
COMPOSITION OPERATORS BETWEEN

SEGAL–BARGMANN SPACES

TRIEU LE

Abstract. For an arbitrary Hilbert space E , the Segal–Bargmann space
H(E) is the reproducing kernel Hilbert space associated with the kernel
K(x, y) = exp(〈x, y〉) for x, y in E . If ϕ : E1 → E2 is a mapping be-
tween two Hilbert spaces, then the composition operator Cϕ is defined
by Cϕh = h ◦ ϕ for all h ∈ H(E2) for which h ◦ ϕ belongs to H(E1). We
determine necessary and sufficient conditions for the boundedness and
compactness of Cϕ. In the special case where E1 = E2 = Cn, we recover
results obtained by Carswell, MacCluer and Schuster. We also compute
the spectral radii and the essential norms of a class of operators Cϕ.

1. Introduction

Let B be a Banach space of functions on a set X and ϕ : X → X be a
mapping. We define the composition operator Cϕ by Cϕh = h ◦ ϕ for any
function h ∈ B for which the function h ◦ ϕ also belongs to B. We are often
interested in investigating how the function theoretic properties of ϕ affect
the operator Cϕ and vice versa. One of the fundamental problems is to clas-
sify the mappings ϕ which induce bounded or compact operators Cϕ. After
such classification is obtained, we then try to compute the norms and study
the spectral properties of these operators. There is a vast literature on those
problems when B is a Hardy, Bergman or Bloch space over the unit disc on
the plane, the unit ball, or the unit polydisc in Cn (see, just to list a few,
[2, 5, 6, 9, 12, 16, 19] and the references therein). In [7], Carswell, MacCluer
and Schuster studied composition operators on the Segal–Bargmann space
(also known as the Fock space) over Cn. They obtained necessary and suf-
ficient conditions on the mappings ϕ that give rise to bounded or compact
Cϕ. They showed that any such mapping must be affine with an additional
restriction. They also found a formula for the norm of these operators. The
purpose of the current paper is to investigate similar problems for composi-
tion operators that act between (possibly different) Segal–Bargmann spaces
over arbitrary Hilbert spaces.

Let n ≥ 1 be an integer. We denote by dµ(z) = π−n exp(−|z|2)dV (z) the
Gaussian measure on Cn, where dV is the usual Lebesgue volume measure
on Cn ≡ R2n. The Segal–Bargmann (Fock) space H(Cn) is the space of all
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entire functions on Cn that are square integrable with respect to dµ. For
f, g ∈ H(Cn), the inner product of f and g is given by

〈f, g〉 =

∫
Cn

f(z)g(z) dµ(z) =
1

πn

∫
Cn

f(z)g(z) exp(−|z|2) dV (z).

It is well known that H(Cn) has an orthonormal basis consisting of monomi-
als. In fact, for any multi-index α = (α1, . . . , αn) of non-negative integers,

if we put fα(z) = (α!)−1/2zα, where α! = α1! · · ·αn! and zα = zα1
1 · · · zαn

n ,
then {fα : α ∈ Zn≥0} is an orthonormal basis for H(Cn). It is also well

known that H(Cn) is a reproducing kernel Hilbert space of functions on
Cn with kernel K(z, w) = exp(〈z, w〉). For more details on H(Cn), see, for
example, Section 1.6 in [11]. We would like to alert the reader that other
authors use slightly different versions of the Gaussian measure (for example,
dµ(z) = (2π)−n exp(−|z|2/2)dV (z)) and hence the resulting reproducing
kernels have different formulas (for example, K(z, w) = exp(〈z, w〉/2)).

The following theorem [7, Theorems 1 and 2] characterizes bounded and
compact composition operators on H(Cn).

Theorem 1.1 (Carswell, MacCluer and Schuster). Suppose ϕ : Cn → Cn
is a holomorphic mapping. Then

(a) Cϕ is bounded on H(Cn) if and only if ϕ(z) = Az + b, where A is
an n × n matrix with ‖A‖ ≤ 1 and b is an n × 1 vector such that
〈Aζ, b〉 = 0 whenever |Aζ| = |ζ|.

(b) Cϕ is compact on H(Cn) if and only if ϕ(z) = Az+b, where ‖A‖ < 1
and b is any n× 1 vector.

The formula for the norm of Cϕ is given in the next theorem, which is
[7, Theorem 4]. Note that the formula presented here is slightly different
from the original formula given in [7] because our reproducing kernel is
K(z, w) = exp(〈z, w〉) whereas theirs was exp(12〈z, w〉).

Theorem 1.2 (Carswell, MacCluer and Schuster). Suppose ϕ(z) = Az+ b,
where ‖A‖ ≤ 1 and 〈Aζ, b〉 = 0 whenever |Aζ| = |ζ|. Then the norm of Cϕ
on H(Cn) is given by

‖Cϕ‖ = exp
(1

2
(|w0|2 − |Aw0|2 + |b|2)

)
, (1.1)

where w0 is any solution to the equation (I −A∗A)w0 = A∗b.

Now suppose E is an arbitrary Hilbert space. There are various ap-
proaches that can be used to construct the Segal–Bargmann space H(E).
In Section 2, we shall discuss in more detail such constructions and some el-
ementary properties of H(E). Motivated by Theorems 1.1 and 1.2, we would
like to study composition operators between Segal–Bargmann spaces. More
specifically, let E1 and E2 be two Hilbert spaces and let ϕ : E1 → E2 be a
mapping. We shall characterize bounded and compact operators Cϕ from
H(E2) to H(E1). We shall also compute the essential norms and the spectral
radii of a class of Cϕ.
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The proof of Theorem 1.1 in [7] makes use of the singular value decom-
position of n× n matrices and the change of variables. Since this approach
relies on the assumption that E1 = E2 = Cn, it does not seem to work when
E1 6= E2 or when theses spaces are infinite dimensional. It turns out that
there is an alternative approach, based on the theory of reproducing kernels.
The idea of using reproducing kernels to study the boundedness of compo-
sition operators appeared in Nordgren’s work [18] and it played a main role
in [13], where Jury proved the boundedness of composition operators on
the Hardy and Bergman spaces of the unit disk without using Littlewood
subordination principle.

We shall see that Cϕ : H(E2) → H(E1) is bounded if and only if ϕ(z) =
Az + b as in Theorem 1.1 but we need a stronger condition on the vector b
when E1 is an infinite dimensional Hilbert space (in the case E1 = E2 = Cn,
our condition on b is equivalent to the condition in Theorem 1.1). In the
course of proving boundedness, we also obtain a formula for ‖Cϕ‖. Our
formula is stated in a different way but it agrees with the formula in Theorem
1.2 when E1 = E2 = Cn. For the compactness of Cϕ, besides the condition
that ϕ(z) = Az + b for some linear operator A : E1 → E2 with ‖A‖ < 1, it is
also necessary that A be a compact operator.

We now state some of our main results. These results, to the best of our
knowledge, are new even in the case where the spaces E1 and E2 are finite
dimensional but have different dimensions.

Theorem 1.3. Let ϕ : E1 → E2 be a mapping. Then the composition
operator Cϕ : H(E2) → H(E1) is bounded if and only if ϕ(z) = Az + b for
all z ∈ E1, where A : E1 → E2 is linear with ‖A‖ ≤ 1 and A∗b belongs to the

range of (I −A∗A)1/2. Furthermore, the norm of ‖Cϕ‖ is given by

‖Cϕ‖ = exp
(1

2
‖v‖2 +

1

2
‖b‖2

)
, (1.2)

where v is the unique vector in E1 of minimum norm that satisfies the equa-
tion A∗b = (I −A∗A)1/2v.

If ψ is an arbitrary holomorphic self-map of the open unit disc D, then it is
well known that Cψ is a bounded operator on the Hardy space H2(D). In [8],
Cowen obtained a formula for the spectral radius r(Cψ). He showed that if

ζ ∈ D is the Denjoy-Wolff fixed point of ψ, then the spectral radius of Cψ is 1

if |ζ| < 1 and is (ψ′(ζ))−1/2 if |ζ| = 1. Jury [14] extended this spectral radius
formula to composition operators with linear fractional symbols acting on
a wide class of Hilbert spaces over the unit ball in higher dimensions. On
the other hand, the situation for composition operators on Segal–Bargmann
spaces over Cn is different. This is due to the results in Theorem 1.3, which
shows that mappings that give rise to bounded composition operators are
quite restrictive.

