Decomposing algebraic m-isometric tuples

Trieu Le

Department of Mathematics and Statistics, The University of Toledo, Toledo, OH 43606

Abstract

We show that any m-isometric tuple of commuting algebraic operators on a Hilbert space can be decomposed as a sum of a spherical isometry and a commuting nilpotent tuple. Our approach applies as well to tuples of algebraic operators that are hereditary roots of polynomials in several variables.

Keywords: m-isometry, nilpotent, commuting tuple

2010 MSC: 47A05, 47A13

1. Introduction

The notion of m-isometries was introduced and studied by Agler [3] back in the eighties. A bounded linear operator T on a complex Hilbert space \mathcal{H} is called m-isometric if it satisfies the operator equation

$$\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^*kT^k = 0,$$

where T^* is the adjoint operator of T. Equivalently, for all $v \in \mathcal{H}$,

$$\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \|T^k v\|^2 = 0.$$

In a series of papers [5] [6] [7], Agler and Stankus gave an extensive study of m-isometric operators. It is clear that any 1-isometric operator is an isometry. Multiplication by z on the Dirichlet space over the unit disk is not an isometry but it is a 2-isometry. Richter [30] showed that any
cyclic 2-isometry arises from multiplication by z on certain Dirichlet-type spaces. Very recently, researchers have been interested in algebraic properties, cyclicity and supercyclicity of m-isometries, among other things. See [28, 24, 14, 16, 15, 18, 13, 12, 26, 11, 22] and the references therein.

It was showed by Agler, Helton and Stankus [4, Section 1.4] that any m-isometry T on a finite dimensional Hilbert space admits a decomposition $T = S + N$, where S is a unitary and N is a nilpotent operator satisfying $SN = NS$. In [12], it was showed that if S is an isometry on any Hilbert space and N is a nilpotent operator of order n commuting with S then the sum $S + N$ is a strict $(2n - 1)$-isometry. This result has been generalized to m-isometries by several authors [26, 11, 22].

Let A be a positive operator on H. An operator T is called an (A,m)-isometry if it is a solution to the operator equation

$$\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*k} A T^k = 0.$$

Such operators were introduced and studied by Sid Ahmed and Saddi in [8], then by other authors [17, 25, 29, 23, 19, 10]. In the case $m = 1$, we call such operators A-isometries. Since A is positive, the map $v \mapsto \|v\|_A := \langle Av, v \rangle$ (where $\langle \cdot, \cdot \rangle$ denotes the inner product on H) gives rise to a seminorm. In the case A is injective, $\| \cdot \|_A$ becomes a norm. It follows that an operator T is (A,m)-isometric if and only if T is m-isometric with respect to $\| \cdot \|_A$. As a result, several algebraic properties of (A,m)-isometries follow from the corresponding properties of m-isometries with more or less similar proofs (see [8, 10]). However, there are great differences between (A,m)-isometries and m-isometries, specially when A is not injective. For example, it is known [5] that the spectrum of an m-isometry must either be a subset of the unit circle or the entire closed unit disk. On the other hand, [10, Theorem 2.3] shows that for any compact set K on the plane that intersects the unit circle, there exist a non-zero positive operator A and an $(A,1)$-isometry whose spectrum is exactly K. The following question was asked in [10].

Question 1. Let T be an (A,m)-isometry on a finite dimensional Hilbert space. Is it possible to write T as a sum of an A-isometry and a commuting nilpotent operator?

