

Composition operators between \mathcal{N}_p -spaces in the ball

Bingyang Hu¹ Le Hai Khoi² Trieu Le³

Received: January 28, 2016/Accepted: June 6, 2016/Online: July 22, 2016

Abstract

We study composition operators acting between \mathcal{N}_p -spaces in the unit ball in \mathbb{C}^n . We obtain characterizations of the boundedness and compactness of $C_{\varphi}: \mathcal{N}_p \longrightarrow \mathcal{N}_q$ for p, q > 0.

Keywords: N_p -space, composition operator, boundedness, compactness. **msc:** 32A36, 47B33.

1 Introduction

Let \mathbb{B} be the open unit ball in \mathbb{C}^n . The space $\mathcal{O}(\mathbb{B})$ consists of all holomorphic functions in \mathbb{B} . For any holomorphic self-mapping φ of the unit ball \mathbb{B} , the linear operator $C_{\varphi} : \mathcal{O}(\mathbb{B}) \longrightarrow \mathcal{O}(\mathbb{B})$ defined by

 $C_{\varphi}(f) = f \circ \varphi, \quad f \in \mathcal{O}(\mathbb{B}),$

is called the *composition operator* with symbol φ . We are often interested in the study of C_{φ} acting between Banach spaces contained in $\mathcal{O}(\mathbb{B})$.

Composition operators on spaces of holomorphic functions in the unit disk \mathbb{D} and the unit ball \mathbb{B} such as the Hardy, Bergman, Bloch spaces, just to name a few, have been studied intensively in many settings. We refer the reader to the monographs of Cowen and MacCluer⁴ and Shapiro⁵ for detailed information. In this paper we would like to investigate composition operators acting on a different class of Banach spaces, the N_p -spaces.

¹Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA

²Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 637371 Singapore

³Department of Mathematics and Statistics, Mail Stop 942, University of Toledo, Toledo, OH 43606, USA

⁴Cowen and MacCluer, 1995, *Composition operators on spaces of analytic functions*. ⁵Shapiro, 1993, *Composition operators and classical function theory*.

The \mathcal{N}_p -spaces on the unit disk were introduced and studied by Palmberg⁶. For p > 0, the space $\mathcal{N}_p(\mathbb{D})$ consists of functions in $\mathcal{O}(\mathbb{D})$ such that

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f(z)|^2(1-|\sigma_a(z)|^2)^p\mathrm{d}A(z)<\infty.$$

The study of such spaces was motivated by Q_p -spaces, which have been of interests by many researchers. The book of Xiao⁷ provides an excellent source of information about Q_p -spaces.

Some important properties of \mathcal{N}_p -spaces are: for p > 1, \mathcal{N}_p -spaces all coincide with $A^{-1}(\mathbb{D})$ and for $p \in (0,1]$, the \mathcal{N}_p -spaces are all different. Here $A^{-p}(\mathbb{D})$ denotes the Bergman-type space that consists of functions in $\mathcal{O}(\mathbb{D})$ such that $\sup_{z \in \mathbb{D}} |f(z)|(1-|z|^2)^p < \infty$.

In Palmberg (2007), Palmberg studied the boundedness and compactness of composition operators acting between N_p -spaces and from an N_p -space into $A^{-q}(\mathbb{D})$. Certain characterizations of boundedness and compactness were obtained. In Ueki (2012), Ueki investigated weighted composition operators between N_p -spaces and A^{-q} -spaces.

The first two authors⁸ introduced and studied properties of N_p -spaces in higher dimensions. For p > 0, the N_p -space of \mathbb{B} is defined as follows:

$$\mathcal{N}_p = \mathcal{N}_p(\mathbb{B})$$

:= $\left\{ f \in \mathcal{O}(\mathbb{B}) : ||f||_p = \sup_{a \in \mathbb{B}} \left(\int_{\mathbb{B}} |f(z)|^2 (1 - |\Phi_a(z)|^2)^p dV(z) \right)^{1/2} < \infty \right\},$

where dV is the normalized Lebesgue volume measure over \mathbb{B} and Φ_a is the involutive automorphism of \mathbb{B} that interchanges 0 and *a*. We also defined the little space of \mathcal{N}_p as

$$\mathcal{N}_{p}^{0} = \mathcal{N}_{p}^{0}(\mathbb{B}) := \left\{ f \in \mathcal{N}_{p} : \lim_{|a| \to 1^{-}} \int_{\mathbb{B}} |f(z)|^{2} (1 - |\Phi_{a}(z)|^{2})^{p} dV(z) = 0 \right\},\$$

which is a closed subspace of \mathcal{N}_p .

Several basic properties of \mathcal{N}_p^r -spaces are proved, in connection with the Bergmantype spaces A^{-q} , which, similar to the one dimensional cases, consists of functions $f \in \mathcal{O}(\mathbb{B})$ for which

$$|f|_p = \sup_{z \in \mathbb{B}} |f(z)|(1-|z|^2)^p < \infty.$$

Recall that H^{∞} denotes the Banach space of all bounded functions in $\mathcal{O}(\mathbb{B})$ with the norm $||f||_{\infty} = \sup_{z \in \mathbb{B}} |f(z)|$.

⁶Palmberg, 2007, "Composition operators acting on N_p -spaces".

⁷Xiao, 2001, Holomorphic Q classes.

⁸Hu and Khoi, 2013, "Weighted composition operators on \mathcal{N}_p -spaces in the ball".

Theorem 1 (Hu and Khoi⁹) – The following statements hold:

- 1. For p > q > 0, we have $H^{\infty} \hookrightarrow \mathcal{N}_q \hookrightarrow \mathcal{N}_p \hookrightarrow A^{-\frac{n+1}{2}}$.
- 2. For p > 0, if p > 2k 1, $k \in (0, \frac{n+1}{2}]$, then $A^{-k} \hookrightarrow \mathcal{N}_p$. In particular, when p > n, $\mathcal{N}_p = A^{-\frac{n+1}{2}}$.
- 3. N_p is a functional Banach space with the norm $\|\cdot\|_p$, and moreover, its norm topology is stronger than the compact-open topology.
- 4. For $0 , <math>\mathcal{B} \hookrightarrow \mathcal{N}_p$, where \mathcal{B} is the Bloch space in \mathbb{B} .

Considering weighted composition operators between \mathcal{N}_p and Bergman-type spaces A^{-q}

$$W_{u,\varphi}(f) = u \cdot (f \circ \varphi), f \in \mathcal{O}(\mathbb{B}),$$

where $u: \mathbb{B} \to \mathbb{C}$ is a holomorphic function, the properties above allow us to prove criteria for boundedness and compactness of these operators¹⁰. In Hu and Khoi (2015) and Hu, Khoi, and Le (2016a), compact differences and the estimate for essential norm of weighted composition operators acting from an \mathcal{N}_p -space to an A^{-q} -space were investigated. In these works, various properties stated in Theorem 1 were used.