Theorem 1.4. Let ϕ : Cn → Cn be a mapping such that Cϕ is a bounded
operator on H(Cn). Then r(Cϕ) = 1.
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Given the above result, it is natural to ask whether there exist bounded
composition operators that have spectral radii strictly bigger than one. The
answer is yes and of course we need to consider operators acting on H(E),
where E has infinite dimension. Details will be presented in Section 3.

The last two theorems that we would like to mention in this section con-
cern the compactness and essential norms. In Section 4, we discuss the
proofs and related results.

Theorem 1.5. Let ϕ : E1 → E2 be a mapping. Then Cϕ : H(E2) → H(E1)
is compact if and only if there is a compact linear operator A : E1 → E2 with
‖A‖ < 1 and a vector b ∈ E2 such that ϕ(z) = Az + b for all z ∈ E1.

Theorem 1.6. Suppose ϕ(z) = Az + b is a mapping from Cn into Cm
such that Cϕ : H(Cm) → H(Cn) is a bounded operator. If ‖A‖ < 1, then
‖Cϕ‖e = 0. If ‖A‖ = 1, then ‖Cϕ‖e = ‖Cϕ‖ ≥ 1.

To conclude the section, we note that several mathematicians have also
studied the boundedness and compactness of composition operators between
Hardy and weighted Bergman spaces over the unit balls and the unit poly-
discs in different dimensions. The situations there are quite different and
many problems remain unsolved. See, for example, [15, 20] and the refer-
ences therein for more details.

2. The spaces H(E) and their composition operators

In the first half of this section we study the space H(E), where E is an
arbitrary Hilbert space. Our construction of H(E) is similar to that of
the Drury–Arveson space given in [4]. In the second half of the section,
we consider composition operators acting between these spaces. Using the
reproducing kernels, we provide a criterion for the boundedness of such
operators.

2.1. The construction of H(E). For each integer m ≥ 1, we write Em for
the symmetric tensor product of m copies of E . We also define E0 to be C
with its usual inner product. We have E1 = E and for m ≥ 2, Em is the
closed subspace of the full tensor product E⊗m which consists of all elements
that are invariant under the natural action of the symmetric group Sm. The
action of Sm on E⊗m is defined on elementary tensors by

π · (x1 ⊗ · · · ⊗ xm) = xπ(1) ⊗ · · · ⊗ xπ(m) for π ∈ Sm and x1, . . . , xm ∈ E .

By definition, Em = {x ∈ E⊗m : π · x = x for all π ∈ Sm}. Each Em is a
Hilbert space with an inner product inherited from the inner product on E .
To the end of the paper, we shall generally write 〈·, ·〉 for any inner product
without referring to the space on which it is defined. The defining space will
be clear from the context.

For any z ∈ E , we use zm = z⊗· · ·⊗z ∈ Em to denote the tensor product
of m copies of z (here z0 denotes the number 1 in E0 = C). A function
p : E → C is called a continuous m-homogeneous polynomial on E if there
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exists an element ζ in Em such that p(z) = 〈zm, ζ〉 for z ∈ E . A function
f : E → C is called a continuous polynomial if f can be written as a finite
sum of continuous homogeneous polynomials. In other words, there is an
integer m ≥ 0 and there are elements a0 ∈ C, a1 ∈ E1, . . . , am ∈ Em such
that

f(z) =
m∑
j=0

〈zj , aj〉 = a0 + 〈z, a1〉+ · · ·+ 〈zm, am〉. (2.1)

When E = Cn for some positive integer n, the notion of polynomials
that we have just given coincides with the usual definition of polynomials
in n complex variables. In fact, each polynomial in z = (z1, . . . , zn) is

a linear combination of monomials of the form zj11 · · · z
jn
n for non-negative

integers j1, . . . , jn. Let {e1, . . . , en} denote the standard basis for Cn, where
ek = (0, . . . , 0, 1, 0, . . .) with the number 1 in the kth component. Then

zj11 · · · z
jn
n = 〈z, e1〉j1 · · · 〈z, en〉jn

= 〈zl, e⊗j11 ⊗ · · · ⊗ e⊗jnn 〉E⊗l = 〈zl, ej11 · · · e
jn
n 〉El ,

where l = j1 + · · · + jn and ej11 · · · e
jn
n denotes the orthogonal projection of

e⊗j11 ⊗ · · · ⊗ e⊗jnn on E l. This implies that any polynomial in the variables
z1, . . . , zn can be written in the form (2.1).

We denote by Pm(E) the space of all continuous m-homogeneous polyno-
mials and P(E) the space of all continuous polynomials on E . For more de-
tailed discussions of polynomials between Banach and locally convex spaces,
see [10, 17].

For two continuous polynomials f, g in P(E), we can find an integer m ≥ 0
and elements aj , bj ∈ Ej for 0 ≤ j ≤ m such that f(z) =

∑m
j=0〈zj , aj〉 and

g(z) =
∑m

j=0〈zj , bj〉. We then define

〈f, g〉 =
m∑
j=0

j! 〈bj , aj〉. (2.2)

It is not difficult to check that (2.2) defines an inner product on P(E). We
denote by H(E) the completion of P(E) in the norm induced by this inner
product.

There is a natural anti-unitary operator from H(E) onto the symmetric
(boson) Fock space F(E) = E0 ⊕ E1 ⊕ E2 ⊕ · · · , where the sum denotes the
infinite direct sum of Hilbert spaces. We skip the proof which is straightfor-
ward from the definition of H(E) and F(E).

Proposition 2.1. For each element f ∈ P(E) given by formula (2.1), we
define an element in F(E) by

Jf = (a0,
√

1! a1,
√

2! a2,
√

3! a3, . . .),

where aj = 0 for j > m. Then J is an anti-unitary operator from Pm(E)
onto Em for each m ≥ 0 and it extends uniquely to an anti-unitary operator
from H(E) onto F(E).
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As in the case of the Drury–Arveson space [4], we can realize the elements
of H(E) in more concrete terms, as entire functions on E .

Proposition 2.2. Each element f in H(E) can be identified as an entire
function on E having a power expansion of the form

f(z) =

∞∑
j=0

〈zj , aj〉 for all z ∈ E ,

where a0 ∈ C, a1 ∈ E, a2 ∈ E2, . . .. Furthermore, ‖f‖2 =
∑∞

j=0 j! ‖aj‖2.

Conversely, if
∑∞

j=0 j! ‖aj‖2 < ∞, then the power series
∑∞

j=0〈zj , aj〉
defines an element in H(E).

Proof. By Proposition 2.1, each element f has a formal power series of the
form

f(z) =

∞∑
j=0

〈zm, am〉, (2.3)

where aj belongs to Ej for j ≥ 0 and
∑∞

j=0 j! ‖aj‖2 = ‖f‖2 < ∞. For any

z ∈ E , since ‖zm‖ = ‖z‖m, we have

∞∑
j=0

|〈zj , aj〉| ≤
∞∑
j=0

‖zj‖‖aj‖ =
∞∑
j=0

‖z‖j‖aj‖ =
∞∑
j=0

‖z‖j√
j!

√
j! ‖aj‖

≤
( ∞∑
j=0

‖z‖2j

j!

)1/2( ∞∑
j=0

j! ‖aj‖2
)1/2

= exp(‖z‖2/2)‖f‖.

This shows that the power series (2.3) converges uniformly on any bounded
ball in E . It follows that f can be regarded as an entire function on E .

The converse follows from the fact that the sequence of polynomials
{pm}∞m=1 defined by pm(z) =

∑m
j=0〈zj , aj〉 is a Cauchy sequence inH(E). �

For every w in E , we put

Kw(z) = exp(〈z, w〉) =

∞∑
j=0

1

j!
〈z, w〉j =

∞∑
j=0

〈
zj ,

wj

j!

〉
for z ∈ E .

By Proposition 2.2, Kw belongs to H(E). For any f given by (2.3), we have

〈f,Kw〉 =
∞∑
j=0

j!
〈wj
j!
, aj

〉
= f(w).

