Coposinormality of the Cesàro matrices

Trieu Le and H. C. Rhaly Jr.

Abstract. It is already known that the Cesàro matrices of orders one and two are coposinormal operators on ℓ^2 . Here it is shown that the Cesàro matrices of all orders are coposinormal; the proof employs posinormality, achieved by means of a diagonal interrupter, and makes use of the Zeilberger's algorithm and computational assistance by MapleTM.

Mathematics Subject Classification (2010). Primary 47B20.

Keywords. Nörlund matrix; Cesàro matrix; posinormal operator; hyponormal operator; hypergeometric series; Zeilberger's algorithm.

1. Introduction

Let $a := \{a(n)\}_{n\geq 0}$ be a sequence of nonegative numbers with a(0) > 0. Put $S(n) = \sum_{j=0}^{n} a(j)$. The Nörlund matrix $M = [m(i,j)]_{i,j\geq 0}$ is an infinite lower triangular matrix defined by

$$m(i,j) = \begin{cases} a(i-j)/S(i) & \text{for } 0 \le j \le i \\ 0 & \text{for } j > i. \end{cases}$$

For a real number $\alpha \ge 1$, the Cesàro matrix of order α , denoted by $C(\alpha)$, is generated by $a_{\alpha}(n) = \binom{n+\alpha-1}{\alpha-1}$. (See [10, p. 442].) In this case,

$$S_{\alpha}(n) = \sum_{j=0}^{n} \binom{j+\alpha-1}{\alpha-1} = \binom{n+\alpha}{\alpha}.$$

For $j \leq i$, the $(i, j)^{th}$ entry of $C(\alpha)$ is given by

$$m_{\alpha}(i,j) = \frac{\binom{i-j+\alpha-1}{\alpha-1}}{\binom{i+\alpha}{\alpha}} = \frac{\alpha \,\Gamma(i-j+\alpha) \,\Gamma(i+1)}{\Gamma(i-j+1) \,\Gamma(i+\alpha+1)}.$$
(1.1)

We shall consider $C(\alpha)$ as an operator on ℓ^2 . Stirling's approximation of the Gamma function shows the existence of a constant K_{α} independent of *i* and *j* such that

$$m_{\alpha}(i,j) \le K_{\alpha} \frac{(i-j+1)^{\alpha-1}}{(i+1)^{\alpha}} \le \frac{K_{\alpha}}{i+1} = K_{\alpha} m_1(i,j)$$

Here $m_1(i, j)$ is the $(i, j)^{th}$ entry of the Cesàro matrix of order one, C(1). It is well known that C(1) gives rise to a bounded operator on ℓ^2 . As a consequence, for all $\alpha \geq 1$, the operator $C(\alpha)$ is bounded on ℓ^2 and $||C(\alpha)|| \leq K_{\alpha} ||C(1)||$.

If $\mathcal{B}(H)$ denotes the space of all bounded linear operators on a Hilbert space H, then the operator $A \in \mathcal{B}(H)$ is hyponormal if

$$\langle (A^*A - AA^*)f, f \rangle \ge 0$$

for all $f \in H$. The operator $A \in \mathcal{B}(H)$ is said to be *posinormal* (see [2, 6]) if

 $AA^* = A^*PA$

for some positive operator $P \in \mathcal{B}(H)$, called the *interrupter*. The operator A is *coposinormal* if A^* is posinormal. Hyponormal operators are necessarily posinormal, but they need not be coposinormal, as the unilateral shift illustrates.

First, consider C(1), whose entries m_{ij} are given by

$$m_{ij} = \begin{cases} \frac{1}{i+1} & \text{for} \quad 0 \le j \le i\\ 0 & \text{for} \quad j > i. \end{cases}$$

In [6] it was observed that C(1) satisfies

$$C(1)C(1)^* = C(1)^* P_1 C(1)$$

where

$$P_1 :\equiv \operatorname{diag}\left\{\frac{n+1}{n+2} : n \ge 0\right\};$$

therefore,

$$\langle (C(1)^*C(1) - C(1)C(1)^*)f, f \rangle = \langle (C(1)^*C(1) - C(1)^*P_1C(1))f, f \rangle$$

= $\langle (I - P_1)C(1)f, C(1)f \rangle \ge 0$

for all $f \in \ell^2$, so C(1) is a hyponormal operator on ℓ^2 . In this manner posinormality was used to give a proof of hyponormality for C(1) that is different from an earlier one found in [1]. The coposinormality of C(1) was demonstrated in [6].