All of the aforementioned results concern weighted composition operators $W_{u,\varphi}$ acting between the spaces \mathcal{N}_p and A^{-q} . A natural question one may ask is: what is the situation like when we consider composition operators acting between \mathcal{N}_p -spaces themselves? The aim of the present paper is to investigate this question. More precisely, we study the boundedness and compactness of composition operators C_{φ} acting between \mathcal{N}_p and \mathcal{N}_q for p, q > 0. To our knowledge, this problem has not been treated before, neither in one variable nor several variables.

The structure of this paper is as follows. Section 2 on the next page is devoted to the boundedness of C_{φ} . We obtain sufficient conditions and necessary conditions for C_{φ} to be bounded from \mathcal{N}_p into \mathcal{N}_q . In Section 3 on p. 118, we investigate the compactness of C_{φ} . Different characterizations for compactness are provided. We also show in this section that the range of any compact composition operator $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ must be contained in \mathcal{N}_q^0 . Consequently, the compactness of C_{φ} from \mathcal{N}_p into \mathcal{N}_q and from \mathcal{N}_p into \mathcal{N}_q^0 are equivalent.

Throughout the paper, $d\sigma$ denotes the normalized surface measure on the sphere \mathbb{S} , the boundary of \mathbb{B} . For two quantities *a* and *b* of a certain variable, we write $a \leq b$ (respectively, $a \geq b$) if there exists a positive number *C* independent of the variable under consideration such that $a \leq Cb$ (respectively, $a \geq Cb$). Moreover, if both $a \leq b$ and $a \geq b$ hold, then we write $a \simeq b$.

 $^{^{9}}$ Hu and Khoi, 2013, "Weighted composition operators on \mathcal{N}_{p} -spaces in the ball". 10 Ibid., Theorems 3.2 and 3.4.

B. Hu et al.

2 Boundedness of composition operators from \mathcal{N}_p to \mathcal{N}_q

In this section we investigate the boundedness of composition operators between \mathcal{N}_p -spaces. The one dimensional case is considered by Palmberg¹¹. A sufficient condition and a necessary condition for C_{φ} to be bounded on \mathcal{N}_p of the unit disk were given there. These conditions involve the generalized Nevanlinna counting function introduced by Shapiro.

We begin with the case φ is a univalent holomorphic self-mapping of the unit ball \mathbb{B} .

Theorem 2 – Let φ be a univalent holomorphic self-mapping of \mathbb{B} and p be any positive real number. Suppose that

$$\delta = \inf\{|J\varphi(z)| : z \in \mathbb{B}\} > 0,$$

where $J\varphi$ the complex Jacobian of φ . Then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_p$ is a bounded operator with $\|C_{\varphi}\| \leq \delta^{-1}$ for all p > 0.

Proof. Let f be any function in \mathcal{N}_p . For $a \in \mathbb{B}$, and $z \in \mathbb{B}$, the Schwarz-Pick lemma¹² gives $|\Phi_{\varphi(a)}(\varphi(z))| \leq |\Phi_a(z)|$. Since φ is univalent, it is biholomorphic from \mathbb{B} onto $\varphi(\mathbb{B})^{13}$. This makes the change of variables possible in the following estimates:

$$\begin{split} &\delta^{2} \int_{\mathbb{B}} |f(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{p} dV(z) \\ &\leq \int_{\mathbb{B}} |f(\varphi(z))|^{2} (1 - |\Phi_{\varphi(a)}(\varphi(z))|^{2})^{p} |J\varphi(z)|^{2} dV(z) \\ &= \int_{\varphi(\mathbb{B})} |f(w)|^{2} (1 - |\Phi_{\varphi(a)}(z)|^{2})^{p} dV(w) \quad \text{(by the change-of-variables } w = \varphi(z)) \\ &\leq \int_{\mathbb{B}} |f(w)|^{2} (1 - |\Phi_{\varphi(a)}(z)|^{2})^{p} dV(w) \\ &\leq ||f||_{a}^{2}. \end{split}$$

Taking supremum over $a \in \mathbb{B}$ gives $\delta^2 \|C_{\varphi}f\|_p^2 \leq \|f\|_p^2$, which implies $\|C_{\varphi}f\|_p \leq \delta^{-1} \|f\|_p$. Since f was an arbitrary element in \mathcal{N}_p , we conclude that C_{φ} is a bounded operator on \mathcal{N}_p with $\|C_{\varphi}\| \leq \delta^{-1}$ as desired.

¹¹Palmberg, 2007, "Composition operators acting on N_p -spaces", Theorem 4.2.

¹²Rudin, 1980, Function theory in the unit ball of \mathbb{C}^n , Theorem 8.1.4.

¹³See e.g. ibid., Theorem 15.1.8.

2. Boundedness of composition operators from \mathcal{N}_p to \mathcal{N}_q

Corollary 1 – Suppose $A : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is an invertible linear operator and b is a vector in \mathbb{C}^n such that $\varphi(z) = Az + b$ is a self-mapping of \mathbb{B} . Then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_p$ is bounded for all p > 0.

Proof. Since $|J\varphi(z)| = |\det(A)| > 0$, Theorem 2 on the preceding page provides the desired conclusion.

For general self-mappings φ of the unit ball, we offer a necessary condition and a sufficient condition for C_{φ} to be bounded from \mathcal{N}_p into \mathcal{N}_q . We shall make use of a sequence of homogeneous polynomials $\{P_m\}$ which satisfy deg $(P_m) = m$,

$$\|P_m\|_{\infty} = \sup_{|\zeta|=1} |P_m(\zeta)| = 1, \quad \text{and} \quad \int_{\mathbb{S}} |P_m(\zeta)|^2 \mathrm{d}\sigma(\zeta) \ge \frac{\pi}{4^n}. \tag{1}$$

The existence of such a sequence was proved in Ryll and Wojtaszczyk (1983). We shall also need the inequality

$$1 + \sum_{k=0}^{\infty} 2^{k\gamma} x^{2^k} \gtrsim (1-x)^{-\gamma} \quad \text{for } 0 \le x < 1,$$
(2)

where γ is a positive number. Indeed, it was showed¹⁴ that

$$\sum_{k=0}^{\infty} 2^{k\gamma} x^{2^k} \gtrsim (1-x)^{-\gamma} \qquad \text{for } x > \frac{1}{2}.$$

On the other hand, it is clear that $2^{\gamma} \ge (1-x)^{-\gamma}$ for $0 \le x \le \frac{1}{2}$. Therefore, (2) holds.

The following preparatory result will be needed in obtaining the necessary condition for the boundedness of C_{φ} .