Therefore, the function K(z, w) = Kw(z) for z, w ∈ E is the reproducing
kernel function for H(E) and the linear span of the set {Kw : w ∈ E} is
dense in H(E). As a result, H(E) is a reproducing kernel Hilbert space. For
a general theory of these spaces, see, for example, [3] or [1, Chapter 2].
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Remark 2.3. The space H(E) can be defined in an abstract way by the
kernel function K(z, w). However it is not immediately clear from the ab-
stract definition why H(E) consists of the power series given in Proposition
2.2. Our construction above also exhibits the decomposition

H(E) =
⊕
m≥0
Pm(E) = C⊕ P1(E)⊕ P2(E)⊕ · · · , (2.4)

which will be useful for us later. When E = Cn, we obtain the space H(Cn),
which is defined using the Gaussian measure on Cn as discussed in the
Introduction.

In a reproducing kernel Hilbert space, a sequence is weakly convergent if
and only if it is bounded in norm and it converges point-wise. Using this,
we have

Lemma 2.4. The following statements hold in H(E).

(a) lim
‖z‖→∞

‖Kz‖−1Kz = 0 weakly in H(E).

(b) Let {um} be a sequence converging weakly to 0 in E (in particular,
{um} is bounded). For each m, put fm(z) = 〈z, um〉 for z ∈ E.
Then limm→∞ fm = 0 weakly in H(E).

It is well known that H(Cn) can be naturally identified as the tensor
product of n copies ofH(C). In fact, the map f1⊗· · ·⊗fn 7→ f1(z1) · · · fn(zn)
extends to a unitary operator from H(C)⊗ · · · ⊗H(C) onto H(Cn). This is
an immediate consequence of the fact that the Gaussian measure on Cn is
the product of n copies of the Gaussian measure on C. The situation is less
obvious in the general case since Gaussian measure may not be available.
Nevertheless, similar tensor product decomposition still exists.

Proposition 2.5. Suppose E0 = E1 ⊕ E2 is a decomposition of E0 as an
orthogonal sum of two Hilbert spaces. For f1 ∈ H(E1) and f2 ∈ H(E2),
define the function f1 ∗ f2 by (f1 ∗ f2)(z) = f1(z1)f2(z2) for all z = z1 + z2,
where z1 ∈ E1 and z2 ∈ E2. Then f1 ∗ f2 belongs to H(E0) and the map
f1 ⊗ f2 7→ f1 ∗ f2 extends to a unitary operator from H(E1) ⊗ H(E2) onto
H(E0).

Proof. For j = 0, 1, 2, put K
(j)
wj (zj) = exp(〈zj , wj〉) for zj , wj in Ej . It is

clear that K
(1)
w1 ∗ K

(2)
w2 = K

(0)
w1+w2

. Define W (K
(1)
w1 ⊗ K

(2)
w2 ) = K

(1)
w1 ∗ K

(2)
w2

and extend it by linearity. It follows from a direct computation that W is

isometric on the linear span of {K(1)
w1 ⊗K

(2)
w2 : w1 ∈ E1, w2 ∈ E2}. Since the

linear span of {K(j)
wj : wj ∈ Ej} is dense in H(Ej) for j = 0, 1, 2, the operator

W can be extended to a unitary as required. �

2.2. Composition operators. Suppose E1 and E2 are two Hilbert spaces.
In what follows, we shall use K to denote the kernel functions of both H(E1)
and H(E2). This should not cause any confusion since the kernel functions
on these spaces have the same form.
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For any mapping ϕ : E1 → E2, we recall that the composition operator
Cϕ is defined by Cϕh = h ◦ϕ for all h in H(E2) for which h ◦ϕ also belongs
to H(E1). Since Cϕ is a closed operator, it follows from the closed graph
theorem that Cϕ is bounded if and only if h ◦ ϕ belongs to H(E1) for all
h ∈ H(E2).

Now we suppose that Cϕ is a bounded operator. A priori we do not
impose any condition on ϕ but the boundedness of Cϕ implies that 〈ϕ(·), a〉
is entire for any a ∈ E2. This follows from the identity 〈ϕ(·), a〉 = Cϕ(〈·, a〉),
which shows that 〈ϕ(·), a〉 belongs to H(E1). For any z ∈ E1 and h ∈ H(E2),
since 〈h,C∗ϕKz〉 = 〈Cϕh,Kz〉 = h(ϕ(z)) = 〈h,Kϕ(z)〉, we obtain the well
known formula

C∗ϕKz = Kϕ(z). (2.5)

This formula was used in [7] for the proof of the necessity of Theorem 1.1.
It turns out that this formula plays an important role in our proof of both
the necessity and sufficiency on the boundedness of Cϕ.

For j = 1, 2, let Mj denote the linear span of the kernel functions {Kz :
z ∈ Ej}. We know that Mj is dense in H(Ej). Motivated by (2.5), for any
mapping ϕ : E1 → E2 (even when Cϕ is not a bounded operator), we define
a linear operator Sϕ from M1 to M2 by the formula

Sϕ
( m∑
j=1

cjKxj

)
=

m∑
j=1

cjKϕ(xj). (2.6)

Here, the elements x1, . . . , xm ∈ E1 are distinct and c1, . . . , cm are complex
numbers. Since reproducing kernels at distinct points are linearly indepen-
dent, the operator Sϕ is well defined. Furthermore, formula (2.6) remains
valid even if the elements x1, . . . , xm are not distinct. It follows from (2.5)
that if Cϕ is bounded from H(E2) to H(E1), then Sϕ = C∗ϕ onM1 and hence
Sϕ extends to a bounded operator from H(E1) to H(E2). On the other hand,
if Sϕ extends to a bounded operator from H(E1) into H(E2), then

(Cϕh)(z) = h(ϕ(z)) = 〈h,Kϕ(z)〉 = 〈h, SϕKz〉 = (S∗ϕh)(z)

for all h ∈ H(E2) and all z ∈ E1. As a result, Cϕ is also a bounded operator.
Note that ‖Cϕ‖ = ‖Sϕ‖ whenever they are bounded operators.

For elements x1, . . . , xm in E1 and complex numbers c1, . . . , cm, since

∥∥Sϕ(

m∑
j=1

cjKxj )
∥∥2 =

m∑
j,l=1

clcj〈Kϕ(xj),Kϕ(xl)〉 =
m∑

j,l=1

clcjK(ϕ(xl), ϕ(xj)),

and ∥∥ m∑
j=1

cjKxj

∥∥2 =
m∑

j,l=1

clcjK(xl, xj),
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we conclude that Sϕ is bounded with norm ‖Sϕ‖ ≤M if and only if

m∑
j,l=1

cjcl
(
M2K(xl, xj)−K(ϕ(xl), ϕ(xj))

)
≥ 0. (2.7)

Put ΦM (z, w) = M2K(z, w)−K(ϕ(z), ϕ(w)) for z, w ∈ E1. Since (2.7) holds
for arbitrary x1, . . . , xm in E1 and arbitrary complex numbers c1, . . . , cm, the
function ΦM is called a positive semi-definite kernel on E1. Therefore, Sϕ
(and hence, Cϕ) is bounded with norm at most M if and only if ΦM is a
positive semi-definite kernel. This criterion for boundedness of composition
operators on general reproducing kernel Hilbert spaces was discussed in [18,
Theorem 2]. Using the formula K(z, w) = exp(〈z, w〉), we obtain

Lemma 2.6. Let ϕ : E1 → E2 be a mapping. The composition operator
Cϕ : H(E2) → H(E1) is bounded with norm at most M if and only if the
function

ΦM (z, w) = M2 exp(〈z, w〉)− exp(〈ϕ(z), ϕ(w)〉)
is positive semi-definite.

In particular, if Cϕ is bounded, then Φ‖Cϕ‖(z, z) ≥ 0, which is equivalent
to

2 ln ‖Cϕ‖ ≥ ‖ϕ(z)‖2 − ‖z‖2 (2.8)

for all z ∈ E1.

As a corollary, we show that any mapping that induces a bounded com-
position operator must be affine.

Corollary 2.7. If Cϕ : H(E2) → H(E1) is bounded, then there exists a
linear operator A : E1 → E2 with ‖A‖ ≤ 1 and a vector b ∈ E2 such that
ϕ(z) = Az + b for all z ∈ E1.