In this paper, we shall answer Question 1 in the affirmative. Indeed, we are able to prove a much more general result, in the setting of multivariable operator theory.
Gleason and Richter [20] considered the multivariable setting of \(m \)-isometries and studied their properties. A commuting \(d \)-tuple of operators \(\mathbf{T} = [T_1, \ldots, T_d] \) is said to be an \(m \)-isometry if it satisfies the operator equation

\[
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} (T^\alpha)^* T^\alpha = 0.
\] (1.1)

Here \(\alpha = (\alpha_1, \ldots, \alpha_d) \) denotes a multiindex of non-negative integers. We have also used the standard multiindex notation: \(|\alpha| = \alpha_1 + \cdots + \alpha_d\), \(\alpha! = \alpha_1! \cdots \alpha_d! \) and \(T^\alpha = T_1^{\alpha_1} \cdots T_d^{\alpha_d} \). Note that 1-isometric tuples are called spherical isometries. It was shown in [20] that the \(d \)-shift on the Drury-Arveson space over the unit ball in \(\mathbb{C}^d \) is \(d \)-isometric. This generalizes the single-variable fact that the unilateral shift on the Hardy space \(H^2 \) over the unit disk is an isometry. Gleason and Richter also studied spectral properties of \(m \)-isometric tuples and they constructed a list of examples of such operators, built from single-variable \(m \)-isometries. Many algebraic properties of \(m \)-isometric tuples have been discovered by the author in an unpublished work and independently by Gu [21]. As an application of our main result in this note, we shall answer the following question in the affirmative.

Question 2. Let \(\mathbf{T} \) be an \(m \)-isometric tuple acting on a finite dimensional Hilbert space. Is it possible to write \(\mathbf{T} \) as a sum of a 1-isometric \(\mathbf{S} \) (that is, a spherical isometry) and a nilpotent tuple \(\mathbf{N} \) that commutes with \(\mathbf{S} \)?

To state our main result, we first generalize the notion of \((A, m)\)-isometric operators to tuples. Let \(A \) be any bounded operator on \(\mathcal{H} \) (we do not need to assume that \(A \) is positive). A commuting tuple \(\mathbf{T} = [T_1, \ldots, T_d] \) is said to be \((A, m)\)-isometric if

\[
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!} (T^\alpha)^* A T^\alpha = 0.
\] (1.2)

It is clear that \((I, m)\)-isometric tuples (here \(I \) stands for the identity operator) are the same as \(m \)-isometric tuples. We shall call \((A, 1)\)-isometric tuples spherical \(A \)-isometric. They are tuples \(\mathbf{T} \) that satisfies

\[
T_1^* A T_1 + \cdots + T_d^* A T_d = A.
\]

A main result in the paper is the following theorem.
Theorem 1.1. Suppose T is an (A,m)-isometric tuple on a finite dimensional Hilbert space. Then there exist a spherical A-isometric tuple S and a nilpotent tuple N commuting with S such that $T = S + N$.

In the case of a single operator, Theorem 1.1 answers Question 1 in the affirmative. In the case $A = I$, we also obtain an affirmative answer to Question 2.

2. Hereditary calculus and applications

Our approach uses a generalization of the hereditary functional calculus developed by Agler [1, 2]. We begin with some definitions and notation. We use boldface lowercase letters, for example x, y, to denote d-tuples of complex variables. Let $\mathbb{C}[x,y]$ denote the space of polynomials in commuting variables x and y with complex coefficients. Let A be a bounded linear operator on a Hilbert space \mathcal{H} and X, Y be two d-tuples of commuting bounded operators on \mathcal{H}. These two tuples may not commute with each other. We denote by X^* the tuple $[X_1^*, \ldots, X_d^*]$. Let $f \in \mathbb{C}[x,y]$. If

$$f(x,y) = \sum_{\alpha,\beta} c_{\alpha,\beta} x^\alpha y^\beta,$$

where the sum is finite, then we define

$$f(A; X, Y) = \sum_{\alpha,\beta} c_{\alpha,\beta} (X^\alpha)^* A Y^\beta. \quad (2.1)$$

