Coposinormality of the Cesaro matrices
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Abstract. It is already known that the Cesaro matrices of orders one
and two are coposinormal operators on ¢2. Here it is shown that the
Cesaro matrices of all orders are coposinormal; the proof employs posi-
normality, achieved by means of a diagonal interrupter, and makes use
of the Zeilberger’s algorithm and computational assistance by Maple™.
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1. Introduction

Let a := {a(n)},>0 be a sequence of nonegative numbers with a(0) > 0. Put

S(n) = Z?:o a(j). The Nérlund matrix M = [m(¢, j)]; j>o is an infinite lower

triangular matrix defined by
o a(t—45)/S(1 for0<4j <9
mi, j) = (i —3)/5() )<
0 for j > i.

For a real number a > 1, the Cesaro matrix of order «, denoted by C(«), is

generated by aq(n) = (”*O‘ '). (See [10, p. 442].) In this case,
n .
jH+a—1 n+ o
Sa(n) = = )
=2 (5=

For j <1, the(i, )" entry of C(a) is given by

() aTli—j+a)T(i+1)
() Ti—j+)I(itatl)

We shall consider C'(a) as an operator on £2. Stirling’s approximation of the

Gamma function shows the existence of a constant K, independent of i and
7 such that

ma(i,J) < Ko

ma(i,j) = (1.1)

(i_j+1)a_1< Koc
(i+1)° i+l

= Kaml(iaj)'
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Here my (i, ) is the (i,7)*" entry of the Cesaro matrix of order one, C(1).
It is well known that C(1) gives rise to a bounded operator on ¢2. As a
consequence, for all & > 1, the operator C'(c) is bounded on ¢? and ||C(«)|| <
Ko [C(1)).

If B(H) denotes the space of all bounded linear operators on a Hilbert
space H, then the operator A € B(H) is hyponormal if

(A"A—AA")f, f) =0
for all f € H. The operator A € B(H) is said to be posinormal (see [2, 6]) if
AA* = A*PA
for some positive operator P € B(H), called the interrupter. The operator
A is coposinormal if A* is posinormal. Hyponormal operators are necessar-
ily posinormal, but they need not be coposinormal, as the unilateral shift

illustrates.
First, consider C(1), whose entries m;; are given by

S A for 0<j<i
* for j>i.
In [6] it was observed that C(1) satisfies
c(1)c(1)" =C(1)"PC(1)

1
P :—diag{%:nZO};
n

where

therefore,
(cyre) —cme))f. f)={(C)yc) - ca)ync)f,f)
= (I = P)C()f,C(1)f) >0
for all f € (%, so C(1) is a hyponormal operator on ¢2. In this manner
posinormality was used to give a proof of hyponormality for C(1) that is
different from an earlier one found in [1]. The coposinormality of C(1) was
demonstrated in [6].

Next, consider C'(2), the Cesaro matrix of order 2, whose entries m;;
given by

i+1)(i+2)

2(i+1—j) for 0<j<i
m;; = ( . .
for j>i.

It was recently discovered in [8] that C(2) satisfies
C(2)C(2)" = C(2)"RC(2)
where (
n+1)(n
Py = di
2 diag { n+3)(n

with
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so C(2) is also hyponormal on £2. The computations in [8] centered on coposi-
normality, and the diagonal form of P, emerged somewhat serendipitously
from those computations.

These observations led the second author to conjecture in [9] that for
all integer values of a > 1 it holds true that

C(a)C(a)" = C*(a)P,C(a) (1.2)
where
- (n+1)---(n+a)
Pa.:dlag{(n+a+1)...(n+2a). nZO}. (1.3)

The first author then set out to prove that conjecture, and this paper is the
result.

It follows from (1.1) that mq (4, j) is well defined whenever « is a complex
number which is neither zero nor a negative integer. We may then define
C(a) for all such a. With the help of Zeilberger’s Algorithm [5, Chapter 6]
and Maple™ [4], we are able to show in this note that, for a suitably defined
diagonal operator P,,

C(a)C(a)" = C(a)"P,C(a)
holds for all complex numbers a € C\{0, -1, -2,...}.

2. Main Results

First the definition of P, must be modified appropriately when « is not a
positive integer. We define P, = diag{ds(n) : n > 0}, where
IT(n+a+1) |2
'n+1)T(n+a+a+1)
In the case a = 1 (respectively, a = 2), our matrix P, coincides with P
(respectively, P») as specified in the introduction.