Proof. For any unit vector a in E2, we put fa(w) = 〈w, a〉 for w ∈ E2 and
Fa(z) = 〈ϕ(z), a〉 for z ∈ E1. Then fa belongs to H(E2) and Fa, which is
equal to Cϕ(fa), belongs to H(E1). Expand Fa as a power series

Fa(z) = Fa(0) +

∞∑
m=1

〈zm, ζm〉 for all z in E1,

where ζ1 ∈ E1, ζ2 ∈ E21 , . . .. The inequality |Fa(z)| ≤ ‖ϕ(z)‖ together with
(2.8) now gives |Fa(z)|2 ≤ ‖z‖2 + 2 ln(‖Cϕ‖) for all z in E1. It follows that
‖ζ1‖ ≤ 1 and ζm = 0 for all m ≥ 2. Thus, Fa(z)−Fa(0) is a linear functional
in z with norm at most 1. Since 〈ϕ(z) − ϕ(0), a〉 = Fa(z) − Fa(0) is linear
in z with norm at most 1 for any unit vector a ∈ E2, we conclude that
ϕ(z) = Az + ϕ(0) for some linear operator A from E1 to E2 with ‖A‖ ≤ 1.
Taking b to be ϕ(0), we complete the proof of the corollary. �

In Section 3, we discuss in more detail positive semi-definite kernels and
obtain an additional condition on the vector b and the operator A. We then
complete the characterization of bounded composition operators.
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To conclude the section, we show that some bounded composition oper-
ators Cϕ may be decomposed as a tensor product of two composition op-
erators. Such decompositions will be useful when we compute the spectral
radii of certain composition operators.

Proposition 2.8. Let ϕ : E → E be a mapping such that Cϕ is bounded on
H(E). Assume that there is an orthogonal decomposition E = E1 ⊕ E2 such
that ϕ = ϕ1 ⊕ ϕ2, where ϕj : Ej → Ej for j = 1, 2. Then Cϕ and Cϕ1 ⊗ Cϕ2

are unitarily equivalent.

Proof. Let W be the unitary operator from H(E1) ⊗ H(E2) onto H(E) in
Proposition 2.5. For f1 ∈ H(E1) and f2 ∈ H(E2), using the identity W (f1 ⊗
f2) = f1 ∗ f2, we obtain

CϕW (f1 ⊗ f2) = Cϕ(f1 ∗ f2) = (f1 ∗ f2) ◦ (ϕ1 ⊕ ϕ2) = (Cϕ1f1) ∗ (Cϕ2f2)

= W
(

(Cϕ1f1)⊗ (Cϕ2f2)
)

= W (Cϕ1 ⊗ Cϕ2)(f1 ⊗ f2).

As a result, W ∗CϕW and Cϕ1 ⊗ Cϕ2 agree on the algebraic tensor product
of H(E1) and H(E2). Since Cϕ is bounded, it follows that Cϕ1 and Cϕ2 are
both bounded and W ∗CϕW = Cϕ1 ⊗ Cϕ2 . �

3. Boundedness of composition operators

3.1. Positive semi-definite kernels. Let X be an arbitrary set. Recall
that a complex-valued function F on X ×X is a positive semi-definite kernel
if for any finite set {x1, . . . , xm} of points in X , the matrix (F (xl, xj))1≤l,j≤m
is positive semi-definite. That is, for any complex numbers c1, . . . , cm, we
have

m∑
j,l=1

clcjF (xl, xj) ≥ 0.

We shall write F � 0 to indicate that F is a positive semi-definite kernel.
We list here a few elementary facts that follows directly from the definition
of positive semi-definite kernels.

(A1) If Fj � 0 for all j = 1, 2 . . . , then
∑∞

j=1 Fj � 0 provided that the
series converges point-wise on X .

(A2) If F,G � 0, then FG � 0. This follows from the fact that the
Hadamard (entry-wise) product of two positive semi-definite square
matrices is a positive semi-definite matrix.

(A3) Let F � 0. Suppose g is a function holomorphic on an open disk
centered at 0 that contains the range of F . If all the coefficients
of the Maclaurin series of g are non-negative, then it follows from
(A1) and (A2) that g ◦ F � 0. In particular, by choosing g(ζ) =
exp(ζ)− 1, we have exp(F )− 1� 0.

(A4) SupposeM is a complex vector space with an inner product 〈·, ·〉M.
If there is a function f : X →M such that F (x, y) = 〈f(x), f(y)〉M
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for x, y in X, then F � 0. In fact, for any x1, . . . , xm in X and any
complex numbers c1, . . . , cm, we have

m∑
j,l=1

clcjF (xl, xj) =
m∑

j,l=1

〈c̄lf(xl), c̄jf(xj)〉M = ‖
m∑
j=1

c̄jf(xj)‖2M ≥ 0.

It turns out [1, Theorem 2.53] (see also [3]) that any positive semi-
definite kernel arises in this way.

Now suppose E is a Hilbert space and T is a bounded linear operator on
E . Define F (z, w) = 〈Tz,w〉 for z, w ∈ E . If F � 0 on E , then F (z, z) ≥ 0
for all z ∈ E . This implies that T is a positive operator. Conversely, if
T is positive, then since F (z, w) = 〈T 1/2z, T 1/2w〉 (here T 1/2 denotes the
positive square root of T ), it follows from (A4) that F � 0. The following
proposition provides a generalization of this observation.

Proposition 3.1. Let T be a self-adjoint operator on E. Let u be a vector
in E and M a nonnegative real number. Define the function

F (z, w) = 〈Tz,w〉 − 〈z, u〉 − 〈u,w〉+M2 for z, w ∈ E . (3.1)

Then the followings are equivalent:

(a) The function F is a positive semi-definite kernel.
(b) F (z, z) ≥ 0 for all z ∈ E.

(c) The operator T is positive and u = T 1/2v for some v ∈ E with
‖v‖ ≤M .

Furthermore, if the conditions in (c) are satisfied and vmin is a unique vector

of smallest norm in the set {v ∈ E : T 1/2v = u}, then

inf
{
F (z, z) : z ∈ E

}
= −‖vmin‖2 +M2. (3.2)

The vector vmin is characterized by two conditions: (i) T 1/2vmin = u and

(ii) vmin belongs to ran(T 1/2), the closure of the range of T 1/2.

Proof. It is immediate from the definition of positive semi-definite kernels
that (a) implies (b). Now suppose (b) holds. Let z be in E . Choose a
complex number γ of modulus one such that γ〈z, u〉 = |〈z, u〉|. For any real
number r, since F (rγz, rγz) ≥ 0, we obtain

r2〈Tz, z〉 − 2r|〈z, u〉|+M2 ≥ 0.

Because this inequality holds for all real r, we conclude that 〈Tz, z〉 ≥ 0

and
∣∣〈z, u〉∣∣2 ≤M2〈Tz, z〉. As a result, T is a positive operator and we have

|〈z, u〉| ≤ M‖T 1/2z‖ for all z ∈ E . From this, one can manage to apply

Douglas’s lemma to conclude that u belongs to the range of T 1/2. But for
completeness, we include here a direct proof. Define a linear functional
on the range of T 1/2 by Λ(T 1/2z) = 〈z, u〉. Then Λ is well defined and

bounded on T 1/2(E) with ‖Λ‖ ≤ M . Extending Λ to all E by the Hahn-
Banach theorem and using the Riesz’s representation theorem, we obtain an
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element v in E with ‖v‖ = ‖Λ‖ ≤M such that Λ(w) = 〈w, v〉 for all w ∈ E .
It then follows that for any z ∈ E ,

〈z, u〉 = Λ(T 1/2z) = 〈T 1/2z, v〉 = 〈z, T 1/2v〉.

Thus u = T 1/2v and hence (c) follows.
Now assume that (c) holds. For z, w in E , we have

F (z, w) = 〈T 1/2z, T 1/2w〉 − 〈T 1/2z, v〉 − 〈v, T 1/2w〉+M2

= 〈T 1/2z − v, T 1/2w − v〉 − ‖v‖2 +M2.

Since −‖v‖2 + M2 ≥ 0, (A1) and (A4) implies that F is positive semi-
definite. Furthermore, by Lemma 3.3 below, there exists a unique vector vmin

of smallest norm in the set (T 1/2)−1({u}). This vector vmin must necessarily

belong to ran (T 1/2). We then have

inf
{
F (z, z) : z ∈ E

}
= inf

{
‖T 1/2z − vmin‖2 : z ∈ E

}
− ‖vmin‖2 +M2

= −‖vmin‖2 +M2. �

Remark 3.2. In the case E = Cn, since ran (T 1/2) = ran (T 1/2), the vector

vmin in the proposition is given by vmin = T 1/2ζ for any ζ ∈ E that satisfies
the equation Tζ = u.