Next, consider C(2), the Cesàro matrix of order 2, whose entries m_{ij} given by

$$m_{ij} = \begin{cases} \frac{2(i+1-j)}{(i+1)(i+2)} & \text{for} & 0 \le j \le i \\ 0 & \text{for} & j > i. \end{cases}$$

It was recently discovered in [8] that C(2) satisfies

$$C(2)C(2)^* = C(2)^* P_2 C(2)$$

where

$$P_2 := \operatorname{diag}\left\{\frac{(n+1)(n+2)}{(n+3)(n+4)} : n \ge 0\right\}$$

with

$$I - P_2 \ge 0,$$

so C(2) is also hyponormal on ℓ^2 . The computations in [8] centered on coposinormality, and the diagonal form of P_2 emerged somewhat serendipitously from those computations.

These observations led the second author to conjecture in [9] that for all integer values of $\alpha \geq 1$ it holds true that

$$C(\alpha)C(\alpha)^* = C^*(\alpha)P_{\alpha}C(\alpha) \tag{1.2}$$

where

$$P_{\alpha} :\equiv \operatorname{diag} \left\{ \frac{(n+1)\cdots(n+\alpha)}{(n+\alpha+1)\cdots(n+2\alpha)} : n \ge 0 \right\}.$$
(1.3)

The first author then set out to prove that conjecture, and this paper is the result.

It follows from (1.1) that $m_{\alpha}(i, j)$ is well defined whenever α is a complex number which is neither zero nor a negative integer. We may then define $C(\alpha)$ for all such α . With the help of Zeilberger's Algorithm [5, Chapter 6] and MapleTM [4], we are able to show in this note that, for a suitably defined diagonal operator P_{α} ,

$$C(\alpha)C(\alpha)^* = C(\alpha)^* P_{\alpha}C(\alpha)$$

holds for all complex numbers $\alpha \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$.

2. Main Results

First the definition of P_{α} must be modified appropriately when α is not a positive integer. We define $P_{\alpha} = \text{diag}\{d_{\alpha}(n) : n \ge 0\}$, where

$$d_{\alpha}(n) = \frac{\left|\Gamma(n+\alpha+1)\right|^2}{\Gamma(n+1)\,\Gamma(n+\alpha+\bar{\alpha}+1)}.$$
(2.1)

In the case $\alpha = 1$ (respectively, $\alpha = 2$), our matrix P_{α} coincides with P_1 (respectively, P_2) as specified in the introduction.

For any complex number α with a positive real part, we have $d_{\alpha}(n) > 0$, and an application of Cauchy-Schwarz's inequality shows that $d_{\alpha}(n) \leq 1$ for all $n \geq 0$. Indeed,

$$\begin{split} \Gamma(n+1)\,\Gamma(n+\alpha+\bar{\alpha}+1) &= \Big(\int_0^\infty t^n e^{-t}\,dt\Big)\Big(\int_0^\infty t^{n+\alpha+\bar{\alpha}}\,e^{-t}\,dt\Big)\\ &\geq \Big(\int_0^\infty t^{n+(\alpha+\bar{\alpha})/2}\,e^{-t}\,dt\Big)^2\\ &= \Big(\int_0^\infty |t^{n+\alpha}|\,e^{-t}\,dt\Big)^2\\ &\geq \Big|\int_0^\infty t^{n+\alpha}\,e^{-t}\,dt\Big|^2 = \Big|\Gamma(n+\alpha+1)\Big|^2. \end{split}$$

This shows that P_{α} is a positive contractive operator on ℓ^2 . Furthermore, the well-known asymptotic behavior of the Gamma function shows that $\lim_{n\to\infty} d_{\alpha}(n) = 1$. As a result, P_{α} is an invertible operator.

Our main result in this note is the following theorem.

