever |z1 − ξ| < δ.

Then,

‖(ψ − ψξ)k
D
p1

hp‖
2 = ‖(ψ − ψξ)k

D
p1

hp‖
2
L2({z∈Dn :|z1−ξ|<δ}) + ‖(ψ − ψξ)k

D
p1

hp‖
2
L2({z∈Dn :|z1−ξ|≥δ})
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≤ ǫ2 + π‖hp‖
2
L2(Dn−1)‖(ψ − ψξ)k

D
p1
‖2

L∞({z∈Dn:|z1−ξ|≥δ}).

However,

sup
{∣∣∣kD

p1
(z1)

∣∣∣ : |z1 − ξ| ≥ δ
}
→ 0 as p1 → ξ.

Then, lim supp→q ‖(ψ − ψξ)k
D
p1

hp‖ ≤ ǫ. Since ǫ > 0 was arbitrary, we conclude that

lim
p→q

∥∥(ψ − ψζ)k
D
p1

hp

∥∥ = 0.

(ii) We note that kp = kD
p1

kDn−1

p′ for p = (p1, p′). We define

hp = Tψ1
· · · TψvkDn−1

p′ for p ∈ D
n.

Since each ψj is independent of z1, hp is independent of z1 and hence it can be considered

as an element of L2(Dn−1). Note that the set {hp : p ∈ Dn} is bounded by ‖Tψ1
· · · Tψv‖.

Furthermore, we have Tψ1
· · · Tψvkp = kD

p1
hp. It follows that

∥∥WTψ−ψζ
Tψ1

· · · Tψv kp

∥∥ ≤ ‖W‖ ·
∥∥(ψ − ψζ)k

D
p1

hp

∥∥,

which, by (i), converges to zero as p → q. �

Proof of Theorem 1. We first make the following observation. If ϕ is a bounded function on

D
n−1, then Tϕ, while initially defined on A2(Dn−1), can be naturally considered as a Toeplitz

operator on A2(Dn) with symbol E1ϕ(z1, z′) = ϕ(z′). This will not create any confusion due

to the fact that for h ∈ A2(Dn) independent of z1, the function TE1 ϕh is also independent of z1

and (TE1 ϕh)(z) = (Tϕh)(z′) for all z = (z1, z′) ∈ Dn.

Let ξ ∈ T. For each j and mj, the function f j,mj
can be written as f j,mj

= ( f j,mj
− R1,ξ f j,mj

) +

R1,ξ f j,mj
. We then expand T = ∑

N
j=1 Tf j,1

· · · Tf j,mj
as

T =
N

∑
j=1

(
TR1,ξ f j,1

· · · TR1,ξ f j,mj
+ Tf j,1−R1,ξ f j,1

TR1,ξ f j,2
· · · TR1,ξ f j,mj

+Tf j,1
Tf j,2−R1,ξ f j,2

TR1,ξ f j,3
· · · TR1,ξ f j,mj

+ · · ·+ Tf j,1
Tf j,2

· · · Tf j,mj−1
Tf j,mj

−R1,ξ f j,mj

)

=
N

∑
j=1

TR1,ξ f j,1
· · · TR1,ξ f j,mj

+
N

∑
j=1

(
Tf j,1−R1,ξ f j,1

TR1,ξ f j,2
· · · TR1,ξ f j,mj

+Tf j,1
Tf j,2−R1,ξ f j,2

TR1,ξ f j,3
· · · TR1,ξ f j,mj

+ · · ·+ Tf j,1
Tf j,2

· · · Tf j,mj−1
Tf j,mj

−R1,ξ f j,mj

)
.

Note that in the second sum, each summand has the form considered in Lemma 1(ii). We then

conclude that for any q = (ξ, q′) ∈ T × Dn−1,

lim
p→q

∥∥∥Tkp −
N

∑
j=1

TR1,ξ f j,1
· · · TR1,ξ f j,mj

kp

∥∥∥ = 0.(1)
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Now suppose that T is compact. Fix p′ ∈ Dn−1. Since k(p1,p′) → 0 weakly as p1 → ξ, the

compactness of T implies that ‖Tk(p1 ,p′)‖ → 0 as p1 → ξ. Equation (1) then gives

lim
p1→ξ

∥∥∥
N

∑
j=1

TR1,ξ f j,1
· · · TR1,ξ f j,mj

k(p1,p′)

∥∥∥ = 0.(2)

Since

N

∑
j=1

TR1,ξ f j,1
· · · TR1,ξ f j,mj

k(p1 ,p′) =
N

∑
j=1

TR1,ξ f j,1
· · · TR1,ξ f j,mj

(kD
p1

kDn−1

p′ )

= kD
p1
·

N

∑
j=1

TR1,ξ f j,1
· · · TR1,ξ f j,mj

kDn−1

p′

and ‖kD
p1
‖ = 1 for all p1, (2) implies that

N

∑
j=1

TR1,ξ f j,1
· · · TR1,ξ f j,mj

kDn−1

p′ = 0.