We close this section with an elementary lemma from the theory of Hilbert
spaces that we have used in the above proof.

Lemma 3.3. Let S be a bounded operator on a Hilbert space E. Suppose
y is an element in the range of S. Then there exists a unique xmin ∈ E of
smallest norm such that Sxmin = y. Furthermore, for any x ∈ E, we have
x = xmin if and only if Sx = y and x belongs to ran(S∗), the closure of the
range of S∗.

3.2. Bounded composition operators. We are now ready to characterize
bounded composition operators Cϕ between Segal–Bargmann spaces.

Proof of Theorem 1.3. Suppose ϕ : E1 → E2 is a mapping such that the
operator Cϕ : H(E2)→ H(E1) is bounded. Lemma 2.6 gives

0 ≤ ‖z‖2 − ‖ϕ(z)‖2 + 2 ln ‖Cϕ‖ for all z ∈ E1. (3.3)

Furthermore, by Corollary 2.7, there is a linear operator A : E1 → E2 with
‖A‖ ≤ 1 and a vector b ∈ E2 such that ϕ(z) = Az + b. Now (3.3) gives
‖z‖2 − ‖Az + b‖2 + 2 ln(‖Cϕ‖) ≥ 0 for all z ∈ E1, which is equivalent to

〈(I −A∗A)z, z〉 − 〈z,A∗b〉 − 〈A∗b, z〉 − ‖b‖2 + 2 ln(‖Cϕ‖) ≥ 0. (3.4)

Using Proposition 3.1, we conclude that the vector A∗b belongs to the
range of the operator (I − A∗A)1/2. Choose v ∈ E1 to be the vector of

smallest norm such that A∗b = (I − A∗A)1/2(v). By Proposition 3.1 again,
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the quantity 2 ln(‖Cϕ‖) − ‖v‖2 − ‖b‖2, being the infimum of the left hand
side of (3.4), is non-negative. We then obtain

‖Cϕ‖ ≥ exp
(1

2
‖v‖2 +

1

2
‖b‖2

)
. (3.5)

Conversely, suppose ϕ(z) = Az + b such that ‖A‖ ≤ 1; A∗b belongs

to the range of (I − A∗A)1/2; and v ∈ E1 is of smallest norm satisfying

A∗b = (I − A∗A)1/2(v). We shall show that Cϕ is bounded with norm at
most the quantity on the right hand side of (3.5) (hence the inequality in
(3.5) is in fact an equality).

Define, for z, w ∈ E1,
F (z, w) = 〈z, w〉 − 〈ϕ(z), ϕ(w)〉+ ‖b‖2 + ‖v‖2

= 〈(I −A∗A)z, w〉 − 〈z,A∗b〉 − 〈A∗b, w〉+ ‖v‖2.
By the implication (c)⇒(a) in Proposition 3.1, we have F � 0. It then
follows that exp(F )−1� 0. Put G(z, w) = exp(〈ϕ(z), ϕ(w)〉) for z, w ∈ E1.
Then G� 0 and hence, G · (exp(F )− 1)� 0. Since for z, w ∈ E1,
G(z, w)

(
exp(F (z, w))− 1

)
= exp(‖b‖2+‖v‖2)exp(〈z, w〉)− exp(〈ϕ(z), ϕ(w)〉),

we conclude, by Lemma 2.6, that Cϕ is bounded and

‖Cϕ‖ ≤ exp
(1

2
‖b‖2 +

1

2
‖v‖2

)
. (3.6)

This completes the proof of the theorem. �

Remark 3.4. If ‖A‖ < 1, then the operator I − A∗A is invertible, hence

(I −A∗A)1/2 is also invertible. As a result, A∗b belongs to (I −A∗A)1/2(E1)
for any b in E2. Theorem 1.3 shows that Cϕ is bounded for every ϕ of the
form ϕ(z) = Az + b, where b is an arbitrary vector in E2.

Corollary 3.5. Suppose ϕ : E → E is a mapping such that ϕ(0) = 0 and Cϕ
is bounded on H(E). Then r(Cϕ) = ‖Cϕ‖ = 1, where r(Cϕ) is the spectral
radius of Cϕ.

Proof. First of all, since 1 is an eigenvalue of Cϕ, we always have r(Cϕ) ≥ 1.
Now the assumption that ϕ(0) = 0 together with Theorem 1.3 shows that
ϕ(z) = Az for all z ∈ E , where A : E → E is a linear operator with ‖A‖ ≤ 1.
The norm formula in Theorem 1.3 (with b = v = 0) gives ‖Cϕ‖ = 1. The
conclusion of the corollary then follows since r(Cϕ) ≤ ‖Cϕ‖. �

3.3. The finite-dimensional case. We now discuss the case when E1 is
finite dimensional. Suppose A : E1 → E2 is a linear operator with ‖A‖ ≤ 1

and b is a vector in E2. We claim that A∗b belongs to the range of (I−A∗A)1/2

if and only if 〈b, Aζ〉 = 0 whenever ‖Aζ‖ = ‖ζ‖. In fact, for ζ ∈ E1, we have

‖ζ‖2 − ‖Aζ‖2 = 〈ζ, ζ〉 − 〈A∗Aζ, ζ〉 = 〈(I −A∗A)ζ, ζ〉 = ‖(I −A∗A)1/2ζ‖2.

Therefore ‖Aζ‖ = ‖ζ‖ if and only if ζ belongs to ker(I − A∗A)1/2. This
shows that 〈b, Aζ〉 = 0 for all such ζ if and only if A∗b is in the orthogonal
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complement of ker(I−A∗A)1/2, which is the same as ran (I−A∗A)1/2. Since

E1 is finite dimensional, the identity ran (I − A∗A)1/2 = ran (I − A∗A)1/2

holds, so the claim follows.
Let v ∈ E1 be the vector of smallest norm such that A∗b = (I−A∗A)1/2v.

Theorem 1.3 shows that ‖Cϕ‖ = exp((‖v‖2 + ‖b‖2)/2). On the other hand,

by Remark 3.2, we have v = (I − A∗A)1/2w0 for any w0 ∈ E1 satisfying
(I −A∗A)w0 = A∗b. It follows that

‖v‖2 + ‖b‖2 = ‖(I −A∗A)1/2w0‖2 + ‖b‖2 = ‖w0‖2 − ‖Aw0‖2 + ‖b‖2.
We then obtain

‖Cϕ‖ = exp
(1

2
(‖w0‖2 − ‖Aw0‖2 + ‖b‖2)

)
.

In the case E1 = E2 = Cn, we recover the results in Theorem 1.1 part (a),
and Theorem 1.2. In the case E1 6= E2, our results seem to be new.

3.4. Spectral radii. Theorem 1.3 involves the requirement that A∗b be-
longs to the range of (I − A∗A)1/2. We first discuss how one may obtain a
more direct condition on the vector b. We then compute the spectral radii
of a certain class of composition operators.

We shall make use of the identities

A(I −A∗A)1/2 = (I −AA∗)1/2A, (3.7)

A∗(I −AA∗)1/2 = (I −A∗A)1/2A∗. (3.8)

Lemma 3.6. Let A : E1 → E2 be a linear operator with ‖A‖ ≤ 1 and let b
belong to E2. Then the followings are equivalent

(i) The vector A∗b belongs to the range of (I −A∗A)1/2.

(ii) The vector b belongs to the range of (I −AA∗)1/2.

Furthermore, if either (i) or (ii) holds (and hence both hold) and if vmin ∈
E1 is the vector of smallest norm satisfying A∗b = (I − A∗A)1/2vmin and

umin ∈ E2 is the vector of smallest norm satisfying b = (I − AA∗)1/2umin,
then vmin = A∗umin and ‖umin‖2 = ‖vmin‖2 + ‖b‖2.

