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Abstract. It is already known that the Cesàro matrices of orders one
and two are coposinormal operators on `2. Here it is shown that the
Cesàro matrices of all orders are coposinormal; the proof employs posi-
normality, achieved by means of a diagonal interrupter, and makes use
of the Zeilberger’s algorithm and computational assistance by Maple™.
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1. Introduction

Let a := {a(n)}n≥0 be a sequence of nonegative numbers with a(0) > 0. Put
S(n) =

∑n
j=0 a(j). The Nörlund matrix M = [m(i, j)]i,j≥0 is an infinite lower

triangular matrix defined by

m(i, j) =

{
a(i− j)/S(i) for 0 ≤ j ≤ i
0 for j > i.

For a real number α ≥ 1, the Cesàro matrix of order α, denoted by C(α), is
generated by aα(n) =

(
n+α−1
α−1

)
. (See [10, p. 442].) In this case,

Sα(n) =

n∑
j=0

(
j + α− 1

α− 1

)
=

(
n+ α

α

)
.

For j ≤ i, the(i, j)th entry of C(α) is given by

mα(i, j) =

(
i−j+α−1
α−1

)(
i+α
α

) =
αΓ(i− j + α) Γ(i+ 1)

Γ(i− j + 1) Γ(i+ α+ 1)
. (1.1)

We shall consider C(α) as an operator on `2. Stirling’s approximation of the
Gamma function shows the existence of a constant Kα independent of i and
j such that

mα(i, j) ≤ Kα
(i− j + 1)α−1

(i+ 1)α
≤ Kα

i+ 1
= Kαm1(i, j).
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Here m1(i, j) is the (i, j)th entry of the Cesàro matrix of order one, C(1).
It is well known that C(1) gives rise to a bounded operator on `2. As a
consequence, for all α ≥ 1, the operator C(α) is bounded on `2 and ‖C(α)‖ ≤
Kα ‖C(1)‖.

If B(H) denotes the space of all bounded linear operators on a Hilbert
space H, then the operator A ∈ B(H) is hyponormal if

〈(A∗A−AA∗)f, f〉 ≥ 0

for all f ∈ H. The operator A ∈ B(H) is said to be posinormal (see [2, 6]) if

AA∗ = A∗PA

for some positive operator P ∈ B(H), called the interrupter. The operator
A is coposinormal if A∗ is posinormal. Hyponormal operators are necessar-
ily posinormal, but they need not be coposinormal, as the unilateral shift
illustrates.

First, consider C(1), whose entries mij are given by

mij =

{
1
i+1 for 0 ≤ j ≤ i
0 for j > i.

In [6] it was observed that C(1) satisfies

C(1)C(1)∗ = C(1)∗P1C(1)

where

P1 :≡ diag

{
n+ 1

n+ 2
: n ≥ 0

}
;

therefore,〈
(C(1)∗C(1)− C(1)C(1)∗)f, f

〉
=
〈
(C(1)∗C(1)− C(1)∗P1C(1))f, f

〉
=
〈
(I − P1)C(1)f, C(1)f

〉
≥ 0

for all f ∈ `2, so C(1) is a hyponormal operator on `2. In this manner
posinormality was used to give a proof of hyponormality for C(1) that is
different from an earlier one found in [1]. The coposinormality of C(1) was
demonstrated in [6].

Next, consider C(2), the Cesàro matrix of order 2, whose entries mij

given by

mij =

{
2(i+1−j)

(i+1)(i+2) for 0 ≤ j ≤ i
0 for j > i.

It was recently discovered in [8] that C(2) satisfies

C(2)C(2)∗ = C(2)∗P2C(2)

where

P2 :≡ diag

{
(n+ 1)(n+ 2)

(n+ 3)(n+ 4)
: n ≥ 0

}
with

I − P2 ≥ 0,
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so C(2) is also hyponormal on `2. The computations in [8] centered on coposi-
normality, and the diagonal form of P2 emerged somewhat serendipitously
from those computations.

These observations led the second author to conjecture in [9] that for
all integer values of α ≥ 1 it holds true that

C(α)C(α)∗ = C∗(α)PαC(α) (1.2)

where

Pα :≡ diag
{ (n+ 1) · · · (n+ α)

(n+ α+ 1) · · · (n+ 2α)
: n ≥ 0

}
. (1.3)

The first author then set out to prove that conjecture, and this paper is the
result.

It follows from (1.1) thatmα(i, j) is well defined whenever α is a complex
number which is neither zero nor a negative integer. We may then define
C(α) for all such α. With the help of Zeilberger’s Algorithm [5, Chapter 6]
and Maple™ [4], we are able to show in this note that, for a suitably defined
diagonal operator Pα,

C(α)C(α)∗ = C(α)∗PαC(α)

holds for all complex numbers α ∈ C\{0,−1,−2, . . .}.