Because p′ was arbitrary, it follows that ∑
N
j=1 TR1,ξ f j,1

· · · TR1,ξ f j,mj
is the zero operator on A2(Dn−1).

Applying the same method for other values of k, we have

N

∑
j=1

TRk,ξ f j,1
· · · TRk,ξ f j,mj

= 0

on A2(Dn−1) for 1 ≤ k ≤ n and all ξ ∈ T.

Let us now prove the converse. Let q = (ξ, q′) ∈ bD
n with ξ ∈ T and q′ ∈ Dn−1. Since

∑
N
j=1 TR1,ξ f j,1

· · · TR1,ξ f j,mj
= 0, equation (1) implies that limp→q ‖Tkp‖ = 0. As a consequence,

lim
p→q

BT(p) = lim
p→q

〈Tkp, kp〉 = 0.

The same argument is applicable for all q ∈ bDn. By Axler-Zheng Theorem for Dn ([Eng99]

and [CKL09, p. 232]), we conclude that T is compact on A2(Dn). �

Proof of Corollary 1. We assume that for each ξ ∈ T and 1 ≤ k ≤ n there exists j such that

Rk,ξ f j = 0. Then TRk,ξ fm
· · · TRk,ξ f1

= 0 on A2(Dn−1). Hence, Theorem 1 implies that Tfm
· · · Tf1

is compact on A2(Dn). �

Proof of Proposition 1. To prove the forward direction, we first use Theorem 1 to conclude

that TRk,ξ gTRk,ξ f is the zero operator on A2(Dn−1) for all ξ ∈ T and 1 ≤ k ≤ n. Since the

symbols Rk,ξ f and Rk,ξ g are (n − 1)-harmonic on D
n−1, we apply [CKL07, Theorem 1.1] (or

[AČ01, Corollary 2] in the case n = 2) to conclude that either Rk,ξ f = 0 or Rk,ξ g = 0. Then

f g = 0 on bDn as desired.
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To prove the converse we argue as follows. For each 1 ≤ k ≤ n and ξ ∈ T, since both

Rk,ξ f and Rk,ξ g are (n − 1)-harmonic and their product is zero on Dn−1, either Rk,ξ f = 0 or

Rk,ξ g = 0. Then TRk,ξ gTRk,ξ f = 0 on A2(Dn−1) for all ξ ∈ T and 1 ≤ k ≤ n. Theorem 1 now

implies that TgTf is compact. �

Proof of Proposition 2. We first prove (i). Assume that T is a nonzero compact operator. Then

by Theorem 1 when restricted on the first coordinate, for any ξ ∈ T,

0 =
M

∏
k=1

TR1,ξ fk
=
( M

∏
k=1

f1,k(ξ)
) M

∏
k=1

T
f̃k

on A2(Dn−1), where f̃k(z2, . . . , zn) = f2,k(z2) · · · fn,k(zn). Since T is not the zero operator, the

second factor on the left hand side above is a nonzero operator. This follows from the fact that

T can be written as the product
( M

∏
k=1

Tf1,k

)
·
( M

∏
k=1

T
f̃k

)

where the first factor acts on functions in z1 and the second factor acts on functions in z′ =

(z2, . . . , zn). Hence, ∏
M
k=1 f1,k(ξ) = 0. It follows that

F(ξ, z2 , . . . , zn) =
M

∏
k=1

fk(ξ, z2, . . . , zn) =

(
M

∏
k=1

f1,k(ξ)

)(
n

∏
j=2

M

∏
k=1

f j,k(zj)

)
= 0

on T × Dn−1. The same argument applies to other coordinates and we have F = 0 on bDn.

Next we prove (ii). Assume that F = ∏
M
k=1 fk = 0 on bDn and F is not identically zero on

Dn. Choose q = (q1, . . . , qn) ∈ Dn such that fk(q) 6= 0 for all k, which implies that f j,k(qj) 6= 0

for all j and k. For any ξ ∈ T, since z = (ξ, q2, . . . , qn) ∈ bD
n, we have

0 = F(z) =
( M

∏
k=1

f1,k(ξ)
)
·

n

∏
j=2

M

∏
k=1

f j,k(qj).

Because the second factor is nonzero, it follows that ∏
M
k=1 f1,k(ξ) = 0. As a result,

M

∏
k=1

TR1,ξ fk
=
( M

∏
k=1

f1,k(ξ)
) M

∏
k=1

T
f̃k
= 0

on A2(Dn−1), where, as before, f̃k(z2, . . . , zn) = f2,k(z2) · · · fn,k(zn). The same argument

applies to other parts of bDn. Then Theorem 1 implies that T = ∏
M
k=1 Tfk

is compact on

A2(Dn). �

The proof of Proposition 3 hinges on several elementary facts about polynomials that we

describe below. We use C[z, z] to denote the vector space of all polynomials in z and z.