Proof. Suppose (i) holds. Then there is a vector v in E1 such that A∗b =

(I −A∗A)1/2v. Using (3.7), we have

AA∗b = A(I −A∗A)1/2v = (I −AA∗)1/2Av.
From the identity b = (I −AA∗)b+AA∗b = (I −AA∗)b+ (I −AA∗)1/2Av,

we conclude that b belongs to the range of (I −AA∗)1/2.
Conversely, suppose (ii) holds and we have b = (I − AA∗)1/2u for some

u ∈ E2. Using (3.8), we have

A∗b = A∗(I −AA∗)1/2u = (I −A∗A)1/2A∗u,

which belongs to the range of (I −A∗A)1/2.
Now suppose both (i) and (ii) hold. Let vmin be the unique vector in E1

of smallest norm that satisfies A∗b = (I − A∗A)1/2vmin and let umin be the
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unique vector in E2 of smallest norm that satisfies b = (I−AA∗)1/2umin. By

Lemma 3.3, umin belongs to ran((I −AA∗)1/2). Since

A∗
(

ran((I −AA∗)1/2)
)
⊆ ran

(
A∗(I −AA∗)1/2

)
= ran

(
(I −A∗A)1/2A∗

)
we conclude that A∗umin belongs to ran((I − A∗A)1/2). Furthermore, we

have (I − A∗A)1/2A∗umin = A∗b. Applying Lemma 3.3 again, we see that
vmin = A∗umin. As a result,

‖umin‖2 = ‖(I −AA∗)1/2umin‖2 + ‖A∗umin‖2 = ‖b‖2 + ‖vmin‖2. �

Combining Lemma 3.6 and Theorem 1.3, we have

Theorem 3.7. Let ϕ : E1 → E2 be a mapping. Then Cϕ : H(E2) → H(E1)
is bounded if and only if there is a linear operator A : E1 → E2 with ‖A‖ ≤ 1

and a vector b in the range of (I −AA∗)1/2 such that ϕ(z) = Az + b for all
z ∈ E1. Furthermore, ‖Cϕ‖ = exp

(
‖u‖2/2

)
, where u is the unique vector in

E2 of minimum norm that satisfies the equation b = (I −AA∗)1/2u.

We now use the norm formula in Theorem 3.7 to determine the spectral
radii of the operators Cϕ for a certain class of mappings ϕ. Recall that for
T a bounded operator, r(T ) denotes its spectral radius.

Proposition 3.8. Let ϕ(z) = Az + b be a mapping on E such that Cϕ
is bounded on H(E). If A is an isometry or a co-isometry, then we have
r(Cϕ) = ‖Cϕ‖ = exp(‖b‖2/2) (which equals 1 when A is a co-isometry).

Proof. If A is a co-isometry, then AA∗ = I and hence by Theorem 3.7, b = 0.
The conclusion of the proposition follows from Corollary 3.5.

Now consider the case where A is an isometry. Since A∗b belongs to the
range of (I − A∗A)1/2 = 0, we conclude that A∗b = 0. This then gives
〈Akb, Alb〉 = 0 whenever k 6= l and hence,

‖As−1b+ · · ·+ b‖2 = ‖As−1b‖2 + · · ·+ ‖b‖2 = s‖b‖2 (3.9)

for any positive integer s.
We shall make use of the formula r(Cϕ) = limm→∞ ‖Cmϕ ‖1/m. For any

integer m ≥ 1, Cmϕ = Cϕm , where ϕm = ϕ ◦ · · · ◦ ϕ is the composition of

m copies of ϕ. We have ϕm(z) = Amz + Am−1b + · · · + b for z ∈ E . The
norm formula in Theorem 3.7 gives ‖Cϕm‖ = exp(‖um‖2/2), where um is the

vector of smallest norm satisfying Am−1b+ · · ·+ b = (I − Am(Am)∗)1/2um.
Since Am is an isometry, I − Am(Am)∗ is a projection. Minimality then
forces um = Am−1b+ · · ·+ b. By (3.9), we have ‖um‖2 = m‖b‖2. It follows
that ‖Cϕm‖ = exp(m‖b‖2/2) and hence

r(Cϕ) = lim
m→∞

‖Cϕm‖1/m = exp(‖b‖2/2) = ‖Cϕ‖.

This completes the proof of the proposition. �

Proposition 3.9. Let ϕ(z) = Az + b be a mapping on E such that Cϕ is
bounded on H(E). If r(A) < 1, then r(Cϕ) = 1.
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Proof. As in the proof of Proposition 3.8, we shall make use of the formula

r(Cϕ) = lim
m→∞

‖Cϕm‖1/m = lim
m→∞

exp(‖um‖2/(2m)),

where um is the vector of smallest norm in E that satisfies the equation
Am−1b+ · · ·+ b = (I −Am(Am)∗)1/2um.

Assume first ‖A‖ < 1. Since (I−Am(Am)∗)1/2 is invertible, um is uniquely

determined by um = (I −Am(Am)∗)−1/2(Am−1b+ · · ·+ b). Thus,

‖um‖ ≤ ‖(I −Am(Am)∗)−1/2‖
(
‖A‖m−1 + · · ·+ 1

)
‖b‖

≤ (1− ‖A‖2m)−1/2(1− ‖A‖)−1‖b‖ ≤ (1− ‖A‖)−3/2‖b‖.

It follows that limm→∞ ‖um‖2/(2m) = 0, which gives r(Cϕ) = 1.
Now consider the general case, where r(A) < 1 but ‖A‖ may equal 1.

Since limk→∞ ‖Ak‖1/k = r(A) < 1, there is an integer k ≥ 1 such that
‖Ak‖ < 1. From the case considered above, we have r(Cϕk

) = 1. Therefore,

r(Cϕ) = (r(Ckϕ))1/k = (r(Cϕk
))1/k = 1. �

The composition operators considered in Propositions 3.8 and 3.9 are
quite restrictive. However, when the dimension of E is finite, any bounded
composition operator on H(E) can be decomposed as a tensor product of
such operators. Using this, we obtain a proof of Theorem 1.4.

Proof of Theorem 1.4. Since Cϕ is bounded on H(Cn), Theorem 3.7 implies
that ϕ(z) = Az + b, where A : Cn → Cn is a linear operator with ‖A‖ ≤ 1

and b belongs to the range of (I − AA∗)1/2. Since ‖A‖ ≤ 1, for any vector
z ∈ Cn and any unimodular complex number λ, we have

‖A∗z − λz‖2 − ‖Az − λz‖2 = ‖A∗z‖2 − ‖Az‖2 ≤ ‖z‖2 − ‖Az‖2.

It follows that if Az = λz, then A∗z = λz. We conclude that there is an
orthogonal decomposition Cn = E1⊕E2, with respect to which, A = A1⊕A2,
where A1 is unitary and all eigenvalues of A2 have absolute values strictly
less than 1. Note that the case E1 = {0} or E2 = {0} is allowed.

Write b = b1 ⊕ b2, where b1 ∈ E1 and b2 ∈ E2. With j = 1, 2, we put
ϕj(zj) = Ajzj + bj for zj ∈ Ej . Then ϕ = ϕ1 ⊕ ϕ2. By Proposition 3.8,
r(Cϕ1) = 1 (since A1 is a co-isometry) and by Proposition 3.9, r(Cϕ2) = 1.
Since Cϕ is unitarily equivalent to Cϕ1 ⊗ Cϕ2 by Proposition 2.5, we have
r(Cϕ) = r(Cϕ1)r(Cϕ2) = 1. �

We raise here a question for the infinite dimensional case.

Question 1. Let ϕ(z) = Az+ b be a mapping on E such that Cϕ is bounded
on H(E). Suppose that dim(E) =∞ and r(A) = 1. Find the spectral radius
r(Cϕ). Of course, we only need to consider mappings that cannot be written
as a direct sum of mappings in Propositions 3.8 and 3.9.

We provide here an example which shows that in the case dim(E) = ∞,
the spectral radius r(Cϕ) could be any number between 1 and ‖Cϕ‖. Let
{βm}∞m=0 be a non-increasing sequence of positive real numbers with β0 = 1.
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Let E be a Hilbert space with an orthonormal basis {em}∞m=0. Let A be the
unilateral weighted shift on E defined by Aem = (βm+1/βm)em+1 for all
m ≥ 0. Consider ϕ(z) = Az + e0. Since ‖A‖ ≤ 1 and A∗e0 = 0, Theorem

1.3 shows that Cϕ is a bounded operator on H(E) with ‖Cϕ‖ = e1/2.

