Coposinormality of the Cesàro matrices

Trieu Le and H. C. Rhaly Jr.

Abstract

It is already known that the Cesàro matrices of orders one and two are coposinormal operators on ℓ^{2}. Here it is shown that the Cesàro matrices of all orders are coposinormal; the proof employs posinormality, achieved by means of a diagonal interrupter, and makes use of the Zeilberger's algorithm and computational assistance by Maple ${ }^{\mathrm{TM}}$.

Mathematics Subject Classification (2010). Primary 47B20.
Keywords. Nörlund matrix; Cesàro matrix; posinormal operator; hyponormal operator; hypergeometric series; Zeilberger's algorithm.

1. Introduction

Let $a:=\{a(n)\}_{n \geq 0}$ be a sequence of nonegative numbers with $a(0)>0$. Put $S(n)=\sum_{j=0}^{n} a(j)$. The Nörlund matrix $M=[m(i, j)]_{i, j \geq 0}$ is an infinite lower triangular matrix defined by

$$
m(i, j)= \begin{cases}a(i-j) / S(i) & \text { for } 0 \leq j \leq i \\ 0 & \text { for } j>i\end{cases}
$$

For a real number $\alpha \geq 1$, the Cesàro matrix of order α, denoted by $C(\alpha)$, is generated by $a_{\alpha}(n)=\binom{n+\alpha-1}{\alpha-1}$. (See [10, p. 442].) In this case,

$$
S_{\alpha}(n)=\sum_{j=0}^{n}\binom{j+\alpha-1}{\alpha-1}=\binom{n+\alpha}{\alpha} .
$$

For $j \leq i$, the $(i, j)^{t h}$ entry of $C(\alpha)$ is given by

$$
\begin{equation*}
m_{\alpha}(i, j)=\frac{\binom{i-j+\alpha-1}{\alpha-1}}{\binom{i+\alpha}{\alpha}}=\frac{\alpha \Gamma(i-j+\alpha) \Gamma(i+1)}{\Gamma(i-j+1) \Gamma(i+\alpha+1)} . \tag{1.1}
\end{equation*}
$$

We shall consider $C(\alpha)$ as an operator on ℓ^{2}. Stirling's approximation of the Gamma function shows the existence of a constant K_{α} independent of i and j such that

$$
m_{\alpha}(i, j) \leq K_{\alpha} \frac{(i-j+1)^{\alpha-1}}{(i+1)^{\alpha}} \leq \frac{K_{\alpha}}{i+1}=K_{\alpha} m_{1}(i, j)
$$

Here $m_{1}(i, j)$ is the $(i, j)^{t h}$ entry of the Cesàro matrix of order one, $C(1)$. It is well known that $C(1)$ gives rise to a bounded operator on ℓ^{2}. As a consequence, for all $\alpha \geq 1$, the operator $C(\alpha)$ is bounded on ℓ^{2} and $\|C(\alpha)\| \leq$ $K_{\alpha}\|C(1)\|$.

If $\mathcal{B}(H)$ denotes the space of all bounded linear operators on a Hilbert space H, then the operator $A \in \mathcal{B}(H)$ is hyponormal if

$$
\left\langle\left(A^{*} A-A A^{*}\right) f, f\right\rangle \geq 0
$$

for all $f \in H$. The operator $A \in \mathcal{B}(H)$ is said to be posinormal (see $[2,6]$) if

$$
A A^{*}=A^{*} P A
$$

for some positive operator $P \in \mathcal{B}(H)$, called the interrupter. The operator A is coposinormal if A^{*} is posinormal. Hyponormal operators are necessarily posinormal, but they need not be coposinormal, as the unilateral shift illustrates.

First, consider $C(1)$, whose entries $m_{i j}$ are given by

$$
m_{i j}=\left\{\begin{array}{lll}
\frac{1}{i+1} & \text { for } & 0 \leq j \leq i \\
0 & \text { for } & j>i
\end{array}\right.
$$

In [6] it was observed that $C(1)$ satisfies

$$
C(1) C(1)^{*}=C(1)^{*} P_{1} C(1)
$$

where

$$
P_{1}: \equiv \operatorname{diag}\left\{\frac{n+1}{n+2}: n \geq 0\right\}
$$

therefore,

$$
\begin{aligned}
\left\langle\left(C(1)^{*} C(1)-C(1) C(1)^{*}\right) f, f\right\rangle & =\left\langle\left(C(1)^{*} C(1)-C(1)^{*} P_{1} C(1)\right) f, f\right\rangle \\
& =\left\langle\left(I-P_{1}\right) C(1) f, C(1) f\right\rangle \geq 0
\end{aligned}
$$

for all $f \in \ell^{2}$, so $C(1)$ is a hyponormal operator on ℓ^{2}. In this manner posinormality was used to give a proof of hyponormality for $C(1)$ that is different from an earlier one found in [1]. The coposinormality of $C(1)$ was demonstrated in [6].