The following lemma is well known. The proof follows from the fact that if a real analytic

function vanishes on a non-empty open set, it must be identically zero.
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Lemma 2. Let f ∈ C[z, z] be not identically zero. Then the set

{z ∈ C : f (z) = 0}

has an empty interior.

Lemma 3. Let f ∈ C[z, z]. Assume that there exist infinitely many ξ ∈ T such that f (ξ) = 0. Then

there is a polynomial g ∈ C[z, z] such that f (z) = (1 − |z|2)g(z). In particular, f (ξ) = 0 for all

ξ ∈ T.

Proof. For non-negative integers s, t, we write

zszt =





|z|2s zt−s if t ≥ s,

|z|2t zs−t if t < s.

As a result, there are integers m, M ≥ 0 and polynomials pj (for 0 ≤ j ≤ M) and qj (for

0 ≤ j ≤ m) of a single variable such that

f (z) =
M

∑
j=0

pj(|z|
2)zj +

m

∑
j=0

qj(|z|
2)zj.

By the hypothesis, there exists infinitely many ξ ∈ T such that

M

∑
j=0

pj(1)ξ
j +

m

∑
j=0

qj(1)ξ
j
= f (ξ) = 0.

This implies that pj(1) = qj(1) = 0 for each j. As a consequence, all pj(r) and qj(r) are divisi-

ble by 1 − r. We then conclude that f (z) is divisible by 1 − |z|2, from which the conclusion of

the lemma follows. �

Lemma 4. Let f (z, w) be a polynomial in z, w, z, w and let h ∈ C(D2). Assume that f h = 0 on bD
2.

Then f |
T×D

= 0 or h|
T×D

= 0 and f |
D×T

= 0 or h|
D×T

= 0.

Proof. Assume that h does not vanish identically on T × D. By continuity, there exist a non-

empty arc J ⊆ T and a non-empty open set V ⊆ D such that h(ξ, w) 6= 0 for all ξ ∈ J and

w ∈ V. It follows that f (ξ, w) = 0 for all such ξ and w. For each ξ ∈ J, applying Lemma

2, we conclude that f (ξ, w) = 0 for all w ∈ D. Then for each w ∈ D, since f (ξ, w) vanishes

on J (which is an infinite set), Lemma 3 implies that f (ξ, w) = 0 for all ξ ∈ T. Therefore, f

vanishes identically on T × D. The proof for D × T is similar. �

Lemma 5 ([Thi18, Corollary 1.8]). Suppose ϕ1, . . . , ϕM and ψ1, . . . , ψN are polynomials of z, z in

D and g ∈ L2(D). If Tϕ1
· · · TϕM TgTψ1

· · · TψN = 0 on A2(D), then one of the symbols must be zero.
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Proof of Proposition 3. Assume that Tf1
· · · TfM

ThTg1
· · · TgN is compact on A2(D2), then by

Theorem 1,

TR1,ξ f1
· · · TR1,ξ fM

TR1,ξ hTR1,ξ g1
· · · TR1,ξ gN

= TR2,ξ f1
· · · TR2,ξ fM

TR2,ξ hTR2,ξ g1
· · · TR2,ξ gN

= 0

on A2(D) for all ξ ∈ T. By Lemma 5, one of R1,ξ f1, . . . , R1,ξ fM, R1,ξh, and R1,ξ g1, . . . , R1,ξ gN

is a zero function on D. Thus, f1 · · · fMhg1 · · · gN = 0 on T × D. Similar argument works for

D × T. Therefore, f1 · · · fMhg1 · · · gN = 0 on bD2.

For the converse, by Lemma 4, one of the symbols is identically zero on T × D. It then

follows that

TR1,ξ f1
· · · TR1,ξ fM

TR1,ξhTR1,ξ g1
· · · TR1,ξ gN

= 0.

Similarly,

TR2,ξ f1
· · · TR2,ξ fM

TR2,ξhTR2,ξ g1
· · · TR2,ξ gN

= 0.

Therefore, by Theorem 1, we conclude that Tf1
· · · TfM

ThTg1
· · · TgN is compact on A2(D2). �

Remark 4. It is desirable to generalize Proposition 3 to Dn for all n ≥ 2. While Lemmas 2, 3

and 4 remain true for all n, Lemma 5 has only been known for the disc. In order to extend

Proposition 3 to all n ≥ 2, one needs to prove a several-variable version of Lemma 5. Some

partial results have been obtained in the literature. For example, the main results of [ČHŞ22]

imply that Lemma 5 holds in several variables when g = 1 or when all ϕj, ψk are monomials.

As a result, Proposition 3 holds on D
n for all n ≥ 2 in the case h = 1, or in the case all f j and

gk are monomials.
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[RŞ] Tomas Miguel Rodriguez and Sönmez Şahutoğlu, Compactness of Toeplitz operators with continuous sym-

bols on pseudoconvex domains in Cn, preprint, https://arxiv.org/abs/2302.05013.

[Rud69] W. Rudin, Function theory in polydiscs, Math. Lect. Note Ser., The Benjamin/Cummings Publishing

Company, Reading, MA, 1969.
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