Proposition 1 – Let p and q be positive numbers and φ a holomorphic self-mapping of \mathbb{B} . Let $\mathbb{B}_{\mathcal{N}_p}$ denotes the unit ball of \mathcal{N}_p . Suppose μ is a positive number and E is a measurable subset of \mathbb{B} such that

$$\sup_{a\in\mathbb{B},f\in\mathbb{B}_{\mathcal{N}_p}}\int_E |f(\varphi(z))|^2 (1-|\Phi_a(z)|^2)^q \mathrm{d} V(z) \leq \mu.$$

Then for any $0 < \varepsilon \le p + 1$, we have

$$\sup_{a\in\mathbb{B}}\int_{E}\frac{(1-|\Phi_{a}(z)|^{2})^{q}}{(1-|\varphi(z)|^{2})^{p+1-\varepsilon}}\mathrm{d}V(z)\lesssim\mu.$$

¹⁴Ueki, 2012, "Weighted composition operators acting between the N_p -space and the weighted-type space H_{α}^{∞} ", p. 247.

Composition operators between N_p -spaces

Proof. The hypothesis implies that for any $a \in \mathbb{B}$ and any $f \in \mathcal{N}_p$, we have

$$\int_{E} |f(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} \mathrm{d}V(z) \le \mu ||f||_{p}^{2}.$$
(3)

Put

$$F(z) = 1 + \sum_{k=0}^{\infty} 2^{k(p+1-\varepsilon)/2} P_{2^k}(z), \qquad z \in \mathbb{B}.$$

By Hu, Khoi, and Le (2016b, Theorem 5.1),

$$\|F\|_p^2 \approx \sum_{k=0}^\infty \frac{2^{k(p+1-\varepsilon)}}{2^{k(p+1)}} = \sum_{k=0}^\infty 2^{-k\varepsilon} < \infty,$$

which shows that *F* belongs to \mathcal{N}_p . Let \mathfrak{U}_n denote the group of all unitary operators on the Hilbert space \mathbb{C}^n . For any $U \in \mathfrak{U}_n$, the unitary invariant property of the volume measure shows that $F \circ U$ also belongs to \mathcal{N}_p and $||F \circ U||_p = ||F||_p$. Setting $f = F \circ U$ in (3) gives

$$\int_{E} |F(U\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} \mathrm{d}V(z) \le \mu ||F \circ U||_{p}^{2} = \mu ||F||_{p}^{2},$$

for each $a \in \mathbb{B}$ and $U \in \mathfrak{U}_n$.

Now fix $a \in \mathbb{B}$. Integration with respect to the Haar measure d*U* on \mathfrak{U}_n and Fubini's Theorem yield

$$\int_{E} \left(\int_{\mathfrak{U}_{n}} |F(U\varphi(z))|^{2} \mathrm{d}U \right) \left(1 - |\Phi_{a}(z)|^{2} \right)^{q} \mathrm{d}V(z) \leq \mu ||F||_{p}^{2}.$$

For any $z \in \mathbb{B}$, we compute

$$\begin{split} \int_{\mathfrak{U}_n} |F(U\varphi(z))|^2 \mathrm{d}U &= \int_{\mathfrak{S}} \left| F\big(|\varphi(z)|\zeta \big) \right|^2 \mathrm{d}\sigma(\zeta) \\ & \text{(by Rudin (1980, Proposition 1.4.7))} \\ &= \int_{\mathfrak{S}} \left| 1 + \sum_{k=0}^{\infty} 2^{k(p+1-\varepsilon)/2} P_{2^k}(|\varphi(z)|\zeta) \right|^2 \mathrm{d}\sigma(\zeta) \\ &= 1 + \sum_{k=0}^{\infty} 2^{k(p+1-\varepsilon)}(|\varphi(z)|^2)^{2^k} \int_{\mathfrak{S}} |P_{2^k}(\zeta)|^2 \mathrm{d}\sigma(\zeta) \\ & \text{(by the orthogonality and the homogeneity of } \end{array}$$

(by the orthogonality and the homogeneity of $\{P_{2^k}\}$)

$$\geq \frac{\pi}{4^n} \left(1 + \sum_{k=0}^{\infty} 2^{k(p+1-\varepsilon)} (|\varphi(z)|^2)^{2^k} \right) \qquad (by \ (1))$$

(Cont. next page)

2. Boundedness of composition operators from \mathcal{N}_p to \mathcal{N}_q

$$\gtrsim \left(1 - |\varphi(z)|^2\right)^{-(p+1-\varepsilon)} \qquad (by (2)).$$

Consequently,

$$\int_{E} \frac{(1-|\Phi_{a}(z)|^{2})^{q}}{(1-|\varphi(z)|^{2})^{p+1-\varepsilon}} \mathrm{d}V(z)$$

$$\lesssim \int_{E} \left(\int_{\mathfrak{U}} |F(U\varphi(z))|^{2} \mathrm{d}U\right) (1-|\Phi_{a}(z)|^{2})^{q} \mathrm{d}V(z) \le \mu ||F||_{p}^{2}$$

as desired.

We are now ready to prove a necessary condition and a sufficient condition for the boundedness of $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$.

Theorem 3 – Let p and q be two positive numbers and φ a holomorphic self-mapping of \mathbb{B} . If

$$\sup_{a \in \mathbb{B}} \int_{\mathbb{B}} \frac{(1 - |\Phi_a(z)|^2)^q}{(1 - |\varphi(z)|^2)^{n+1}} dV(z) < \infty,$$
(4)

then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded. Conversely, if $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded, then for any $0 < \varepsilon \le p + 1$,

$$\sup_{a\in\mathbb{B}}\int_{\mathbb{B}}\frac{(1-|\Phi_a(z)|^2)^q}{(1-|\varphi(z)|^2)^{p+1-\varepsilon}}\mathrm{d}V(z)<\infty.$$

Proof. Suppose (4) holds. By Item 1 of Theorem 1 on p. 113, there is a constant C > 0 such that for each $f \in \mathcal{N}_p$, we have

$$|f(z)|(1-|z|^2)^{\frac{n+1}{2}} \le C||f||_p, \quad \forall z \in \mathbb{B}.$$

Hence,

$$\sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \le (C||f||_p)^2 \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} \frac{(1 - |\Phi_a(z)|^2)^q}{(1 - |\varphi(z)|^2)^{n+1}} \mathrm{d}V(z),$$

which shows that C_{φ} is bounded from \mathcal{N}_p into \mathcal{N}_q .

Conversely, suppose $C_{\varphi}: \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded. Then

$$\sup_{a \in \mathbb{B}, f \in \mathbb{B}_{\mathcal{N}_p}} \int_{\mathbb{B}} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) = \sup_{f \in \mathbb{B}_{\mathcal{N}_p}} ||C_{\varphi}f||_q^2 \le ||C_{\varphi}||^2.$$

The desired inequality now follows from Proposition 1 on p. 115.

An application of Theorem 3 immediately gives the following result. In fact, the operator C_{φ} in the corollary is compact, as we shall see in the next section.