Next, consider $C(2)$, the Cesàro matrix of order 2, whose entries $m_{i j}$ given by

$$
m_{i j}=\left\{\begin{array}{lll}
\frac{2(i+1-j)}{(i+1)(i+2)} & \text { for } & 0 \leq j \leq i \\
0 & \text { for } & j>i
\end{array}\right.
$$

It was recently discovered in [8] that $C(2)$ satisfies

$$
C(2) C(2)^{*}=C(2)^{*} P_{2} C(2)
$$

where

$$
P_{2}: \equiv \operatorname{diag}\left\{\frac{(n+1)(n+2)}{(n+3)(n+4)}: n \geq 0\right\}
$$

with

$$
I-P_{2} \geq 0
$$

so $C(2)$ is also hyponormal on ℓ^{2}. The computations in [8] centered on coposinormality, and the diagonal form of P_{2} emerged somewhat serendipitously from those computations.

These observations led the second author to conjecture in [9] that for all integer values of $\alpha \geq 1$ it holds true that

$$
\begin{equation*}
C(\alpha) C(\alpha)^{*}=C^{*}(\alpha) P_{\alpha} C(\alpha) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\alpha}: \equiv \operatorname{diag}\left\{\frac{(n+1) \cdots(n+\alpha)}{(n+\alpha+1) \cdots(n+2 \alpha)}: n \geq 0\right\} \tag{1.3}
\end{equation*}
$$

The first author then set out to prove that conjecture, and this paper is the result.

It follows from (1.1) that $m_{\alpha}(i, j)$ is well defined whenever α is a complex number which is neither zero nor a negative integer. We may then define $C(\alpha)$ for all such α. With the help of Zeilberger's Algorithm [5, Chapter 6] and Maple ${ }^{T M}[4]$, we are able to show in this note that, for a suitably defined diagonal operator P_{α},

$$
C(\alpha) C(\alpha)^{*}=C(\alpha)^{*} P_{\alpha} C(\alpha)
$$

holds for all complex numbers $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$.

2. Main Results

First the definition of P_{α} must be modified appropriately when α is not a positive integer. We define $P_{\alpha}=\operatorname{diag}\left\{d_{\alpha}(n): n \geq 0\right\}$, where

$$
\begin{equation*}
d_{\alpha}(n)=\frac{|\Gamma(n+\alpha+1)|^{2}}{\Gamma(n+1) \Gamma(n+\alpha+\bar{\alpha}+1)} . \tag{2.1}
\end{equation*}
$$

In the case $\alpha=1$ (respectively, $\alpha=2$), our matrix P_{α} coincides with P_{1} (respectively, P_{2}) as specified in the introduction.

For any complex number α with a positive real part, we have $d_{\alpha}(n)>0$, and an application of Cauchy-Schwarz's inequality shows that $d_{\alpha}(n) \leq 1$ for all $n \geq 0$. Indeed,

$$
\begin{aligned}
\Gamma(n+1) \Gamma(n+\alpha+\bar{\alpha}+1) & =\left(\int_{0}^{\infty} t^{n} e^{-t} d t\right)\left(\int_{0}^{\infty} t^{n+\alpha+\bar{\alpha}} e^{-t} d t\right) \\
& \geq\left(\int_{0}^{\infty} t^{n+(\alpha+\bar{\alpha}) / 2} e^{-t} d t\right)^{2} \\
& =\left(\int_{0}^{\infty}\left|t^{n+\alpha}\right| e^{-t} d t\right)^{2} \\
& \geq\left|\int_{0}^{\infty} t^{n+\alpha} e^{-t} d t\right|^{2}=|\Gamma(n+\alpha+1)|^{2}
\end{aligned}
$$

This shows that P_{α} is a positive contractive operator on ℓ^{2}. Furthermore, the well-known asymptotic behavior of the Gamma function shows that $\lim _{n \rightarrow \infty} d_{\alpha}(n)=1$. As a result, P_{α} is an invertible operator.