Theorem 2.1. For any complex number $\alpha \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$, we have

$$C(\alpha)C(\alpha)^* = C(\alpha)^* P_{\alpha}C(\alpha).$$
(2.2)

Proof. Since both sides of (2.2) are self-adjoint matrices, it suffices to show that for any integers $v, i \ge 0$, the $(i, i + v)^{th}$ entries of both sides are equal. To this end, we shall fix v. For $i \ge 0$, let A(i) (respectively, B(i)) be the $(i, i + v)^{th}$ entry of $C(\alpha)C(\alpha)^*$ (respectively, $C(\alpha)^*P_{\alpha}C(\alpha)$). Clearly, A(i) and B(i) depend on v and α as well but since only i changes in our argument below, we have dropped v and α for the sake of simplifying the notation.

We compute, using the fact that $\overline{\Gamma}(z) = \Gamma(\overline{z})$ for $z \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$,

$$A(i) = \sum_{\ell=0}^{\infty} m_{\alpha}(i,\ell) \cdot \overline{m}_{\alpha}(i+v,\ell)$$

$$= \sum_{\ell=0}^{i} \frac{\alpha \Gamma(i-\ell+\alpha) \Gamma(i+1)}{\Gamma(i-\ell+1) \Gamma(i+\alpha+1)} \cdot \frac{\overline{\alpha} \Gamma(i+v-\ell+\overline{\alpha}) \Gamma(i+v+1)}{\Gamma(i+v-\ell+1) \Gamma(i+v+\overline{\alpha}+1)}$$

$$= \frac{|\alpha|^2 \Gamma(i+1) \Gamma(i+v+1)}{\Gamma(i+\alpha+1) \Gamma(i+v+\overline{\alpha}+1)} \sum_{\ell=0}^{i} \frac{\Gamma(i-\ell+\alpha) \Gamma(i+v-\ell+\overline{\alpha})}{\Gamma(i-\ell+1) \Gamma(i+v-\ell+1)}$$

$$= \frac{|\alpha|^2 \Gamma(i+1) \Gamma(i+v+1)}{\Gamma(i+\alpha+1) \Gamma(i+v+\overline{\alpha}+1)} \sum_{k=0}^{i} \frac{\Gamma(k+\alpha) \Gamma(k+v+\overline{\alpha})}{\Gamma(k+1) \Gamma(k+v+1)}.$$
(2.3)

The last equality follows from the change of indices $k = i - \ell$. Note that $A(0) = \frac{\bar{\alpha}}{v + \bar{\alpha}}$. Using the **ZeilbergerRecurrence** command in MapleTM, we find that A(i) satisfies the recurrence relation

$$(i+\alpha+1)(i+v+\bar{\alpha}+1)A(i+1) - (i+1)(i+v+1)A(i) = |\alpha|^2.$$
(2.4)

To prove this, we use (2.3) with i + 1 in place of i and properties of the Gamma function to write

$$\begin{split} (i+\alpha+1)(i+v+\bar{\alpha}+1)A(i+1) \\ &= \frac{|\alpha|^2 \,\Gamma(i+2) \,\Gamma(i+v+2)}{\Gamma(i+\alpha+1) \,\Gamma(i+v+\bar{\alpha}+1)} \sum_{k=0}^{i+1} \frac{\Gamma(k+\alpha) \,\Gamma(k+v+\bar{\alpha})}{\Gamma(k+1) \,\Gamma(k+v+1)} \\ &= |\alpha|^2 + \frac{|\alpha|^2 \,\Gamma(i+2) \,\Gamma(i+v+2)}{\Gamma(i+\alpha+1) \,\Gamma(i+v+\bar{\alpha}+1)} \sum_{k=0}^{i} \frac{\Gamma(k+\alpha) \,\Gamma(k+v+\bar{\alpha})}{\Gamma(k+1) \,\Gamma(k+v+1)} \\ &= |\alpha|^2 + (i+1)(i+v+1)A(i). \end{split}$$

The recurrence relation (2.4) then follows.