Corollary 2 – Let φ be a holomorphic self-mapping of \mathbb{B} such that $\|\varphi\|_{\infty} < 1$. Then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded for all p, q > 0.

B. Hu et al.

3 Compactness of composition operators from \mathcal{N}_p to \mathcal{N}_q

3.1 General characterizations

In this section we study the compactness of composition operators between N_{p} -spaces. By standard argument¹⁵, we have the following criterion for compactness.

Lemma 1 – A bounded composition operator $C_{\varphi} \colon \mathcal{N}_p \to \mathcal{N}_q$ is compact if and only if for any bounded sequence $\{f_m\} \subset \mathcal{N}_p$ converging to zero uniformly on compact subsets of \mathbb{B} , the sequence $\{\|f_m \circ \varphi\|_q\}$ converges to zero as $m \to \infty$.

It turns out, as we shall see below, that the range of any compact composition operator $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ must be contained in the little space \mathcal{N}_q^0 . We first prove an important property of elements in \mathcal{N}_q^0 .

Lemma 2 – Let h be an element in the space \mathcal{N}_q^0 . Suppose $\{A_k\}_{k\geq 1}$ is a decreasing sequence of measurable subsets of \mathbb{B} whose intersection is empty. Then

$$\lim_{k \to \infty} \left[\sup_{a \in \mathbb{B}} \int_{A_k} |h(z)|^2 (1 - |\Phi_a(z)|^2)^q \, \mathrm{d} V(z) \right] = 0.$$
(5)

Proof. Let $\varepsilon > 0$ be given. Since $h \in N_q^0$, there exists a positive number $0 < \delta < 1$ such that

$$\sup_{\delta < |a| < 1} \int_{\mathbb{B}} |h(z)|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) < \varepsilon.$$
(6)

On the other hand, if $a \in \mathbb{B}$ with $|a| \le \delta$, then for $z \in \mathbb{B}$,

$$1 - |\Phi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \langle z, a \rangle|^2} \le \frac{1 + |a|}{1 - |a|}(1 - |z|^2) \le \frac{1 + \delta}{1 - \delta}(1 - |z|^2).$$

Consequently, for any integer $k \ge 1$, we have

$$\sup_{|a| \le \delta} \int_{A_k} |h(z)|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \le \left(\frac{1+\delta}{1-\delta}\right)^q \int_{A_k} |h(z)|^2 (1 - |z|^2)^q \mathrm{d}V(z).$$

Since $h \in \mathcal{N}_q^0 \subset A_q^2$, the function $|h(z)|^2(1-|z|^2)^q$ belongs to $L^1(\mathbb{B}, dV)$. Because $\{A_{k\geq 1}\}$ is a decreasing sequence of subsets whose intersection is empty, there exists a positive integer k_{ε} such that for all $k \geq k_{\varepsilon}$,

$$\left(\frac{1+\delta}{1-\delta}\right)^q \int_{A_k} |h(z)|^2 (1-|z|^2)^q \mathrm{d}V(z) < \varepsilon.$$

¹⁵As in Cowen and MacCluer, 1995, *Composition operators on spaces of analytic functions*, Proposition 3.11.

This implies that for such *k*,

$$\sup_{|a| \le \delta} \int_{A_k} |h(z)|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) < \varepsilon.$$
(7)

Combining (6) and (7) yields

$$\sup_{a\in\mathbb{B}}\int_{A_k}|h(z)|^2(1-|\Phi_a(z)|^2)^q\mathrm{d}V(z)<\varepsilon$$

for all $k \ge k_{\varepsilon}$. Since ε was arbitrary, (5) follows.

The following result provides a necessary condition for C_{φ} to be a compact operator.

Proposition 2 – Suppose $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is a compact composition operator. Let $\mathbb{B}_{\mathcal{N}_p} = \{f \in \mathcal{N}_p : ||f||_p \le 1\}$. Then the following statements are true.

- 1. $C_{\varphi}(\mathcal{N}_p) \subset \mathcal{N}_q^0$ and $\lim_{|a| \to 1^-} \sup_{f \in \mathbb{B}_{\mathcal{N}_p}} \int_{\mathbb{B}} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) = 0.$ (8)
- 2. For any decreasing sequence $\{A_k\}_{k\geq 1}$ of measurable subsets of the unit ball whose intersection is empty, we have

$$\lim_{k \to \infty} \sup_{f \in \mathbb{B}_{\mathcal{N}_p}} \left[\sup_{a \in \mathbb{B}} \int_{A_k} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \right] = 0.$$
(9)

Proof. We first prove that $C_{\varphi}(\mathcal{N}_p)$ is a subset of \mathcal{N}_q^0 . Let f be in \mathcal{N}_p . For any integer $m \ge 1$, put $f_m(z) = f(\frac{m}{m+1}z)$. Then each f_m belongs to H^{∞} and the sequence $\{f_m\}$ is bounded on \mathcal{N}_p and converges to f uniformly on compact subsets of \mathbb{B} . By Lemma 1 on the preceding page, the sequence $\{C_{\varphi}f_m\}$ converges to $C_{\varphi}f$ in \mathcal{N}_q as $m \to \infty$. Since each function $C_{\varphi}f_m$ belongs to $H^{\infty} \subset \mathcal{N}_q^0$ and \mathcal{N}_q^0 is a closed subspace of \mathcal{N}_p , we conclude that $C_{\varphi}f$ is an element in \mathcal{N}_q^0 . Since f was arbitrary, it follows that the image of \mathcal{N}_p under C_{φ} is contained in \mathcal{N}_q^0 .

Let $\varepsilon > 0$ be given. Since C_{φ} is compact and its range is contained in \mathcal{N}_q^0 , the image $C_{\varphi}(\mathbb{B}_{\mathcal{N}_p})$ is pre-compact in \mathcal{N}_q^0 . Therefore, $C_{\varphi}(\mathbb{B}_{\mathcal{N}_p})$ can be covered by finitely many $\frac{\sqrt{\varepsilon}}{2}$ -balls. That is, there exists a finite set $\{f_1, \ldots, f_M\} \subset \mathbb{B}_{\mathcal{N}_p}$ such that for any $f \in \mathbb{B}_{\mathcal{N}_p}$, there is a number $j \in \{1, 2, \ldots, M\}$ for which

$$\|C_{\varphi}(f) - C_{\varphi}(f_j)\|_q^2 < \frac{\varepsilon}{4}.$$
(10)

On other hand, since $\{f_1 \circ \varphi, \dots, f_M \circ \varphi\}$ is contained in \mathcal{N}_q^0 , there exists 0 < r < 1 such that for all $1 \le j \le M$ and |a| > r,

$$\int_{\mathbb{B}} |f_j(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) < \frac{\varepsilon}{4}.$$
(11)

For each $a \in \mathbb{B}$ with |a| > r and $f \in \mathcal{N}_p$ with $||f||_p < 1$, choose $1 \le j \le M$ such that (10) holds. Combining with (11), we have

$$\begin{split} \int_{\mathbb{B}} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q dV(z) \\ &\leq 2 \int_{\mathbb{B}} \left(|f(\varphi(z)) - f_j(\varphi(z))|^2 + |f_j(\varphi(z))|^2 \right) (1 - |\Phi_a(z)|^2)^q dV(z) \\ &= 2 ||C_{\varphi}(f) - C_{\varphi}(f_j)||_q^2 + 2 \int_{\mathbb{B}} |f_j(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q dV(z) \\ &< 2 \left(\frac{\varepsilon}{4} + \frac{\varepsilon}{4}\right) = \varepsilon. \end{split}$$

This shows that for all r < |a| < 1,

$$\sup_{f\in\mathbb{B}_{\mathcal{N}_p}}\int_{\mathbb{B}}|f(\varphi(z))|^2(1-|\Phi_a(z)|^2)^q\mathrm{d}V(z)\leq\varepsilon,$$

which implies (8).