2. Main Results

First the definition of Pα must be modified appropriately when α is not a
positive integer. We define Pα = diag{dα(n) : n ≥ 0}, where

dα(n) =

∣∣Γ(n+ α+ 1)
∣∣2

Γ(n+ 1) Γ(n+ α+ ᾱ+ 1)
. (2.1)

In the case α = 1 (respectively, α = 2), our matrix Pα coincides with P1

(respectively, P2) as specified in the introduction.
For any complex number α with a positive real part, we have dα(n) > 0,

and an application of Cauchy-Schwarz’s inequality shows that dα(n) ≤ 1 for
all n ≥ 0. Indeed,

Γ(n+ 1) Γ(n+ α+ ᾱ+ 1) =
(∫ ∞

0

tne−t dt
)(∫ ∞

0

tn+α+ᾱ e−t dt
)

≥
(∫ ∞

0

tn+(α+ᾱ)/2 e−t dt
)2

=
(∫ ∞

0

|tn+α| e−t dt
)2

≥
∣∣∣ ∫ ∞

0

tn+α e−t dt
∣∣∣2 =

∣∣∣Γ(n+ α+ 1)
∣∣∣2.

This shows that Pα is a positive contractive operator on `2. Furthermore,
the well-known asymptotic behavior of the Gamma function shows that
limn→∞ dα(n) = 1. As a result, Pα is an invertible operator.
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Our main result in this note is the following theorem.

Theorem 2.1. For any complex number α ∈ C\{0,−1,−2, . . .}, we have

C(α)C(α)∗ = C(α)∗PαC(α). (2.2)

Proof. Since both sides of (2.2) are self-adjoint matrices, it suffices to show
that for any integers v, i ≥ 0, the (i, i + v)th entries of both sides are equal.
To this end, we shall fix v. For i ≥ 0, let A(i) (respectively, B(i)) be the
(i, i + v)th entry of C(α)C(α)∗ (respectively, C(α)∗PαC(α)). Clearly, A(i)
and B(i) depend on v and α as well but since only i changes in our argument
below, we have dropped v and α for the sake of simplifying the notation.

We compute, using the fact that Γ(z) = Γ(z̄) for z ∈ C\{0,−1,−2, . . .},

A(i) =

∞∑
`=0

mα(i, `) ·mα(i+ v, `)

=

i∑
`=0

αΓ(i− `+ α) Γ(i+ 1)

Γ(i− `+ 1) Γ(i+ α+ 1)
· ᾱΓ(i+ v − `+ ᾱ) Γ(i+ v + 1)

Γ(i+ v − `+ 1) Γ(i+ v + ᾱ+ 1)

=
|α|2 Γ(i+ 1) Γ(i+ v + 1)

Γ(i+ α+ 1) Γ(i+ v + ᾱ+ 1)

i∑
`=0

Γ(i− `+ α) Γ(i+ v − `+ ᾱ)

Γ(i− `+ 1) Γ(i+ v − `+ 1)

=
|α|2 Γ(i+ 1) Γ(i+ v + 1)

Γ(i+ α+ 1) Γ(i+ v + ᾱ+ 1)

i∑
k=0

Γ(k + α) Γ(k + v + ᾱ)

Γ(k + 1) Γ(k + v + 1)
. (2.3)

The last equality follows from the change of indices k = i − `. Note that
A(0) = ᾱ

v+ᾱ . Using the ZeilbergerRecurrence command in Maple™, we find

that A(i) satisfies the recurrence relation

(i+ α+ 1)(i+ v + ᾱ+ 1)A(i+ 1)− (i+ 1)(i+ v + 1)A(i) = |α|2. (2.4)

To prove this, we use (2.3) with i + 1 in place of i and properties of the
Gamma function to write

(i+ α+ 1)(i+ v + ᾱ+ 1)A(i+ 1)

=
|α|2 Γ(i+ 2) Γ(i+ v + 2)

Γ(i+ α+ 1) Γ(i+ v + ᾱ+ 1)

i+1∑
k=0

Γ(k + α) Γ(k + v + ᾱ)

Γ(k + 1) Γ(k + v + 1)

= |α|2 +
|α|2 Γ(i+ 2) Γ(i+ v + 2)

Γ(i+ α+ 1) Γ(i+ v + ᾱ+ 1)

i∑
k=0

Γ(k + α) Γ(k + v + ᾱ)

Γ(k + 1) Γ(k + v + 1)

= |α|2 + (i+ 1)(i+ v + 1)A(i).