It is clear that the map $f \mapsto f(A; X, Y)$ is linear from $\mathbb{C}[x,y]$ into $(\mathcal{B}(\mathcal{H}))^d$. If $g \in \mathbb{C}[x,y]$ depending only on x, then $g(A; X, Y) = g(X^*) A$. On the other hand, if $h \in \mathbb{C}[x,y]$ depending only on y, then $h(A; X, Y) = A h(Y)$. Furthermore, if $F = g f h$, then

$$F(A; X, Y) = g(X^*) f(A; X, Y) h(Y). \quad (2.2)$$

If $X = Y$, we shall write $f(A; X)$ instead of $f(A; X, X)$. In the case $A = I$, the identity operator, we shall use $f(X, Y)$ to denote $f(I; X, Y)$. Therefore, $f(X)$ denotes $f(I; X, X)$. We say that X is a hereditary root of f if $f(X) = 0$.

Example 2.1. Define $p_m(x,y) = \left(\sum_{j=1}^d x_j y_j - 1 \right)^m \in \mathbb{C}[x,y]$. It is then clear that T is m-isometric if and only if T is a hereditary root of p_m, that is, $p_m(T) = 0$. Similarly, T is (A,m)-isometric if and only if $p_m(A; T) = 0$.

Even though the map $f \mapsto f(A;X,Y)$ is not multiplicative in general, it turns out that its kernel is an ideal of $\mathbb{C}[x,y]$. This observation will play an important role in our approach.

Proposition 2.2. Let A be a bounded linear operator and let X and Y be two d-tuples of commuting operators. Define

$$\mathcal{J}(A;X,Y) = \{ f \in \mathbb{C}[x,y] : f(A;X,Y) = 0 \}.$$

Then $\mathcal{J}(A;X,Y)$ is an ideal of $\mathbb{C}[x,y]$.

Proof. For simplicity of the notation, throughout the proof, let us write \mathcal{J} for $\mathcal{J}(A;X,Y)$. It is clear that \mathcal{J} is a vector subspace of $\mathbb{C}[x,y]$. Now let f be in \mathcal{J} and g be in $\mathbb{C}[x,y]$. We need to show that gf belongs to \mathcal{J}. By linearity, it suffices to consider the case g is a monomial $g(x,y) = x^\alpha y^\beta$ for some multi-indices α and β. By 2.2,

$$(fg)(A;X,Y) = (X^\alpha)^* \cdot f(A;X,Y) \cdot Y^\beta = 0,$$

since $f(A;X,Y) = 0$. This shows that fg belongs to \mathcal{J} as desired.

If f is a polynomial of y in the form $f(y) = \sum \alpha c_\alpha y^\alpha$, we define $\bar{f}(x)$ as

$$\bar{f}(x) = \sum \alpha \bar{c}_\alpha x^\alpha.$$

In the case A is positive and $X = Y$, we obtain an additional property of the ideal $\mathcal{J}(A;Y,Y)$ as follows.

Proposition 2.3. Let A be a positive operator and Y be a d-tuple of commuting operators. Suppose f_1, \ldots, f_m are polynomials of y such that the sum $\bar{f}_1(x)f_1(y) + \cdots + \bar{f}_m(x)f_m(y)$ belongs to $\mathcal{J}(A;Y,Y)$. Then $f_1(y), \ldots, f_m(y)$ also belong to $\mathcal{J}(A;Y,Y)$.

Proof. Note that $\bar{f}_j(Y^*) = (f_j(Y))^*$ for all j. By the hypotheses, we have

$$(f_1(Y))^* Af_1(Y) + \cdots + (f_m(Y))^* Af_m(Y) = 0,$$

which implies

$$[(A^{1/2} f_1(Y))^*[A^{1/2} f_1(Y)] + \cdots + [A^{1/2} f_m(Y)]^*[A^{1/2} f_m(Y)] = 0.$$

It follows that for all j, we have $A^{1/2} f_j(Y) = 0$, which implies $Af_j(Y) = 0$. Therefore, $f_j(y) \in \mathcal{J}(A;Y,Y)$ for all j.