Let ϕk denote the iteration of ϕ with itself k times. Then Ckϕ = Cϕk
and

we have for any z ∈ E ,

ϕk(z) = Akz + (Ak−1 + · · ·+ I)e0

= Akz + βk−1ek−1 + · · ·+ β0e0.

It follows that ‖ϕk(0)‖2 = β2k−1 + · · · + β20 . Since A∗kϕk(0) = 0, Theorem
1.3 gives

‖Cϕk
‖ = exp(‖ϕk(0)‖2/2) = exp((β2k−1 + · · ·+ β20)/2).

We now compute r(Cϕ) as

r(Cϕ) = lim
k→∞

‖Ckϕ‖1/k = lim
k→∞

exp((β2k−1 + · · ·+ β20)/(2k)) = exp(β2/2).

Here β = limk→∞ βk and we have use the fact that

β2 = lim
k→∞

β2k−1 + · · ·+ β20
k

.

By choosing an appropriate sequence, the limit β may be any number in the
interval [0, 1]. This shows that r(Cϕ) may be any number in the interval

[1, e1/2] = [1, ‖Cϕ‖].

4. Compactness of composition operators

In this section we characterize mappings ϕ that induce compact com-
position operators Cϕ. Before discussing the general case, let us consider
first the case ϕ(z) = Az : E → E, where A is a linear operator on E with
‖A‖ ≤ 1. In what follows, we shall simply write CA for Cϕ.

It turns out that via the anti-unitary J that we have seen in Proposition
2.1, the operator CA has an easy description. Let f be a continuous m-
homogeneous polynomial on E . Then there is an element am ∈ Em such
that f(z) = 〈zm, am〉 for z ∈ E . This gives

(CAf)(z) = 〈(Az)m, am〉 = 〈A⊗m(zm), am〉 = 〈zm, (A∗)⊗mam〉,

where A⊗m denotes the tensor product of m copies of A. We conclude
that CAf is also a continuous m-homogeneous polynomial. Therefore, the
space Pm(E) of continuous m-homogeneous polynomials is invariant under
CA and we have the identity CA|Pm(E) = J−1(A∗)⊗mJ . This, together with
the decomposition in Remark 2.3, gives

CA = J−1
(
1C ⊕A∗ ⊕ (A∗)⊗2 ⊕ (A∗)⊗3 ⊕ · · ·

)
J, (4.1)

where the sum is an infinite direct sum of operators. The identity (4.1)
shows that CA is compact if and only if (A∗)⊗m is compact for each m ≥ 1
and ‖(A∗)⊗m‖ → 0 as m → ∞. Using the fact that (A∗)⊗m is compact
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if and only if A∗ (and hence A) is compact and the well known identity
‖(A∗)⊗m‖ = ‖A∗‖m = ‖A‖m, we conclude that CA is compact if and only if
A is compact and ‖A‖ < 1. We have thus proved a special case of Theorem
1.5. A proof of the full version of Theorem 1.5 will be given later.

For T a bounded operator between two Hilbert spaces, we recall that the
essential norm of T , denoted ‖T‖e, is defined by

‖T‖e = inf{‖T +K‖ : K is a compact operator}.

It is clear that ‖T‖e ≤ ‖T‖ and ‖T ∗‖e = ‖T‖e. It is also standard that
if {xm}∞m=1 is a sequence of unit vectors converging weakly to zero, then
‖T‖e ≥ lim supm→∞ ‖Txm‖.

Proposition 4.1. Suppose ϕ(z) = Az + b is a mapping from E1 into E2
such that Cϕ is a bounded operator from H(E2) into H(E1). If ‖A‖ = 1,
then ‖Cϕ‖e = ‖Cϕ‖.

Proof. Since Cϕ is bounded, Theorem 1.3 implies that ‖A‖ ≤ 1 and there

is a vector v belonging to ran(I − A∗A)1/2 such that A∗b = (I − A∗A)1/2v.
Furthermore, ‖Cϕ‖2 = exp(‖v‖2 + ‖b‖2).

If ‖A‖ = 1, then there is a sequence {wm}∞m=1 of vectors in E1 such
that ‖wm‖ = 1 and ‖Awm‖ → 1 as m → ∞. Passing to a subsequence if
necessary, we may assume limm→∞m

2(1− ‖Awm‖2) = 0, which implies

lim
m→∞

m‖(I −A∗A)1/2wm‖ = lim
m→∞

m(1− ‖Awm‖2)1/2 = 0.

Let z be a vector in E1. Put zm = mwm + z. Then we have ‖zm‖ → ∞ and
hence, by Lemma 2.4, ‖Kzm‖−1Kzm → 0 weakly as m→∞. This gives

‖Cϕ‖2e = ‖C∗ϕ‖2e ≥ lim sup
m→∞

‖Kzm‖−2‖C∗ϕKzm‖2 = lim sup
m→∞

‖Kzm‖−2‖Kϕ(zm)‖2

= lim sup
m→∞

exp
(
‖ϕ(zm)‖2 − ‖zm‖2

)
. (4.2)

Now for each positive integer m, we have

‖ϕ(zm)‖2 − ‖zm‖2 = ‖Azm‖2 + 〈z,A∗b〉+ 〈A∗b, zm〉+ ‖b‖2 − ‖zm‖2

= −‖(I −A∗A)1/2zm − v‖2 + ‖v‖2 + ‖b‖2

= −
∥∥∥m(I −A∗A)1/2wm + (I −A∗A)1/2z − v

∥∥∥2
+ ‖v‖2 + ‖b‖2.

Letting m→∞, we obtain

lim
m→∞

(
‖ϕ(zm)‖2 − ‖zm‖2

)
= −‖(I −A∗A)1/2z − v‖2 + ‖v‖2 + ‖b‖2.

This identity, together with (4.2), gives

2 ln ‖Cϕ‖e ≥ −‖(I −A∗A)1/2z − v‖2 + ‖v‖2 + ‖b‖2.
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Since v belongs ran(I−A∗A)1/2, the supremum of the right hand side when
z varies in E1 is ‖v‖2+‖b‖2 = 2 ln ‖Cϕ‖. As a result, we have ‖Cϕ‖e ≥ ‖Cϕ‖.
Since ‖Cϕ‖e ≤ ‖Cϕ‖, we conclude that ‖Cϕ‖e = ‖Cϕ‖. �

We now have the necessary tools for the proof of Theorem 1.5.

Proof of Theorem 1.5. Assume first that Cϕ is a compact operator from
H(E2) into H(E1). By Theorem 1.3, ϕ(z) = Az + b for all z ∈ E1, where

A : E1 → E2 is linear with ‖A‖ ≤ 1 and b ∈ E2 with A∗b ∈ (I −A∗A)1/2(E1).
By Proposition 4.1, we have ‖A‖ < 1. It now remains to show that A is
compact.

Let {um}∞m=1 be a sequence in E2 that converges weakly to zero. For each
m, put fm(w) = 〈w, um〉 for w ∈ E2. Then fm → 0 weakly as m → ∞ by
Lemma 2.4. This implies that limm→∞ ‖Cϕfm‖ = 0. But for z ∈ E1,

(Cϕfm)(z) = fm(ϕ(z)) = 〈Az + b, um〉 = 〈z,A∗um〉+ 〈b, um〉,

so ‖Cϕfm‖2 = ‖A∗um‖2 + |〈b, um〉|2. We then obtain limm→∞ ‖A∗um‖2 = 0.
Therefore, A∗ is compact and hence, A is also compact.

Now suppose ϕ(z) = Az + b, where A : E1 → E2 is a compact operator
with ‖A‖ < 1 and b is an arbitrary vector in E2. Let A = U |A| be the
polar decomposition of A, where U : E1 → E2 is a partial isometry and
|A| = (A∗A)1/2 is a compact operator on E1. Pick a real number α such
that ‖A‖ < α < 1. Put ϕ1(z) = α−1|A|z and ϕ2(z) = αUz + b for z ∈ E1.
As we have shown, Cϕ1 is compact. Since ‖αU‖ ≤ α < 1, Theorem 1.3
implies that Cϕ2 is bounded. From the identity ϕ = ϕ2 ◦ ϕ1, it follows that
Cϕ = Cϕ1Cϕ2 and hence, Cϕ is a compact operator. �

Proposition 4.1 and Theorem 1.5 together give us the essential norms of
a class of operators Cϕ. In fact, suppose ϕ(z) = Az + b, where A : E1 → E2
is a linear operator with ‖A‖ ≤ 1 and b ∈ ran(I−AA∗)1/2. If ‖A‖ = 1, then
‖Cϕ‖e = ‖Cϕ‖ ≥ 1. If ‖A‖ < 1 and A is compact (which is automatic if
either E1 or E2 has finite dimension), then ‖Cϕ‖e = 0. This gives a proof of
Theorem 1.6. The remaining case is when ‖A‖ < 1 and A is not compact.
In the following result, we assume ϕ(0) = 0.