Our main result in this note is the following theorem.
Theorem 2.1. For any complex number $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$, we have

$$
\begin{equation*}
C(\alpha) C(\alpha)^{*}=C(\alpha)^{*} P_{\alpha} C(\alpha) \tag{2.2}
\end{equation*}
$$

Proof. Since both sides of (2.2) are self-adjoint matrices, it suffices to show that for any integers $v, i \geq 0$, the $(i, i+v)^{t h}$ entries of both sides are equal. To this end, we shall fix v. For $i \geq 0$, let $A(i)$ (respectively, $B(i)$) be the $(i, i+v)^{t h}$ entry of $C(\alpha) C(\alpha)^{*}$ (respectively, $\left.C(\alpha)^{*} P_{\alpha} C(\alpha)\right)$. Clearly, $A(i)$ and $B(i)$ depend on v and α as well but since only i changes in our argument below, we have dropped v and α for the sake of simplifying the notation.

We compute, using the fact that $\bar{\Gamma}(z)=\Gamma(\bar{z})$ for $z \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$,

$$
\begin{align*}
A(i) & =\sum_{\ell=0}^{\infty} m_{\alpha}(i, \ell) \cdot \bar{m}_{\alpha}(i+v, \ell) \\
& =\sum_{\ell=0}^{i} \frac{\alpha \Gamma(i-\ell+\alpha) \Gamma(i+1)}{\Gamma(i-\ell+1) \Gamma(i+\alpha+1)} \cdot \frac{\bar{\alpha} \Gamma(i+v-\ell+\bar{\alpha}) \Gamma(i+v+1)}{\Gamma(i+v-\ell+1) \Gamma(i+v+\bar{\alpha}+1)} \\
& =\frac{|\alpha|^{2} \Gamma(i+1) \Gamma(i+v+1)}{\Gamma(i+\alpha+1) \Gamma(i+v+\bar{\alpha}+1)} \sum_{\ell=0}^{i} \frac{\Gamma(i-\ell+\alpha) \Gamma(i+v-\ell+\bar{\alpha})}{\Gamma(i-\ell+1) \Gamma(i+v-\ell+1)} \\
& =\frac{|\alpha|^{2} \Gamma(i+1) \Gamma(i+v+1)}{\Gamma(i+\alpha+1) \Gamma(i+v+\bar{\alpha}+1)} \sum_{k=0}^{i} \frac{\Gamma(k+\alpha) \Gamma(k+v+\bar{\alpha})}{\Gamma(k+1) \Gamma(k+v+1)} \tag{2.3}
\end{align*}
$$

The last equality follows from the change of indices $k=i-\ell$. Note that $A(0)=\frac{\bar{\alpha}}{v+\bar{\alpha}}$. Using the ZeilbergerRecurrence command in Maple ${ }^{T M}$, we find that $A(i)$ satisfies the recurrence relation

$$
\begin{equation*}
(i+\alpha+1)(i+v+\bar{\alpha}+1) A(i+1)-(i+1)(i+v+1) A(i)=|\alpha|^{2} \tag{2.4}
\end{equation*}
$$

To prove this, we use (2.3) with $i+1$ in place of i and properties of the Gamma function to write

$$
\begin{aligned}
&(i+\alpha+1(i+v+\bar{\alpha}+1) A(i+1) \\
&= \frac{|\alpha|^{2} \Gamma(i+2) \Gamma(i+v+2)}{\Gamma(i+\alpha+1) \Gamma(i+v+\bar{\alpha}+1)} \sum_{k=0}^{i+1} \frac{\Gamma(k+\alpha) \Gamma(k+v+\bar{\alpha})}{\Gamma(k+1) \Gamma(k+v+1)} \\
&=|\alpha|^{2}+\frac{|\alpha|^{2} \Gamma(i+2) \Gamma(i+v+2)}{\Gamma(i+\alpha+1) \Gamma(i+v+\bar{\alpha}+1)} \sum_{k=0}^{i} \frac{\Gamma(k+\alpha) \Gamma(k+v+\bar{\alpha})}{\Gamma(k+1) \Gamma(k+v+1)} \\
&=|\alpha|^{2}+(i+1)(i+v+1) A(i)
\end{aligned}
$$