5
Recall that the radical ideal of an ideal \(\mathcal{I} \subset \mathbb{C}[x, y]\), denoted by \(\text{Rad}(\mathcal{I})\), is the set of all polynomials \(p \in \mathbb{C}[x, y]\) such that \(p^N \in \mathcal{I}\) for some positive integer \(N\). In the following proposition, we provide an interesting relation between generalized eigenvectors and eigenvalues of \(X\) and \(Y\) whenever we have \(f(A; X, Y) = 0\).

Proposition 2.4. Let \(X\) and \(Y\) be two \(d\)-tuples of commuting operators. Suppose \(k\) is a positive integer, \(\lambda = (\lambda_1, \ldots, \lambda_d), \omega = (\omega_1, \ldots, \omega_d) \in \mathbb{C}^d\) and \(u, v \in \mathcal{H}\) such that
\[
(X_j - \lambda_j)^k u = (Y_j - \omega_j)^k v = 0
\]
for all \(1 \leq j \leq d\). Then for any polynomial \(f \in \text{Rad}(\mathcal{I}(A; X, Y))\), we have
\[
f(\bar{\lambda}, \omega) \langle Av, u \rangle = 0. \tag{2.3}
\]

Proof. We first assume that \(f \in \mathcal{I}(A; X, Y)\). Using Taylor’s expansion, we find polynomials \(g_1, \ldots, g_d\) and \(h_1, \ldots, h_d\) such that
\[
f(\bar{\lambda}, \omega) - f(x, y) = \sum_{j=1}^{d} (x_j - \bar{\lambda}_j) g_j(x, y) + \sum_{j=1}^{d} h_j(x, y)(y_j - \omega_j).
\]
Take any integer \(M \geq 1 + 2d(k - 1)\). By the multinomial expansion, there exist polynomials \(G_1, \ldots, G_d\) and \(H_1, \ldots, H_d\) such that
\[
\left(f(\bar{\lambda}, \omega) - f(x, y)\right)^M = \sum_{j=1}^{d} (x_j - \bar{\lambda}_j)^k G_j(x, y) + \sum_{j=1}^{d} H_j(x, y)(y_j - \omega_j)^k.
\]
The left-hand side, by the binomial expansion, can be written as
\[
(f(\bar{\lambda}, \omega))^M + f(x, y) H(x, y)
\]
for some polynomial \(H\). Since \(f(A; X, Y) = 0\), using Equation \(2.2\) and Proposition \(2.2\), we conclude that
\[
(f(\bar{\lambda}, \omega))^M \cdot A = \sum_{j=1}^{d} (X_j^* - \bar{\lambda}_j)^k G_j(A; X, Y) + \sum_{j=1}^{d} H_j(A; X, Y)(Y_j - \omega_j)^k.
\]
Consequently,

\[
(f(\dot{\lambda}, \omega))^N \langle Av, u \rangle = \sum_{j=1}^{d} \langle G_j(A; X, Y)v, (X_j - \lambda_j)^k u \rangle + \sum_{j=1}^{d} \langle H_j(A; X, Y)(Y_j - \omega_j)^k v, u \rangle = 0,
\]

which implies (2.3).

In the general case, there exists an integer \(N \geq 1 \) such that \(f^N \) belongs to \(\mathcal{J}(A; X, Y) \). By the case we have just proved, \((f(\dot{\lambda}, \omega))^N \langle Av, u \rangle = 0 \), which again implies (2.3). This completes the proof of the proposition.

Remark 2.5. In the case of a single operator, Proposition 2.4 provides a generalization of [2, Lemmas 18 and 19]. Our proof here is even simpler and more transparent.