Now let $\{A_k\}$ be a decreasing sequence of measurable subsets of \mathbb{B} whose intersection is empty. Since $\{f_1 \circ \varphi, \dots, f_M \circ \varphi\}$ is contained in \mathcal{N}_q^0 , Lemma 2 on p. 118 shows that there exists an integer k_{ε} such that for any $k \ge k_{\varepsilon}$ and any $1 \le j \le M$,

$$\sup_{a \in \mathbb{B}} \int_{A_k} |f_j(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q dV(z) < \frac{\varepsilon}{4}.$$
 (12)

Inequalities (10) and (12) together give

$$\begin{split} \sup_{a \in \mathbb{B}} & \int_{A_k} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \\ & \leq 2 \sup_{a \in \mathbb{B}} \int_{A_k} \left(|f(\varphi(z)) - f_j(\varphi(z))|^2 + |f_j(\varphi(z))|^2 \right) (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \\ & \leq 2 ||C_{\varphi}(f) - C_{\varphi}(f_j)||_q^2 + 2 \sup_{a \in \mathbb{B}} \int_{A_k} |f_j(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \\ & < 2 \left(\frac{\varepsilon}{4} + \frac{\varepsilon}{4} \right) = \varepsilon, \end{split}$$

for any $k \ge k_{\varepsilon}$ and $f \in \mathbb{B}_{\mathcal{N}_p}$. The limit (9) then follows.

3. Compactness of composition operators from \mathcal{N}_p to \mathcal{N}_q

Now we give the following characterization of the compactness of C_{φ} acting from \mathcal{N}_p into \mathcal{N}_q .

Theorem 4 – Let p, q be positive numbers and φ a holomorphic self-mapping of \mathbb{B} such that the composition operator $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded. Let $E_1 \subset E_2 \subset \cdots \subset \mathbb{B}$ be an increasing sequence of measurable sets such that $\bigcup_{k\geq 1} E_k = \mathbb{B}$ and for each k, the closure $\overline{\varphi(E_k)}$ is compact in \mathbb{B} . Then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is compact if and only if

$$\lim_{k \to \infty} \sup_{f \in \mathbb{B}_{\mathcal{N}_p}} \left[\sup_{a \in \mathbb{B}} \int_{\mathbb{B} \setminus E_k} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \right] = 0.$$
(13)

We recall here that $\mathbb{B}_{\mathcal{N}_p} = \{f \in \mathcal{N}_p : ||f||_p \le 1\}$ is the unit ball of \mathcal{N}_p .

Proof. Necessity. Set $A_k = \mathbb{B} \setminus E_k$ for all integers $k \ge 1$. Then $\{A_k\}_{k\ge 1}$ is a decreasing sequence of measurable subsets of \mathbb{B} and

$$\bigcap_{k\geq 1} A_k = \mathbb{B} \setminus \left(\bigcup_{k\geq 1} E_k\right) = \emptyset$$

If C_{φ} is a compact operator from \mathcal{N}_p into \mathcal{N}_q , then (13) follows from Item 2 of Proposition 2 on p. 119.

Sufficiency. Suppose (13) holds. Take any bounded sequence $\{f_m\} \subset \mathcal{N}_p$ converging to zero uniformly on every compact subset of \mathbb{B} . By Lemma 1 on p. 118, it suffices to show that the sequence $\{||f_m \circ \varphi||_q\}$ converges to zero as $m \to \infty$.

Let $\varepsilon > 0$ be given. By (13), there exists a positive integer k such that for any $m \in \mathbb{N}$,

$$\sup_{a\in\mathbb{B}}\int_{\mathbb{B}\setminus E_k}|f_m(\varphi(z))|^2(1-|\Phi_a(z)|^2)^q\mathrm{d}V(z)<\frac{\varepsilon}{2}.$$
(14)

On the other hand, since $\{f_m\}$ converges to zero uniformly on the compact set $\overline{\varphi(E_k)}$, for sufficiently large *m*, we have

$$\begin{split} \sup_{a \in \mathbb{B}} \int_{E_k} |f_m(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) &\leq \int_{E_k} |f_m(\varphi(z))|^2 \mathrm{d}V(z) \\ &\leq \sup_{z \in E_k} |f_m(\varphi(z))|^2 \\ &= \sup_{w \in \varphi(E_k)} |f_m(w)|^2 < \frac{\varepsilon}{2}. \end{split}$$

This estimate together with (14) immediately yields

$$\|C_{\varphi}f_m\|_p^2 = \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |f_m(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) < \varepsilon,$$

for sufficiently large integers *m*. Consequently, $||C_{\varphi}f_m||_q \rightarrow 0$ as desired. \Box

By weakening condition (13) and adding an extra condition, we obtain an equivalent characterization for the compactness of C_{φ} as follows.

Theorem 5 – Let p,q be positive numbers and φ a holomorphic self-mapping of \mathbb{B} such that the composition operator $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded. Let $E_1 \subset E_2 \subset \cdots \subset \mathbb{B}$ be an increasing sequence of measurable sets such that $\bigcup_{k\geq 1} E_k = \mathbb{B}$ and for each k, the closure $\overline{\varphi(E_k)}$ is compact in \mathbb{B} . Then the following statements are equivalent.

- 1. C_{ω} is compact from \mathcal{N}_{p} into \mathcal{N}_{q} .
- 2. C_{φ} is compact from \mathcal{N}_p into \mathcal{N}_a^0 .
- 3. The following two conditions are satisfied

$$\lim_{k \to \infty} \left(\sup_{f \in \mathbb{B}_{\mathcal{N}_p}} \left[\int_{\mathbb{B} \setminus E_k} |f(\varphi(z))|^2 (1 - |z|^2)^q \mathrm{d}V(z) \right] \right) = 0;$$
(15)

and

$$\lim_{|a|\to 1^{-}} \sup_{f\in\mathbb{B}_{\mathcal{N}_{p}}} \int_{\mathbb{B}} |f(\varphi(z))|^{2} (1-|\Phi_{a}(z)|^{2})^{q} \mathrm{d}V(z) = 0.$$
(16)

Proof. The equivalence of 1 and 2 comes from the fact that \mathcal{N}_q^0 is a subspace of \mathcal{N}_q and Item 1 of Proposition 2 on p. 119, which shows that whenever $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is compact, the range of C_{φ} is actually contained in \mathcal{N}_q^0 . We only need to prove the equivalence of 1 and 3.