The recurrence relation (2.4) then follows.
Let us now compute the $(i, i+v)^{t h}$ entry of the matrix $C(\alpha)^{*} P_{\alpha} C(\alpha)$, using the formulas (1.1) and (2.1),

$$
B(i)=\sum_{\ell=0}^{\infty} \bar{m}_{\alpha}(\ell, i) \cdot d_{\alpha}(\ell) \cdot m_{\alpha}(\ell, i+v)=\sum_{\ell=i+v}^{\infty} \bar{m}_{\alpha}(\ell, i) \cdot d_{\alpha}(\ell) \cdot m_{\alpha}(\ell, i+v)
$$

$$
\begin{aligned}
& =\sum_{\ell=i+v}^{\infty} \frac{|\alpha|^{2} \Gamma(\ell-i+\bar{\alpha}) \Gamma(\ell+1) \Gamma(\ell-i-v+\alpha)}{\Gamma(\ell-i+1) \Gamma(\ell-i-v+1) \Gamma(\ell+\alpha+\bar{\alpha}+1)} \\
& =\sum_{k=0}^{\infty} \frac{|\alpha|^{2} \Gamma(k+v+\bar{\alpha}) \Gamma(k+i+v+1) \Gamma(k+\alpha)}{\Gamma(k+v+1) \Gamma(k+1) \Gamma(k+i+v+\alpha+\bar{\alpha}+1)},
\end{aligned}
$$

by the change of indices $\ell=k+i+v$. The ZeilbergerRecurrence command again shows that $B(i)$ satisfies the same recurrence relation as $A(i)$ does. That is,

$$
\begin{equation*}
(i+\alpha+1)(i+v+\bar{\alpha}+1) B(i+1)-(i+1)(i+v+1) B(i)=|\alpha|^{2} . \tag{2.5}
\end{equation*}
$$

This time, verifying (2.5) by a direct calculation does not seem easy. However, by following the Zeilberger's telescoping method and assistance by Maple ${ }^{T M}$, we shall demonstrate that the above recurrence equation indeed holds. To do that, let $F(i, k)$ be the summands in the series of $B(i)$. The command Zeilberger in Maple ${ }^{T M}$ provides the following identity

$$
\begin{gather*}
(i+\alpha+1)(i+v+\bar{\alpha}+1) F(i+1, k)-(i+1)(i+v+1) F(i, k) \\
=(k+1)(k+v+1) F(i, k+1)-k(k+v) F(i, k) \tag{2.6}
\end{gather*}
$$

Divided by $F(i+1, k)$, equation (2.6) boils down to

$$
\begin{aligned}
& (i+\alpha+1)(i+v+\bar{\alpha}+1)-(i+1)(i+v+1) \frac{k+i+v+\alpha+\bar{\alpha}+1}{k+i+v+1} \\
& \quad=(k+1)(k+v+1) \frac{(k+v+\bar{\alpha})(k+\alpha)}{(k+v+1)(k+1)}-k(k+v) \frac{k+i+v+\alpha+\bar{\alpha}+1}{k+i+v+1}
\end{aligned}
$$

which can now be verified by a direct calculation, or by any symbolic calculator. From (2.6), summing in $k=0$ to ∞ and noticing that the right hand side is telescoping, together with the fact that

$$
\lim _{k \rightarrow \infty} k(k+v) F(i, k)=|\alpha|^{2},
$$

we obtain (2.5). Now for $i=0$,

$$
\begin{aligned}
B(0) & =|\alpha|^{2} \sum_{k=0}^{\infty} \frac{\Gamma(k+v+\bar{\alpha}) \Gamma(k+\alpha)}{\Gamma(k+1) \Gamma(k+v+\alpha+\bar{\alpha}+1)} \\
& =|\alpha|^{2} \frac{\Gamma(v+\bar{\alpha}) \Gamma(\alpha)}{\Gamma(v+\alpha+\bar{\alpha}+1)}{ }_{2} F_{1}(v+\bar{\alpha}, \alpha ; v+\alpha+\bar{\alpha}+1 ; 1) \\
& =|\alpha|^{2} \frac{\Gamma(v+\bar{\alpha}) \Gamma(\alpha)}{\Gamma(v+\alpha+\bar{\alpha}+1)} \cdot \frac{\Gamma(v+\alpha+\bar{\alpha}+1)}{\Gamma(\alpha+1) \Gamma(v+\bar{\alpha}+1)}
\end{aligned}
$$

(by Gauss's Hypergeometric Theorem)

$$
=\frac{\bar{\alpha}}{v+\bar{\alpha}}
$$

Here ${ }_{2} F_{1}(a, b ; c ; 1)$ denotes the hypergeometric series with upper parameters a, b and lower parameter c, evaluated at 1. Gauss's Hypergeometric Theorem
says that

$$
{ }_{2} F_{1}(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}
$$

whenever $c-a-b$ has a positive real part. We would like to mention that the proof of Gauss's Theorem and other identities involving hypergeometric series can be done using the WZ method. See [5] for more details.