For any complex number « with a positive real part, we have d,(n) > 0,
and an application of Cauchy-Schwarz’s inequality shows that d,(n) < 1 for
all n > 0. Indeed,

oo oo _
I(n+)T(n+a+a+1)= (/ t”e‘tdt)(/ gnteta e—tdt)
0 0

00 2
(/ gn+(ata)/2 —t dt)

0

00 2
(/ |t”+a|e*tdt)

0

o0 2
> ‘/ e eftdt‘ = ‘F(nJraJr 1)
0

do(n) =

(2.1)

Y

‘2
This shows that P, is a positive contractive operator on ¢2. Furthermore,
the well-known asymptotic behavior of the Gamma function shows that
lim;, o0 do(n) = 1. As a result, P, is an invertible operator.
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Our main result in this note is the following theorem.

Theorem 2.1. For any complex number o € C\{0,—1,—2,...}, we have
Cla)C(a)" = C(a)*P,C(a). (2.2)

Proof. Since both sides of (2.2) are self-adjoint matrices, it suffices to show
that for any integers v,i > 0, the (i,7 + v)!"* entries of both sides are equal.
To this end, we shall fix v. For ¢ > 0, let A(:) (respectively, B(i)) be the
(i, + v)t" entry of C(a)C(a)* (respectively, C(a)*P,C(c)). Clearly, A(7)
and B(i) depend on v and « as well but since only 4 changes in our argument
below, we have dropped v and « for the sake of simplifying the notation.
We compute, using the fact that T'(z) = I'(z) for z € C\{0, -1, -2,...},

= Zma(i,ﬁ) M (i + v, 0)
=0

_ZZ: al'i—l+a)T(i+1) al(i+v—f+a)l'(i+v+1)
Ne—¢+1D)TrGi+a+1) Ti+v—L+1)T(E+v+a+1)

 JaPTG+ )T+ v+1) Tl —f+a)T(i+v—{+a)
_F(i+a+1)F(z+v+a+l <T@~ L+1)T(i+v—L+1)
la)?T@G+1) T + v+ 1) I'(k+a)T(k+v+a) (2.3)

:F(i+a+1)r(i+v+a+1) T+ 1)T(k+v+1)

The last equality follows from the change of indices k& = i — £. Note that
A(0) = ;35 Using the ZeilbergerRecurrence command in Maple™, we find
that A(¢) satisfies the recurrence relation

(i+a+D)(i+v+at+D)AG+1)— G+ 1) +v+1)A®G) = o> (2.4)

To prove this, we use (2.3) with ¢ + 1 in place of ¢ and properties of the
Gamma function to write

(i+a+)(i+v+a+1)AG+1)

_ aPTE+2)T( v +2) iir(k )T(k+v+a)
_F(z’+a+1)f‘(i+v+d+1)k:0F(k+1)F(k+v+1)
aPT(+2)T(+v+2)
Fi+a+1)T(i+v+a+1)
=lal?+ (i +1)(i+v+1)A®G).

The recurrence relation (2.4) then follows.
Let us now compute the (i,7 4+ v)*" entry of the matrix C(a)* P,C(a),
using the formulas (1.1) and (2.1),

Nk+a)T(k+v+a)
Fk+1)T(k+v+1)

= lo* +
k=0

oo

= Ma(lii) - da(l) - ma(lii+v) =Y Ma(l,i) do(l) - ma(l,i+v)
£=0

l=i+v
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Z |o<|2 l—i+a) T+ 1) Tl —i—v+ )
_€V+ (l—i+DIl—i—v+ DTl +a+a+1)
w— |aPT(k+v+a)T(k+i+v+1)D(k+a)
_kﬂf@+v+DF@+DF%+i+U+a+d+U’

by the change of indices ¢ = k + i + v. The ZeilbergerRecurrence command
again shows that B(i) satisfies the same recurrence relation as A(7) does.
That is,

(i+a+D)(ii+v+a+1)Bi+1)—(i+1)(G+v+1)B3E) = |af>.  (2.5)

This time, verifying (2.5) by a direct calculation does not seem easy. However,
by following the Zeilberger’s telescoping method and assistance by Maple™,
we shall demonstrate that the above recurrence equation indeed holds. To
do that, let F(i, k) be the summands in the series of B(¢). The command
Zeilberger in Maple™ provides the following identity
(t+a+l)i+v+a+1)FGE+1L,k)—(C+1)(i+v+1)F(3, k)
=k+Dk+v+D)F@,k+1)—k(k+v)F(i,k). (2.6)

Divided by F(i + 1, k), equation (2.6) boils down to
k+i+tv+tat+a+l

(i+a+l)(i+v+a+1)—(+1)(i+v+1)

E+ito+1
(k+v+a)k+a) E+i+v+at+a+l
= 1 1 -
(k+ 1)k +v+ Nk+v+n@+1) k(k +v) k4+i+v+1 ’

which can now be verified by a direct calculation, or by any symbolic calcu-
lator. From (2.6), summing in & = 0 to oo and noticing that the right hand
side is telescoping, together with the fact that

lim k(k+v)F(i, k) = |of?,
k—o0
we obtain (2.5). Now for ¢ = 0,

Tk+v+a)T(k+ )
Fk—i—l (k+v+a+a+1l)
T @@

Fv+a+a+1)
~ |af? Fv+a@) () Tlo+at+a+1)