Let us now compute the $(i, i + v)^{th}$ entry of the matrix $C(\alpha)^* P_{\alpha}C(\alpha)$, using the formulas (1.1) and (2.1),

$$B(i) = \sum_{\ell=0}^{\infty} \overline{m}_{\alpha}(\ell, i) \cdot d_{\alpha}(\ell) \cdot m_{\alpha}(\ell, i+v) = \sum_{\ell=i+v}^{\infty} \overline{m}_{\alpha}(\ell, i) \cdot d_{\alpha}(\ell) \cdot m_{\alpha}(\ell, i+v)$$

$$=\sum_{\ell=i+v}^{\infty} \frac{|\alpha|^2 \,\Gamma(\ell-i+\bar{\alpha}) \,\Gamma(\ell+1) \,\Gamma(\ell-i-v+\alpha)}{\Gamma(\ell-i+1) \,\Gamma(\ell-i-v+1) \,\Gamma(\ell+\alpha+\bar{\alpha}+1)}$$
$$=\sum_{k=0}^{\infty} \frac{|\alpha|^2 \,\Gamma(k+v+\bar{\alpha}) \,\Gamma(k+i+v+1) \,\Gamma(k+\alpha)}{\Gamma(k+v+1) \,\Gamma(k+1) \,\Gamma(k+i+v+\alpha+\bar{\alpha}+1)},$$

by the change of indices $\ell = k + i + v$. The **ZeilbergerRecurrence** command again shows that B(i) satisfies the same recurrence relation as A(i) does. That is,

$$(i+\alpha+1)(i+v+\bar{\alpha}+1)B(i+1) - (i+1)(i+v+1)B(i) = |\alpha|^2.$$
(2.5)

This time, verifying (2.5) by a direct calculation does not seem easy. However, by following the Zeilberger's telescoping method and assistance by MapleTM, we shall demonstrate that the above recurrence equation indeed holds. To do that, let F(i,k) be the summands in the series of B(i). The command **Zeilberger** in MapleTM provides the following identity

$$(i + \alpha + 1)(i + v + \bar{\alpha} + 1)F(i + 1, k) - (i + 1)(i + v + 1)F(i, k)$$

= $(k + 1)(k + v + 1)F(i, k + 1) - k(k + v)F(i, k).$ (2.6)

Divided by F(i+1,k), equation (2.6) boils down to

$$\begin{aligned} (i+\alpha+1)(i+v+\bar{\alpha}+1) - (i+1)(i+v+1)\frac{k+i+v+\alpha+\bar{\alpha}+1}{k+i+v+1} \\ &= (k+1)(k+v+1)\frac{(k+v+\bar{\alpha})(k+\alpha)}{(k+v+1)(k+1)} - k(k+v)\frac{k+i+v+\alpha+\bar{\alpha}+1}{k+i+v+1}, \end{aligned}$$

which can now be verified by a direct calculation, or by any symbolic calculator. From (2.6), summing in k = 0 to ∞ and noticing that the right hand side is telescoping, together with the fact that

$$\lim_{k \to \infty} k(k+v)F(i,k) = |\alpha|^2,$$

we obtain (2.5). Now for i = 0,

$$\begin{split} B(0) &= |\alpha|^2 \sum_{k=0}^{\infty} \frac{\Gamma(k+v+\bar{\alpha})\,\Gamma(k+\alpha)}{\Gamma(k+1)\,\Gamma(k+v+\alpha+\bar{\alpha}+1)} \\ &= |\alpha|^2 \,\frac{\Gamma(v+\bar{\alpha})\,\Gamma(\alpha)}{\Gamma(v+\alpha+\bar{\alpha}+1)} \,\,_2F_1(v+\bar{\alpha},\,\alpha;\,v+\alpha+\bar{\alpha}+1;\,1) \\ &= |\alpha|^2 \,\frac{\Gamma(v+\bar{\alpha})\,\Gamma(\alpha)}{\Gamma(v+\alpha+\bar{\alpha}+1)} \cdot \frac{\Gamma(v+\alpha+\bar{\alpha}+1)}{\Gamma(\alpha+1)\,\Gamma(v+\bar{\alpha}+1)} \\ &\quad \text{(by Gauss's Hypergeometric Theorem)} \\ &= \frac{\bar{\alpha}}{v+\bar{\alpha}}. \end{split}$$

Here ${}_{2}F_{1}(a,b;c;1)$ denotes the hypergeometric series with upper parameters a, b and lower parameter c, evaluated at 1. Gauss's Hypergeometric Theorem

says that

$${}_2F_1(a,b;c;1) = \frac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\,\Gamma(c-b)},$$

whenever c - a - b has a positive real part. We would like to mention that the proof of Gauss's Theorem and other identities involving hypergeometric series can be done using the WZ method. See [5] for more details.