Suppose 1 holds, that is, $C_{\varphi} : \mathcal{N}_p \to \mathcal{N}_q$ is compact. Then (15) follows from Item 2 of Proposition 2 on p. 119 with $A_k = \mathbb{B} \setminus E_k$ and a = 0. In addition, (16) follows from Item 1 of Proposition 2 on p. 119.

Now suppose 3 hold, that is, both (15) and (16) are satisfied. Take any bounded sequence $\{f_m\} \subset \mathcal{N}_p$ converging to zero uniformly on every compact subset of \mathbb{B} . We may assume that $||f_m||_p \leq 1$ for each $m \in \mathbb{N}$. To show C_{φ} is compact, it suffices to show that

$$\lim_{m \to \infty} \|C_{\varphi}(f_m)\|_q = 0.$$

Let $\varepsilon > 0$ be given. By (16), there exists $0 < \delta < 1$ such that

$$\sup_{\delta < |a| < 1} \left(\sup_{f \in \mathbb{B}_{\mathcal{N}_p}} \int_{\mathbb{B}} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q dV(z) \right) < \frac{\varepsilon}{3}.$$

$$\tag{17}$$

By (15), there exists an integer $k \ge 1$ such that

$$\sup_{f \in \mathbb{B}_{\mathcal{N}_p}} \left[\int_{\mathbb{B} \setminus E_k} |f(\varphi(z))|^2 (1-|z|^2)^q \mathrm{d}V(z) \right] < \frac{(1-\delta)^{2q} \cdot \varepsilon}{3}.$$
(18)

3. Compactness of composition operators from \mathcal{N}_p to \mathcal{N}_q

If $a \in \mathbb{B}$ with $|a| \leq \delta$, then

$$1 - |\Phi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \langle z, a \rangle|^2} \le \frac{1 - |z|^2}{(1 - \delta)^2}.$$

This together with (18) implies

$$\begin{split} \sup_{f \in \mathbb{B}_{\mathcal{N}_p}} & \left(\sup_{|a| \le \delta} \int_{\mathbb{B} \setminus E_k} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \right) \\ & \le \frac{1}{(1 - \delta)^{2q}} \sup_{f \in \mathbb{B}_{\mathcal{N}_p}} \int_{\mathbb{B} \setminus E_k} |f(\varphi(z))|^2 (1 - |z|^2)^q \mathrm{d}V(z) < \frac{\varepsilon}{3}. \end{split}$$

Since $\{f_m\}$ converges to zero uniformly on the compact set $\overline{\varphi(E_k)}$, there exists $m_0 \in \mathbb{N}$ such that whenever $m > m_0$,

$$\sup_{a\in\mathbb{B}} \left(\int_{E_k} |f_m(\varphi(z))|^2 (1-|\Phi_a(z)|^2)^q \mathrm{d}V(z) \right) \le \int_{E_k} |f_m(\varphi(z))|^2 \mathrm{d}V(z)$$
$$\le \sup_{w\in\varphi(E_k)} |f_m(w)| < \frac{\varepsilon}{3}. \tag{19}$$

For $m > m_0$, by (17), (18) and (19), we have

$$\begin{split} \|C_{\varphi}(f_{m})\|_{q}^{2} &= \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} |f_{m}(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \\ &\leq \sup_{\delta < |a| < 1} \int_{\mathbb{B}} |f_{m}(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \\ &+ \sup_{|a| \le \delta} \int_{\mathbb{B}} |f_{m}(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \\ &\leq \sup_{\delta < |a| < 1} \int_{\mathbb{B}} |f_{m}(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \\ &+ \sup_{|a| \le \delta} \int_{\mathbb{B} \setminus E_{k}} |f_{m}(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \\ &+ \sup_{|a| \le \delta} \int_{E_{k}} |f_{m}(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \\ &\leq \varepsilon. \end{split}$$

It follows that $||C_{\varphi}f_m||_q \to 0$ as required.

By using Theorem 4 on p. 121 with certain choices of the sets $\{E_k\}_{k\geq 1}$, we obtain somewhat more concrete criteria for the compactness of C_{φ} .

Corollary 3 – Let p, q be positive numbers and φ a holomorphic self-mapping of \mathbb{B} such that the composition operator $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded. Then the following statements are equivalent.

1. C_{φ} is a compact operator from \mathcal{N}_{p} into \mathcal{N}_{q} . 2. $\lim_{t \to 1^{-}} \left(\sup_{a \in \mathbb{B}, f \in \mathbb{B}_{\mathcal{N}_{p}}} \left[\int_{|z|>t} |f(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \right] \right) = 0.$ 3. $\lim_{t \to 1^{-}} \left(\sup_{a \in \mathbb{B}, f \in \mathbb{B}_{\mathcal{N}_{p}}} \left[\int_{|\varphi(z)|>t} |f(\varphi(z))|^{2} (1 - |\Phi_{a}(z)|^{2})^{q} dV(z) \right] \right) = 0.$

Proof. Observe that statement 2 and respectively, statement 3, is equivalent to the statement that for any sequence $\{t_k\}_{k\geq 1}$ of positive numbers increasing to 1, we have

$$\lim_{k\to\infty} \left(\sup_{a\in\mathbb{B}, f\in\mathbb{B}_{\mathcal{N}_p}} \left[\int_{|z|>t_k} |f(z)|^2 (1-|\Phi_a(z)|^2)^q \mathrm{d}V(z) \right] \right) = 0,$$

and respectively,

$$\lim_{k\to\infty} \left(\sup_{a\in\mathbb{B}, f\in\mathbb{B}_{\mathcal{N}_p}} \left[\int_{|\varphi(z)|>t_k} |f(z)|^2 (1-|\Phi_a(z)|^2)^q \mathrm{d}V(z) \right] \right) = 0.$$

For each integer $k \ge 1$, define $E_k = \{z : |z| \le t_k\}$ in the case of statement 2 and $E_k = \{z : |\varphi(z)| \le t_k\}$ in the case of statement 3. Since $\{t_k\}_{k\ge 1}$ is increasing to 1, we see that $\{E_k\}_{k\ge 1}$ is an increasing sequence of measurable sets and $\bigcup_{k=1}^{\infty} E_k = \mathbb{B}$. Furthermore, it is clear that the set $\overline{\varphi(E_k)}$ is compact for each k. The equivalence of 1 and 2 and the equivalence of 1 and 3 now follow from Theorem 4 on p. 121.