Proposition 4.2. Suppose A : E1 → E2 is a linear operator with ‖A‖ < 1.
Then ‖CA‖e = ‖A‖e. (The case ‖A‖e = 0 is already covered by Theorem
1.5 so here we are only interested in the case ‖A‖e > 0.)

Proof. We consider first E1 = E2. Using the identity (4.1) and the fact that
‖A∗‖ = ‖A‖ < 1, we obtain

‖CA‖e = ‖1C ⊕A∗ ⊕ (A∗)⊗2 ⊕ (A∗)⊗3 ⊕ · · · ‖e = ‖A∗‖e = ‖A‖e.

In the general case, since A∗A is an operator on E1, the above argument
gives ‖CA∗A‖e = ‖A∗A‖e = ‖A‖2e. The conclusion of the proposition follows
from the identity CAC

∗
A = CA∗A. �



20 TRIEU LE

Unfortunately, we have not been able to find a formula in the case when
ϕ(0) is not zero. We raise here a question.

Question 2. Assume that A : E → E is a linear operator which is not
compact, ‖A‖ < 1 and b is an arbitrary non-zero vector. Put ϕ(z) = Az + b
for z ∈ E. Find the essential norm ‖Cϕ‖e.

The last result we would like to discuss in this section is the spectrum
σ(Cϕ) when Cϕ is a compact operator. The following theorem is similar to [9,
Theorem 7.20], which describes the spectra of certain compact composition
operators acting on weighted Hardy spaces over the unit ball in Cn. In the
setting of Segal-Bargmann spaces, our approach is less involved and it works
also for the infinite dimensional case.

Theorem 4.3. Let ϕ : E → E be a mapping such that Cϕ is a compact
operator on H(E). Then we have

σ(Cϕ) = {0, 1} ∪ {λ1 · · ·λs : λ1, . . . , λs ∈ σ(A) and s ≥ 1}.

Here A is a compact operator with ‖A‖ < 1 such that ϕ(z) = Az + b for
z ∈ E.

Proof. Since Cϕ is compact, we have σ(Cϕ) = {0} ∪ σp(Cϕ), where σp(Cϕ)
is the point spectrum of Cϕ.

Because Cϕ1 = 1, we know that λ = 1 is an eigenvalue. Now suppose
that λ ∈ C\{0, 1} is an eigenvalue of Cϕ and f ∈ H(E) is a corresponding
eigenvector. Then f(Az + b) = λf(z) for all z ∈ E . Let z0 = (I − A)−1(b)
be the unique fixed point of ϕ. Since f(z0) = f(ϕ(z0)) = λf(z0) and λ 6= 1,
we have f(z0) = 0. Let

f(z) =

∞∑
j=1

〈(z − z0)j , aj〉

be the power expansion of f around z0. It then follows from the identities
Az0 + b = z0 and f(A(z+z0)+ b) = λf(z+z0) that f(Az+z0) = λf(z+z0)
for all z ∈ E . This gives

∞∑
j=1

〈
(Az)j , aj

〉
= λ

∞∑
j=1

〈zj , aj〉 ⇐⇒
∞∑
j=1

〈
zj , (A∗)⊗jaj

〉
= λ

∞∑
j=0

〈zj , aj〉.

We conclude that (A∗)⊗jaj = λaj for all j ≥ 1. Since f is not the zero

function, there exists an l ≥ 1 such that al 6= 0, which shows that λ an
eigenvalue of (A∗)⊗l. (Because ‖A‖ < 1, there are only a finite number of
such l. This implies that f is in fact a polynomial). Since A is compact,
we conclude that λ is an eigenvalue of A⊗l. Hence, λ = λ1 · · ·λl for some
eigenvalues λ1, . . . , λl of A.

Conversely, suppose that λ = λ1 · · ·λl is a product of l (not necessarily
distinct) eigenvalues of A. Let vj be an eigenvector of A∗ corresponding to
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the eigenvalue λj for j = 1, . . . , l. Put f(z) = 〈z − z0, v1〉 · · · 〈z − z0, vl〉 for
z ∈ E . Then f is a non-zero polynomial of degree s and we have

f(Az + b) = 〈Az + b− z0, v1〉 · · · 〈Az + b− z0, vl〉
= 〈A(z − z0), v1〉 · · · 〈A(z − z0), vl〉
= 〈(z − z0), A∗v1〉 · · · 〈(z − z0), A∗vl〉 = λf(z).

Since f clearly belongs to H(E), we conclude that λ is an eigenvalue of Cϕ
on H(E). This completes the proof of the theorem. �

5. Normal, isometric and co-isometric composition operators

We determine in this section the mappings ϕ : E → E that give rise
to normal, isometric or co-isometric operators Cϕ on H(E). (Recall that
an operator on the Hilbert space is called co-isometric if its adjoint is an
isometric operator.) We shall make use of the identities

Cϕ1 = 1, C∗ϕ1 = Kϕ(0), and C∗ϕCϕ1 = Kϕ(0), (5.1)

where 1 denotes the constant function with value one, which is also the
reproducing kernel function K0.

We first show that if Cϕ is either a normal, isometric or co-isometric
operator on H(E), then ϕ(0) = 0. The argument is fairly standard. In
fact, if Cϕ is normal, then we have ‖C∗ϕ1‖ = ‖Cϕ1‖, which, together with
(5.1), gives ‖Kϕ(0)‖ = ‖1‖. If Cϕ is isometric, then C∗ϕCϕ1 = 1, which gives
Kϕ(0) = 1 and hence, in particular, ‖Kϕ(0)‖ = ‖1‖. If Cϕ is co-isometric

then we also have ‖1‖ = ‖C∗ϕ1‖ = ‖Kϕ(0)‖. Since ‖Kϕ(0)‖2 = exp(−‖ϕ(0)‖2)
and ‖1‖2 = 1, we conclude that in each of the above cases, ϕ(0) = 0.

Now since ϕ(0) = 0, Theorem 1.3 shows that ϕ(z) = Az for some operator
A on E with ‖A‖ ≤ 1. Then Cϕ = CA, C∗ϕ = CA∗ , and hence

C∗ϕCϕ = CA∗CA = CAA∗ and CϕC
∗
ϕ = CACA∗ = CA∗A.

As a result, we obtain

Proposition 5.1. Let ϕ : E → E be a mapping such that Cϕ is a bounded
operator on H(E). Then

(a) Cϕ is normal if and only if there exists a normal operator A on E
with ‖A‖ ≤ 1 such that ϕ(z) = Az for all z ∈ E.

(b) Cϕ is isometric if and only if there exists a co-isometric operator A
on E such that ϕ(z) = Az for all z ∈ E.

(c) Cϕ is co-isometric if and only if there exists an isometric operator
A on E such that ϕ(z) = Az for all z ∈ E.

Remark 5.2. Statement (a) in Proposition 5.1 holds also for composition
operators on the Hardy and Bergman spaces of the unit ball (see [9, Theorem
8.1]), where a similar result to Theorem 1.3 is not available. (In fact, on
the Hardy and Begrman spaces, mappings that are not affine can give rise
to bounded composition operators.) The proof of [9, Theorem 8.1] can be
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adapted to prove Proposition 5.1 (a) without appealing to Theorem 1.3 in
the case E has finite dimension. On the other hand, since that proof relies on
the finiteness of the dimension, it does not seem to work when E is infinite
dimensional.

Remark 5.3. In the case E = Cn, isometric operators on E are also co-
isometric and vice versa, and all these operators are unitary. Statements
(b) and (c) in Proposition 5.1 then imply that Cϕ is isometric if and only if
it is co-isometric if and only if it is unitary.
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