Question 1 and Question 2 in the introduction concern operators acting on a finite dimensional Hilbert space. It turns out that this condition can be replaced by a weaker one. Recall that a linear operator \(T \) is called algebraic if there exist complex constants \(c_0, c_1, \ldots, c_\ell \) such that

\[
c_0 I + c_1 T + \cdots + c_\ell T^\ell = 0.
\]

Algebraic operator roots of polynomials were investigated in [4]. We first discuss some preparatory results on algebraic operators acting on a general complex vector space \(V \). It is well known that if \(T \) is an algebraic linear operator on \(V \), then the spectrum \(\sigma(T) \) is finite and there exists a direct sum decomposition \(V = \bigoplus_{a \in \sigma(T)} V_a \), where each \(V_a \) is an invariant subspace for \(T \) (the subspace \(V_a \) is a closed subspace if \(V \) is a normed space and \(T \) is bounded) and \(T - aI \) is nilpotent on \(V_a \). Indeed, if the minimal polynomial of \(T \) is factored in the form

\[
p(z) = (z - a_1)^{m_1} \cdots (z - a_\ell)^{m_\ell},
\]

where \(a_1, \ldots, a_\ell \) are pairwise distinct and \(m_1, \ldots, m_\ell \geq 1 \), then \(\sigma(T) = \{a_1, \ldots, a_\ell\} \) and \(V_{a_j} = \ker(T - a_j)^{m_j} \) for \(1 \leq j \leq \ell \). See, for example, [32, Section 6.3], which discusses operators acting on finite dimensional vector spaces. However, the arguments apply to algebraic operators on infinite dimensional vector spaces as well.
Suppose now \(T = [T_1, \ldots, T_d] \) is a tuple of commuting algebraic operators on \(\mathcal{V} \). We first decompose \(\mathcal{V} \) as above with respect to the spectrum \(\sigma(T_1) \). Since each subspace in the decomposition is invariant for all \(T_j \), we again decompose such subspace with respect to the spectrum \(\sigma(T_2) \). Continuing this process, we obtain a finite set \(\Lambda \subset \mathbb{C}^d \) and a direct sum decomposition \(\mathcal{V} = \bigoplus_{\lambda \in \Lambda} \mathcal{V}_\lambda \) such that for each \(\lambda = (\lambda_1, \ldots, \lambda_d) \in \Lambda \) and \(1 \leq j \leq d \), the subspace \(\mathcal{V}_\lambda \) is invariant for \(T \) and \(T_j - \lambda_j I \) is nilpotent on \(\mathcal{V}_\lambda \). Let \(E_\lambda \) denote the canonical projection (possibly non-orthogonal) from \(\mathcal{V} \) onto \(\mathcal{V}_\lambda \). Then we have

\[
S = \sum_{\lambda \in \Lambda} \lambda \cdot E_\lambda = \left[\sum_{\lambda \in \Lambda} \lambda_1 E_\lambda, \ldots, \sum_{\lambda \in \Lambda} \lambda_d E_\lambda \right]
\]

(2.4)

Then \(S \) is a tuple of commuting operators which commutes with \(T \), and \(T - S \) is nilpotent. For any multiindex \(\alpha \), we have

\[
S^\alpha = S_1^{\alpha_1} \cdots S_d^{\alpha_d} = \sum_{\lambda \in \Lambda} \lambda^\alpha E_\lambda.
\]

In the case \(\mathcal{V} \) is a normed space and \(T \) is bounded, each operator in the tuple \(S \) is bounded as well.

We now prove a very general result, which will provide affirmative answers to Questions 1 and 2 in the introduction.