Since A(0) = B(0), and A(i) and B(i) satisfy the same recurrence relation, we conclude that A(i) = B(i) for all non-negative integers i, which completes the proof of the theorem.

Corollary 2.2. For all $\alpha \geq 1$, $C(\alpha)$ is a posinormal and hyponormal operator on ℓ^2 .

We thank B. E. Rhoades for pointing out that the corollary above also follows from [11, Theorem 2].

Corollary 2.3. For all $\alpha \geq 1$, $C(\alpha)$ is a copositormal operator on ℓ^2 .

Proof. Apply [7, Theorem 1(d)], using the fact that the interrupter P_{α} in the proof of the theorem above is invertible.

Corollary 2.4. For all $\alpha \geq 1$, both $C(\alpha)$ and $C(\alpha)^*$ are injective and have dense range with

$$\operatorname{Ran}(C(\alpha)) = \operatorname{Ran}(C(\alpha)^*).$$

Proof. Since $C(\alpha)$ is posinormal, it follows from [6, Theorem 2.1 and Corollary 2.3] that

$$\operatorname{Ran}(C(\alpha)) \subseteq \operatorname{Ran}(C(\alpha)^*)$$

and

$$\operatorname{Ker}(C(\alpha)) \subseteq \operatorname{Ker}(C(\alpha)^*).$$

Since $C(\alpha)^*$ is also known to be posinormal (by Corollary 2.3), the reverse inclusions must also hold; therefore,

$$\operatorname{Ker}(C(\alpha)) = \operatorname{Ker}(C(\alpha)^*)$$

and

$$\operatorname{Ran}(C(\alpha)) = \operatorname{Ran}(C(\alpha)^*).$$

It is easy to see that $\operatorname{Ker}(C(\alpha)) = \{0\}$. Consequently, both $C(\alpha)$ and $C(\alpha)^*$ are one-to-one, and both have dense range.

Corollary 2.5. For all $\alpha \geq 1$, $C(\alpha)^k$ is both posinormal and coposinormal for each positive integer k.

Proof. This follows from [3, Corollary 1(b)].

References

- A. Brown, P. R. Halmos, and A. L. Shields, *Cesàro Operators*, Acta Sci. Math. (Szeged) 26 (1965), 125–137.
- [2] C. S. Kubrusly and B. P. Duggal, On posinormal operators, Adv. Math. Sci. Appl. 17 (2007), no. 1, 131–147.
- [3] C. S. Kubrusly, P. C. M. Vieira, and J. Zanni, Powers of posinormal operators, Oper. Matrices, 10 (2016), no. 1, 15–27.
- [4] Maple 18, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
- [5] M. Petkovšek, H. S. Wilf, and D. Zeilberger, A = B, A K Peters, Ltd., Wellesley, MA, 1996, With a foreword by Donald E. Knuth, With a separately available computer disk.
- [6] H. C. Rhaly Jr., Posinormal operators, J. Math. Soc. Japan 46 (1994), no. 4, 587–605.
- [7] H. C. Rhaly Jr., A superclass of the posinormal operators, New York J. Math., 20 (2014), 497–506. This paper is available via http://nyjm.albany.edu/j/2014/20-28.html.
- [8] H. C. Rhaly Jr., The Nörlund operator on ℓ² generated by the sequence of positive integers is hyponormal, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 5, 737–742.
- [9] H. C. Rhaly Jr, A conjecture on hyponormality for the Cesàro matrix of positive integer order, ArXiv e-prints (2017).
- [10] B. E. Rhoades, Using inclusion theorems to establish the summability of orthogonal series, Approximation theory and spline functions (St. John's, Nfld., 1983), 441–453, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 136, Reidel, Dordrecht, 1984.
- [11] N. K Sharma, Hausdorff Operators, Acta Sci Math. (Szeged) 35 (1973), 165– 167.

Trieu Le University of Toledo Dept. of Mathematics and Statistics University of Toledo Toledo, OH 43606, U.S.A. e-mail: Trieu.Le2@utoledo.edu

H. C. Rhaly Jr. 1081 Buckley Drive Jackson, MS 39206, U.S.A. e-mail: rhaly@member.ams.org