Corollary 4 – Let φ be a holomorphic self-mapping of \mathbb{B} such that $\|\varphi\|_{\infty} < 1$. Then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is compact for all p, q > 0.

Proof. By Corollary 2 on p. 117, the operator C_{φ} is bounded from \mathcal{N}_p into \mathcal{N}_q . In addition, condition (d) in Corollary 3 is clearly satisfied since the set $\{|\varphi(z)| > t\}$ is empty for all $\|\varphi\|_{\infty} < t < 1$. Consequently, C_{φ} is compact.

By changing the role of N_p to N_p^0 in the proofs of Theorems 4 and 5 on p. 121 and on p. 122, we immediately obtain the following result describing the compactness of composition operators acting between N_p^0 and N_q .

Theorem 6 – Let p,q be positive numbers and φ a holomorphic self-mapping of \mathbb{B} such that the composition operator $C_{\varphi} : \mathcal{N}_p^0 \longrightarrow \mathcal{N}_q$ is bounded. Let $E_1 \subset E_2 \subset \cdots \subset \mathbb{B}$ be an increasing sequence of measurable sets such that $\bigcup_{k\geq 1} E_k = \mathbb{B}$ and for each k, the closure $\overline{\varphi(E_k)}$ is compact in \mathbb{B} . Then the following statements are equivalent.

1. C_{φ} is compact from \mathcal{N}_p^0 into \mathcal{N}_q .

- 3. Compactness of composition operators from \mathcal{N}_p to \mathcal{N}_q
 - 2. C_{φ} is compact from \mathcal{N}_{p}^{0} into \mathcal{N}_{q}^{0} .

3.
$$\lim_{k \to \infty} \sup_{f \in \mathbb{B}_{\mathcal{N}_p^0}} \left[\sup_{a \in \mathbb{B}} \int_{\mathbb{B} \setminus E_k} |f(\varphi(z))|^2 (1 - |\Phi_a(z)|^2)^q \mathrm{d}V(z) \right] = 0.$$

4. The following two conditions are satisfied

$$\lim_{k\to\infty} \left(\sup_{f\in\mathbb{B}_{\mathcal{N}_p^0}} \left[\int_{\mathbb{B}\setminus E_k} |f(\varphi(z))|^2 (1-|z|^2)^q \mathrm{d}V(z) \right] \right) = 0;$$

and

$$\lim_{|a|\to 1^-} \sup_{f\in \mathbb{B}_{\mathcal{N}_p^0}} \int_{\mathbb{B}} |f(\varphi(z))|^2 (1-|\Phi_a(z)|^2)^q \mathrm{d}V(z) = 0.$$

Here $\mathbb{B}_{\mathcal{N}_p^0} = \{f \in \mathcal{N}_p^0 : ||f||_p \le 1\}$ is the unit ball of \mathcal{N}_p^0 .

3.2 Some simplifications

Although Theorems 4 to 6 on p. 121, on p. 122 and on the preceding page offer several characterizations of the compactness of composition operators $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$, the conditions are rather abstract and difficult to check. We shall provide in this section a necessary condition and a sufficient condition for the compactness of C_{φ} directly in terms of φ . These conditions seem to be more useful in applications.

Theorem 7 – Let $p, q \in (0, n]$ be two positive numbers and φ a holomorphic self-mapping of \mathbb{B} such that $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is bounded. If

$$\lim_{t \to 1^{-}} \sup_{a \in \mathbb{B}} \int_{|\varphi(z)| > t} \frac{(1 - |\Phi_a(z)|^2)^q}{(1 - |\varphi(z)|^2)^{n+1}} dV(z) = 0,$$
(20)

then C_{φ} is compact.

Conversely, if $C_{\varphi} : \mathcal{N}_p \to \mathcal{N}_q$ is compact, then for $0 < \varepsilon \le p + 1$,

$$\lim_{t \to 1^{-}} \sup_{a \in \mathbb{B}} \int_{|\varphi(z)| > t} \frac{(1 - |\Phi_a(z)|^2)^q}{(1 - |\varphi(z)|^2)^{p + 1 - \varepsilon}} \mathrm{d}V(z) = 0.$$
⁽²¹⁾

Proof. Suppose (20) holds. As in the proof of Theorem 3 on p. 117, there is a constant C > 0 such that for any $f \in \mathcal{N}_p$ with $||f||_p \le 1$,

$$|f(z)| \le C ||f||_p (1 - |z|^2)^{-(n+1)/2} \le C (1 - |z|^2)^{-(n+1)/2}$$

It implies that for any 0 < t < 1 and any $a \in \mathbb{B}$,

$$\int_{|\varphi(z)|>t} |f(\varphi(z))|^2 (1-|\Phi_a(z)|^2)^q \mathrm{d}V(z) \le C^2 \int_{|\varphi(z)|>t} \frac{(1-|\Phi_a(z)|^2)^q}{(1-|z|^2)^{n+1}} \mathrm{d}V(z).$$

Now (20) shows that statement 3 in Corollary 3 on p. 124 is satisfied. As a result, C_{φ} is a compact operator from \mathcal{N}_p into \mathcal{N}_q .

Now suppose $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_q$ is compact. Let $\mu > 0$ be given. By Corollary 3 on p. 124, there is a number $t_{\mu} \in (0, 1)$ such that for all $t_{\mu} < t < 1$,

$$\sup_{a\in\mathbb{B},f\in\mathbb{B}_{\mathcal{N}_p}}\int_{|\varphi(z)|>t}|f(\varphi(z))|^2(1-|\Phi_a(z)|^2)^q\mathrm{d}V(z)\leq\mu.$$

An application of Proposition 1 on p. 115 with $E = \{z \in \mathbb{B} : |\varphi(z)| > t\}$ yields

$$\sup_{a\in\mathbb{B}}\int_{|\varphi(z)|>t}\frac{(1-|\Phi_a(z)|^2)^q}{(1-|z|^2)^{p+1-\varepsilon}}\mathrm{d}V(z)\lesssim\mu,$$

for all $t_{\mu} < t < 1$. Since μ is arbitrary, (21) follows.

As applications of Theorems 3 and 7 on p. 117 and on the previous page, we have the following result.

Corollary 5 – Suppose $k > 0, p, q, r \in (0, n), r \ge q, \varepsilon \in (0, q + 1)$ and φ is a holomorphic self-mapping of \mathbb{B} . The following statements hold.

- 1. If $C_{\varphi} : A^{-k(q+1-\varepsilon)} \longrightarrow A^{-k(n+1)}$ is a bounded operator, then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_r$ is a bounded operator;
- 2. If $C_{\varphi} : A^{-k(q+1-\varepsilon)} \longrightarrow A^{-k(n+1)}$ is a compact operator, then $C_{\varphi} : \mathcal{N}_p \longrightarrow \mathcal{N}_r$ is a compact operator.