Theorem 2.6. Let \(X \) and \(Y \) be two \(d \)-tuples of commuting algebraic operators on a Hilbert space \(\mathcal{H} \). Let \(U \) (respectively, \(V \)) be the commuting tuple associated with \(X \) (respectively, \(Y \)) as in (2.4). Then

\[
\text{Rad}(\mathcal{J}(A; X, Y)) \subseteq \mathcal{J}(A; U, V).
\]

(2.5)

Proof. Write \(X = [X_1, \ldots, X_d] \) and decompose \(\mathcal{H} = \bigoplus_{\lambda \in \Lambda} \mathcal{H}_\lambda \) such that for each \(\lambda = (\lambda_1, \ldots, \lambda_d) \in \Lambda \), the subspace \(\mathcal{H}_\lambda \) is invariant for \(X \) and \(X_j - \lambda_j I \) is nilpotent on \(\mathcal{H}_\lambda \). Let \(U_\lambda \) denote the canonical projection from \(\mathcal{H} \) onto \(\mathcal{H}_\lambda \). Then

\[
U^\alpha = \sum_{\lambda \in \Lambda} \lambda^\alpha \cdot U_\lambda.
\]

Similarly, write \(Y = [Y_1, \ldots, Y_d] \) and decompose \(\mathcal{H} = \bigoplus_{\omega \in \Omega} \mathcal{K}_\omega \). Let \(V_\omega \) be the canonical projection from \(\mathcal{H} \) onto \(\mathcal{K}_\omega \). Then

\[
V^\beta = \sum_{\omega \in \Omega} \omega^\beta \cdot V_\omega.
\]
Take any polynomial \(p \in \text{Rad}(J(A; X, Y)) \). For \(\lambda \in \Lambda, \omega \in \Omega \) and vectors \(u \in H_\lambda \) and \(v \in K_\omega \), there exists an integer \(k \geq 1 \) sufficiently large such that

\[
(X_j - \lambda_j I)^k u = (Y_j - \omega_j I)^k v = 0
\]

for all \(1 \leq j \leq d \). Proposition 2.4 shows that

\[
p(\bar{\lambda}, \omega) \langle Av, u \rangle = 0,
\]

which implies

\[
p(\bar{\lambda}, \omega) U_\lambda^* AV_\omega = 0.
\]

Write \(p(x, y) = \sum_{\alpha, \beta} c_{\alpha, \beta} x^\alpha y^\beta \). We compute

\[
p(A; U, V) = \sum_{\alpha, \beta} c_{\alpha, \beta} U_\alpha^* A V^\beta
\]

\[
= \sum_{\alpha, \beta} c_{\alpha, \beta} \left(\sum_{\lambda \in \Lambda} \bar{\lambda}^\alpha U_\lambda^* \right) A \left(\sum_{\omega \in \Omega} \omega^\beta \cdot V_\omega \right)
\]

\[
= \sum_{\lambda \in \Lambda, \omega \in \Omega} \left(\sum_{\alpha, \beta} c_{\alpha, \beta} \bar{\lambda}^\alpha \omega^\beta \right) U_\lambda^* AV_\omega
\]

\[
= \sum_{\lambda \in \Lambda, \omega \in \Omega} p(\bar{\lambda}, \omega) U_\lambda^* AV_\omega = 0.
\]

We conclude that \(p \in J(A; U, V) \). Since \(p \in \text{Rad}(J(A; X, Y)) \) was arbitrary, the proof of the theorem is complete.

Theorem 2.6 enjoys numerous interesting applications that we now describe.

Proof of Theorem 1.1. We shall prove the theorem under a more general assumption that \(T \) is a tuple of commuting algebraic operators. Since \(T \) is \((A, m)-isometric\), the polynomial \((\sum_{j=1}^d x_j y_j - 1)^m \) belongs to the ideal \(J(A; T, T) \). It follows that the polynomial \(p(x, y) = \sum_{j=1}^d x_j y_j - 1 \) belongs to the radical ideal of \(J(A; T, T) \). By Theorem 2.6 we may decompose \(T = S + N \), where \(N \) is a nilpotent tuple commuting with \(S \) and \(p(A; S, S) = 0 \), which means that \(S \) is a spherical \(A \)-isometry.