Since $A(0)=B(0)$, and $A(i)$ and $B(i)$ satisfy the same recurrence relation, we conclude that $A(i)=B(i)$ for all non-negative integers i, which completes the proof of the theorem.

Corollary 2.2. For all $\alpha \geq 1, C(\alpha)$ is a posinormal and hyponormal operator on ℓ^{2}.

We thank B. E. Rhoades for pointing out that the corollary above also follows from [11, Theorem 2].

Corollary 2.3. For all $\alpha \geq 1, C(\alpha)$ is a coposinormal operator on ℓ^{2}.
Proof. Apply [7, Theorem 1(d)], using the fact that the interrupter P_{α} in the proof of the theorem above is invertible.

Corollary 2.4. For all $\alpha \geq 1$, both $C(\alpha)$ and $C(\alpha)^{*}$ are injective and have dense range with

$$
\operatorname{Ran}(C(\alpha))=\operatorname{Ran}\left(C(\alpha)^{*}\right)
$$

Proof. Since $C(\alpha)$ is posinormal, it follows from [6, Theorem 2.1 and Corollary 2.3] that

$$
\operatorname{Ran}(C(\alpha)) \subseteq \operatorname{Ran}\left(C(\alpha)^{*}\right)
$$

and

$$
\operatorname{Ker}(C(\alpha)) \subseteq \operatorname{Ker}\left(C(\alpha)^{*}\right)
$$

Since $C(\alpha)^{*}$ is also known to be posinormal (by Corollary 2.3), the reverse inclusions must also hold; therefore,

$$
\operatorname{Ker}(C(\alpha))=\operatorname{Ker}\left(C(\alpha)^{*}\right)
$$

and

$$
\operatorname{Ran}(C(\alpha))=\operatorname{Ran}\left(C(\alpha)^{*}\right)
$$

It is easy to see that $\operatorname{Ker}(C(\alpha))=\{0\}$. Consequently, both $C(\alpha)$ and $C(\alpha)^{*}$ are one-to-one, and both have dense range.

Corollary 2.5. For all $\alpha \geq 1, C(\alpha)^{k}$ is both posinormal and coposinormal for each positive integer k.

Proof. This follows from [3, Corollary 1(b)].

References

[1] A. Brown, P. R. Halmos, and A. L. Shields, Cesàro Operators, Acta Sci. Math. (Szeged) 26 (1965), 125-137.
[2] C. S. Kubrusly and B. P. Duggal, On posinormal operators, Adv. Math. Sci. Appl. 17 (2007), no. 1, 131-147.
[3] C. S. Kubrusly, P. C. M. Vieira, and J. Zanni, Powers of posinormal operators, Oper. Matrices, 10 (2016), no. 1, 15-27.
[4] Maple 18, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
[5] M. Petkovšek, H. S. Wilf, and D. Zeilberger, $A=B$, A K Peters, Ltd., Wellesley, MA, 1996, With a foreword by Donald E. Knuth, With a separately available computer disk.
[6] H. C. Rhaly Jr., Posinormal operators, J. Math. Soc. Japan 46 (1994), no. 4, 587-605.
[7] H. C. Rhaly Jr., A superclass of the posinormal operators, New York J. Math., 20 (2014), 497-506. This paper is available via http://nyjm.albany.edu/j/2014/20-28.html.
[8] H. C. Rhaly Jr., The Nörlund operator on ℓ^{2} generated by the sequence of positive integers is hyponormal, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 5, 737-742.
[9] H. C. Rhaly Jr, A conjecture on hyponormality for the Cesàro matrix of positive integer order, ArXiv e-prints (2017).
[10] B. E. Rhoades, Using inclusion theorems to establish the summability of orthogonal series, Approximation theory and spline functions (St. John's, Nfld., 1983), 441-453, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 136, Reidel, Dordrecht, 1984.
[11] N. K Sharma, Hausdorff Operators, Acta Sci Math. (Szeged) 35 (1973), 165167.

Trieu Le
University of Toledo
Dept. of Mathematics and Statistics
University of Toledo
Toledo, OH 43606, U.S.A.
e-mail: Trieu.Le2@utoledo.edu
H. C. Rhaly Jr.

1081 Buckley Drive
Jackson, MS 39206, U.S.A.
e-mail: rhaly@member.ams.org