The recurrence relation (2.4) then follows.
Let us now compute the (i, i + v)th entry of the matrix C(α)∗PαC(α),

using the formulas (1.1) and (2.1),

B(i) =

∞∑
`=0

mα(`, i) · dα(`) ·mα(`, i+ v) =

∞∑
`=i+v

mα(`, i) · dα(`) ·mα(`, i+ v)
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=

∞∑
`=i+v

|α|2 Γ(`− i+ ᾱ) Γ(`+ 1) Γ(`− i− v + α)

Γ(`− i+ 1) Γ(`− i− v + 1) Γ(`+ α+ ᾱ+ 1)

=

∞∑
k=0

|α|2 Γ(k + v + ᾱ) Γ(k + i+ v + 1) Γ(k + α)

Γ(k + v + 1) Γ(k + 1) Γ(k + i+ v + α+ ᾱ+ 1)
,

by the change of indices ` = k + i+ v. The ZeilbergerRecurrence command
again shows that B(i) satisfies the same recurrence relation as A(i) does.
That is,

(i+ α+ 1)(i+ v + ᾱ+ 1)B(i+ 1)− (i+ 1)(i+ v + 1)B(i) = |α|2. (2.5)

This time, verifying (2.5) by a direct calculation does not seem easy. However,
by following the Zeilberger’s telescoping method and assistance by Maple™,
we shall demonstrate that the above recurrence equation indeed holds. To
do that, let F (i, k) be the summands in the series of B(i). The command
Zeilberger in Maple™ provides the following identity

(i+ α+ 1)(i+ v + ᾱ+ 1)F (i+ 1, k)− (i+ 1)(i+ v + 1)F (i, k)

= (k + 1)(k + v + 1)F (i, k + 1)− k(k + v)F (i, k). (2.6)

Divided by F (i+ 1, k), equation (2.6) boils down to

(i+ α+ 1)(i+ v + ᾱ+ 1)− (i+ 1)(i+ v + 1)
k + i+ v + α+ ᾱ+ 1

k + i+ v + 1

= (k + 1)(k + v + 1)
(k + v + ᾱ)(k + α)

(k + v + 1)(k + 1)
− k(k + v)

k + i+ v + α+ ᾱ+ 1

k + i+ v + 1
,

which can now be verified by a direct calculation, or by any symbolic calcu-
lator. From (2.6), summing in k = 0 to ∞ and noticing that the right hand
side is telescoping, together with the fact that

lim
k→∞

k(k + v)F (i, k) = |α|2,

we obtain (2.5). Now for i = 0,

B(0) = |α|2
∞∑
k=0

Γ(k + v + ᾱ) Γ(k + α)

Γ(k + 1) Γ(k + v + α+ ᾱ+ 1)

= |α|2 Γ(v + ᾱ) Γ(α)

Γ(v + α+ ᾱ+ 1)
2F1(v + ᾱ, α; v + α+ ᾱ+ 1; 1)

= |α|2 Γ(v + ᾱ) Γ(α)

Γ(v + α+ ᾱ+ 1)
· Γ(v + α+ ᾱ+ 1)

Γ(α+ 1) Γ(v + ᾱ+ 1)

(by Gauss’s Hypergeometric Theorem)

=
ᾱ

v + ᾱ
.

Here 2F1(a, b; c; 1) denotes the hypergeometric series with upper parameters
a, b and lower parameter c, evaluated at 1. Gauss’s Hypergeometric Theorem
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says that

2F1(a, b; c; 1) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

,

whenever c − a − b has a positive real part. We would like to mention that
the proof of Gauss’s Theorem and other identities involving hypergeometric
series can be done using the WZ method. See [5] for more details.

Since A(0) = B(0), and A(i) and B(i) satisfy the same recurrence re-
lation, we conclude that A(i) = B(i) for all non-negative integers i, which
completes the proof of the theorem. �

Corollary 2.2. For all α ≥ 1, C(α) is a posinormal and hyponormal operator
on `2.

We thank B. E. Rhoades for pointing out that the corollary above also
follows from [11, Theorem 2].

Corollary 2.3. For all α ≥ 1, C(α) is a coposinormal operator on `2.

Proof. Apply [7, Theorem 1(d)], using the fact that the interrupter Pα in the
proof of the theorem above is invertible. �

Corollary 2.4. For all α ≥ 1, both C(α) and C(α)∗ are injective and have
dense range with

Ran(C(α)) = Ran(C(α)∗).

Proof. Since C(α) is posinormal, it follows from [6, Theorem 2.1 and Corol-
lary 2.3] that

Ran(C(α)) ⊆ Ran(C(α)∗)

and

Ker(C(α)) ⊆ Ker(C(α)∗).

Since C(α)∗ is also known to be posinormal (by Corollary 2.3), the reverse
inclusions must also hold; therefore,

Ker(C(α)) = Ker(C(α)∗)

and

Ran(C(α)) = Ran(C(α)∗).

It is easy to see that Ker(C(α)) = {0}. Consequently, both C(α) and C(α)∗

are one-to-one, and both have dense range. �

Corollary 2.5. For all α ≥ 1, C(α)k is both posinormal and coposinormal for
each positive integer k.

Proof. This follows from [3, Corollary 1(b)]. �
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