Fv+a+a+1) T(a+)T(v+a+1)

(by Gauss’s Hypergeometric Theorem)

|0¢|2

2Fi(vta, o vtata+l; 1)

(07

v+a

Here 5 F(a, b;c; 1) denotes the hypergeometric series with upper parameters
a, b and lower parameter ¢, evaluated at 1. Gauss’s Hypergeometric Theorem
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says that
()T (c—a—0)
I'(c—a)T(c—b)’
whenever ¢ — a — b has a positive real part. We would like to mention that
the proof of Gauss’s Theorem and other identities involving hypergeometric
series can be done using the WZ method. See [5] for more details.

Since A(0) = B(0), and A(i) and B(i) satisfy the same recurrence re-
lation, we conclude that A(i) = B(i) for all non-negative integers i, which
completes the proof of the theorem. O

2F1(a,b;¢;1) =

Corollary 2.2. For all a > 1, C(«) is a posinormal and hyponormal operator
on (2.

We thank B. E. Rhoades for pointing out that the corollary above also
follows from [11, Theorem 2].

Corollary 2.3. For all a > 1, C(a) is a coposinormal operator on (2.

Proof. Apply [7, Theorem 1(d)], using the fact that the interrupter P, in the
proof of the theorem above is invertible. O

Corollary 2.4. For all « > 1, both C(a) and C(a)* are injective and have
dense range with

Ran(C(«)) = Ran(C(a)").

Proof. Since C(«) is posinormal, it follows from [6, Theorem 2.1 and Corol-
lary 2.3] that

Ran(C(a)) C Ran(C'(a)™)
and
Ker(C(a)) C Ker(C(a)*).

Since C'(«)* is also known to be posinormal (by Corollary 2.3), the reverse
inclusions must also hold; therefore,

Ker(C(a)) = Ker(C(a))
and
Ran(C(«a)) = Ran(C(a)").
It is easy to see that Ker(C(«)) = {0}. Consequently, both C(«) and C(«a)*

are one-to-one, and both have dense range. ([

Corollary 2.5. For all a > 1, C(a)¥ is both posinormal and coposinormal for
each positive integer k.

Proof. This follows from [3, Corollary 1(b)]. O



Coposinormality of the Cesaro matrices 7

References

[1] A. Brown, P. R. Halmos, and A. L. Shields, Cesaro Operators, Acta Sci. Math.
(Szeged) 26 (1965), 125-137.

[2] C. S. Kubrusly and B. P. Duggal, On posinormal operators, Adv. Math. Sci.
Appl. 17 (2007), no. 1, 131-147.

[3] C.S. Kubrusly, P. C. M. Vieira, and J. Zanni, Powers of posinormal operators,
Oper. Matrices, 10 (2016), no. 1, 15-27.

[4] Maple 18, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

[5] M. Petkovsek, H. S. Wilf, and D. Zeilberger, A = B, A K Peters, Ltd., Welles-
ley, MA, 1996, With a foreword by Donald E. Knuth, With a separately avail-
able computer disk.

[6] H. C. Rhaly Jr., Posinormal operators, J. Math. Soc. Japan 46 (1994), no. 4,
587-605.

[7] H. C. Rhaly Jr., A superclass of the posinormal operators, New
York J. Math.,, 20 (2014), 497-506. This paper is available via
http://nyjm.albany.edu/j/2014/20-28.html.

[8] H. C. Rhaly Jr., The Nérlund operator on > generated by the sequence of
positive integers is hyponormal, Bull. Belg. Math. Soc. Simon Stevin 22 (2015),
no. 5, 737-742.

[9] H. C. Rhaly Jr, A conjecture on hyponormality for the Cesaro matriz of positive
integer order, ArXiv e-prints (2017).

[10] B. E. Rhoades, Using inclusion theorems to establish the summability of or-
thogonal series, Approximation theory and spline functions (St. John’s, Nfld.,
1983), 441-453, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 136, Reidel,
Dordrecht, 1984.

[11] N. K Sharma, Hausdorff Operators, Acta Sci Math. (Szeged) 35 (1973), 165—
167.

Trieu Le

University of Toledo

Dept. of Mathematics and Statistics
University of Toledo

Toledo, OH 43606, U.S.A.

e-mail: Trieu.Le2@utoledo.edu

H. C. Rhaly Jr.

1081 Buckley Drive

Jackson, MS 39206, U.S.A.
e-mail: rhaly@member . ams.org