Example 2.7. Recall that an operator \(T \) is called \((m, n)-isosymmetric\) (see [33]) if \(T \) is a hereditary root of \(f(x, y) = (xy - 1)^m (x - y)^n \). Theorem 2.6 shows that any such algebraic \(T \) can be decomposed as \(T = S + N \), where \(N \) is nilpotent, \(S \) is isosymmetric (i.e. \((1, 1)-isosymmetric\)) and \(SN = NS \).
Example 2.8. Several researchers [27, 9] have investigated the so-called toral m-isometric tuples. It is straightforward to generalize this notion to toral (A, m)-isometric tuples, which are commuting d-tuples T that satisfy

$$
\sum_{\substack{0 \leq \alpha_1 \leq m_1 \\
0 \leq \alpha_2 \leq m_2}} (-1)^{\|\alpha\|} \binom{m_1, \ldots, m_d}{\alpha} (T^\alpha)^* A T^\alpha = 0.
$$

for all $m_1 + \cdots + m_d = m$. Equivalently, T is a common hereditary root of all polynomials of the form $(1 - x_1 y_1)^{m_1} \cdots (1 - x_d y_d)^{m_d}$ for $m_1 + \cdots + m_d = m$. This means that all these polynomials belong to the ideal $I(A; T, T)$. We see that toral $(A, 1)$-isometries are just commuting tuples T such that each T_j is an A-isometry, that is, $T_j^* A T_j = A$. Note that for any toral (A, m)-isometry T, the radical ideal $\text{Rad} (I(A; T, T))$ contains all the polynomials $\{1 - x_j y_j : j = 1, 2, \ldots, d\}$. Theorem 2.6 asserts that $T = S + N$, where S is a toral $(A, 1)$-isometry and N is a nilpotent tuple commuting with S.

3. On 2-isometric tuples

It is well known that any 2-isometry on a finite dimensional Hilbert space must actually be an isometry. On the other hand, there are many examples of finite dimensional 2-isometric tuples that are not spherical isometries. The following class of examples is given in Richter’s talk [31].

Example 3.1. If $\alpha = (\alpha_1, \ldots, \alpha_d) \in \partial B_d$ and $V_j : C^m \rightarrow C^n$ such that $\sum_{j=1}^d \alpha_j V_j = 0$, then $W = (W_1, \ldots, W_d)$ with

$$
W_j = \begin{pmatrix}
\alpha_j I_n & V_j \\
0 & \alpha_j I_m
\end{pmatrix}
$$

defines a 2-isometric d-tuple.

The following result was stated in [31] without a proof and as far as the author is aware of, it has not appeared in a published paper.

Theorem 3.2 (Richter-Sundberg). If T is a 2-isometric tuple on a finite dimensional space, then

$$
T = U \oplus W,
$$

where U is a spherical unitary and W is a direct sum of operator tuples unitarily equivalent to those in Example 3.1.
In this section, we shall assume that \(A \) is self-adjoint and investigate \((A, 2)\)-isometric \(d \)-tuples. We obtain a characterization for such tuples that generalizes the above theorem. We first provide a generalization of Example 3.1. We call \(\mathbf{N} = (N_1, \ldots, N_d) \) an \((A, n)\)-nilpotent tuple if \(AN^\alpha = 0 \) for any indices \(\alpha \) with \(|\alpha| = n\).

Proposition 3.3. Assume that \(A \) is a self-adjoint operator. Let \(S \) be an \((A, 1)\)-isometry and \(\mathbf{N} \) an \((A, 2)\)-nilpotent tuple such that \(S \) commutes with \(\mathbf{N} \). Suppose \(S^*_j AN_j + \cdots + S^*_d AN_d = 0 \), then \(S + \mathbf{N} \) is an \((A, 2)\)-isometry.