Proof. The boundedness of $C_{\omega}: A^{-k(q+1-\varepsilon)} \longrightarrow A^{-k(n+1)}$ is equivalent to¹⁶

$$M := \sup_{z \in \mathbb{B}} \frac{(1 - |z|^2)^{q + 1 - \varepsilon}}{(1 - |\varphi(z)|^2)^{n + 1}} < \infty.$$

By Theorem 3 on p. 117, it suffices to show that

$$\sup_{a\in\mathbb{B}}\int_{\mathbb{B}}\frac{(1-|\Phi_a(z)|^2)^r}{(1-|\varphi(z)|^2)^{n+1}}\mathrm{d}V(z)<\infty.$$

Indeed, we have

$$\begin{split} \sup_{a \in \mathbb{B}} & \int_{\mathbb{B}} \frac{(1 - |\Phi_{a}(z)|^{2})^{r}}{(1 - |\varphi(z)|^{2})^{n+1}} dV(z) \\ & \leq M \sup_{a \in \mathbb{B}} \int_{\mathbb{B}} \frac{(1 - |\Phi_{a}(z)|^{2})^{r}}{(1 - |z|^{2})^{q+1-\varepsilon}} dV(z) \\ & = M \sup_{a \in \mathbb{B}} (1 - |a|^{2})^{r} \int_{\mathbb{B}} \frac{(1 - |z|^{2})^{r-q-1+\varepsilon}}{|1 - \langle z, a \rangle|^{2r}} dV(z) \end{split}$$

(Cont. next page)

Acknowledgments

$$= M \sup_{a \in \mathbb{B}} (1 - |a|^2)^r \int_{\mathbb{B}} \frac{(1 - |z|^2)^{r-q-1+\varepsilon}}{|1 - \langle z, a \rangle|^{n+1+(r-q-1+\varepsilon)+(r+q-n-\varepsilon)}} dV(z).$$

We have¹⁷

$$\sup_{a\in\mathbb{B}}(1-|a|^2)^r\int_{\mathbb{B}}\frac{(1-|z|^2)^{r-q-1+\varepsilon}}{|1-\langle z,a\rangle|^{n+1+(r-q-1+\varepsilon)+(r+q-n-\varepsilon)}}\mathrm{d}V(z)<\infty,$$

which implies the desired result.

The proof of statement 2 is similar to that of 1 and we use the fact¹⁸ that $C_{\varphi}: A^{-k(q+1-\varepsilon)} \longrightarrow A^{-k(n+1)}$ is compact if and only if

$$\lim_{t \to 1^{-}} \sup_{|\varphi(z)| > t} \frac{(1 - |z|^2)^{q+1-\epsilon}}{(1 - |\varphi(z)|^2)^{n+1}} = 0$$

We leave the details for the interested reader.

Acknowledgments

Supported in part by MOE's AcRF Tier 1 grant M4011166.110 (RG24/13).

References

- Contreras, M. D. and A. G. Hernandez-Diaz (2000). "Weighted composition operators in weighted Banach spaces of analytic functions". J. Austral. Math. Soc. Ser. A 69 (1), pp. 41–60. ISSN: 0263-6115 (cit. on p. 127).
- Cowen, C. C. and B. D. MacCluer (1995). *Composition operators on spaces of analytic functions*. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL. 388 pp. ISBN: 0-8493-8492-3 (cit. on pp. 111, 118).
- Hu, B. and L. H. Khoi (2013). "Weighted composition operators on *N*_p-spaces in the ball". *C. R. Math. Acad. Sci. Paris* **351** (19-20), pp. 719–723. ISSN: 1631-073X. DOI: 10.1016/j.crma.2013.10.002 (cit. on pp. 112, 113).
- Hu, B. and L. H. Khoi (2015). "Compact difference of weighted composition operators on N_p -spaces in the ball". *Rev. Roumaine Math. Pures Appl.* **60** (2), pp. 101–116. ISSN: 0035-3965 (cit. on p. 113).

¹⁶By Contreras and Hernandez-Diaz, 2000, "Weighted composition operators in weighted Banach spaces of analytic functions", Proposition 3.1.

¹⁷Applying Rudin, 1980, *Function theory in the unit ball of* \mathbb{C}^n , Proposition 1.4.10.

¹⁸Contreras and Hernandez-Diaz, 2000, "Weighted composition operators in weighted Banach spaces of analytic functions", Corollary 4.3.

- Hu, B., L. H. Khoi, and T. Le (2016a). "Essential norms of weighted composition operators on N_p -spaces in the ball". *Vietnam J. Math.* 44(2), pp. 431–439. ISSN: 2305-221X. DOI: 10.1007/s10013-015-0177-4 (cit. on p. 113).
- Hu, B., L. H. Khoi, and T. Le (2016b). "On the structure of N_p -spaces in the ball". arXiv: 1607.07415 [math.FA] (cit. on p. 116).
- Palmberg, N. (2007). "Composition operators acting on N_p -spaces". Bull. Belg. Math. Soc. Simon Stevin 14 (3), pp. 545–554. ISSN: 1370-1444 (cit. on pp. 112, 114).
- Rudin, W. (1980). *Function theory in the unit ball of* ℂ^{*n*}. **241**. Springer-Verlag, New York-Berlin. 436 pp. ISBN: 0-387-90514-6. DOI: 10.1007/978-1-4613-8098-6 (cit. on pp. 114, 116, 127).
- Ryll, J. and P. Wojtaszczyk (1983). "On homogeneous polynomials on a complex ball". *Trans. Amer. Math. Soc.* **276**(1), pp. 107–116. ISSN: 0002-9947. DOI: 10. 2307/1999419 (cit. on p. 115).
- Shapiro, J. H. (1993). *Composition operators and classical function theory*. Universitext: Tracts in Mathematics. Springer-Verlag, New York. 223 pp. ISBN: 0-387-94067-7. DOI: 10.1007/978-1-4612-0887-7 (cit. on p. 111).
- Ueki, S.-i. (2012). "Weighted composition operators acting between the N_p -space and the weighted-type space H_{α}^{∞} ". *Indag. Math.* (*N.S.*) **23** (3), pp. 243–255. ISSN: 0019-3577. DOI: 10.1016/j.indag.2011.11.006 (cit. on pp. 112, 115).
- Xiao, J. (2001). *Holomorphic Q classes*. **1767**. Lecture Notes in Mathematics. Springer-Verlag, Berlin. 112 pp. ISBN: 3-540-42625-6. DOI: 10.1007/b87877 (cit. on p. 112).

Contents

Contents

1	ntroduction	11
2	Boundedness of composition operators from \mathcal{N}_p to \mathcal{N}_q 1	14
3	Compactness of composition operators from \mathcal{N}_p to \mathcal{N}_q 1	18
	3.1 General characterizations	18
	3.2 Some simplifications	25
Ackr	owledgments	27
Refe	ences	127
Contents		i