Proof. By the assumption, we have \(AN_j N_k = N^*_j N^*_k A = 0 \) for \(1 \leq j, k \leq d \),
\[
\sum_{j=1}^d S^*_j AS_j = A, \quad \text{and} \quad \sum_{j=1}^d S^*_j AN_j = \sum_{j=1}^d N^*_j AS_j = 0.
\]
It follows that
\[
\sum_{j=1}^d (S_j + N_j)^* A (S_j + N_j) = A + \sum_{j=1}^d N^*_j AN_j.
\]
We then compute
\[
\sum_{1 \leq k, j \leq d} (S_k + N_k)^*(S_j + N_j)^* A (S_j + N_j)(S_k + N_k)
\]
\[
= \sum_{k=1}^d (S^*_k + N^*_k)(A + \sum_{j=1}^d N^*_j AN_j)(S_k + N_k)
\]
\[
= \sum_{k=1}^d (S^*_k + N^*_k) A (S_k + N_k) + \sum_{1 \leq k, j \leq d} (S^*_k + N^*_k)N^*_j AN_j(S_k + N_k)
\]
\[
= A + \sum_{k=1}^d N^*_k AN_k + \sum_{1 \leq k, j \leq d} S^*_k N^*_j AN_j S_k
\]
\[
= A + \sum_{k=1}^d N^*_k AN_k + \sum_{j=1}^d N^*_j \left(\sum_{k=1}^d S^*_k AS_k \right) N_j
\]
\[
= A + \sum_{k=1}^d N^*_k AN_k + \sum_{j=1}^d N^*_j AN_j
\]
\[
= A + 2 \sum_{j=1}^d N^*_j AN_j
\]
\[= 2 \sum_{j=1}^{d} (S_j + N_j)^* A (S_j + N_j) - A. \]

Consequently, the sum \(S + N \) is an \((A, 2)\)-isometric tuple.

Remark 3.4. We have provided a direct proof of Proposition 2.3. Using the hereditary functional calculus and the approach in [26], one may generalize the result to the case \(S \) being an \((A, m)\)-isometry and \(N \) an \((A, n)\)-nilpotent commuting with \(S \). Under such an assumption, if \(S_j^* A N_1 + \cdots + S_d^* A N_d = 0 \), then \(S + N \) is an \((A, m + 2n - 3)\)-isometry. We leave the details for the interested reader.

We now show that any algebraic \((A, 2)\)-isometric tuple has the form given in Proposition 3.3 and as a result, provide a proof of Richter-Sundberg’s theorem.

Theorem 3.5. Assume that \(A \) is a positive operator. Let \(T \) be an algebraic \((A, 2)\)-isometric tuple on \(\mathcal{H} \). Then there exists an \((A, 1)\)-isometric tuple \(S \) and a tuple \(N \) commuting with \(S \) such that \(T = S + N \), \(\sum_{j=1}^{d} S_j^* A N_j = 0 \), and \(AN_j N_j = 0 \) for all \(1 \leq j \leq d \) (we call such \(N \) an \((A, 2)\)-nilpotent tuple).

In the case \(\mathcal{H} \) is finite dimensional and \(A = I \), the identity operator, we recover Theorem 3.2.

Proof. Recall that there exists a finite set \(\Lambda \subset C^d \) and a direct sum decomposition \(\mathcal{H} = \bigoplus_{\lambda \in \Lambda} \mathcal{H}_\lambda \) such that for each \(\lambda \in \Lambda \), the subspace \(\mathcal{H}_\lambda \) is invariant for \(T \) and \(T_j - \lambda_j I \) is nilpotent on \(\mathcal{H}_\lambda \). Let \(S \) be defined as in (2.4) and put \(N = T - S \). From the construction, \(N \) is nilpotent and Theorem 2.6 shows that \(S \) is \((A, 1)\)-isometric. We shall show that \(N \) satisfies the required properties.

Restricting on each invariant subspace \(\mathcal{H}_\lambda \), we only need to consider the case \(\mathcal{H} = \mathcal{H}_\lambda \) and so \(S = \lambda I \). Proposition 2.4 asserts that \(|\lambda|^2 - 1 \langle Av, u \rangle = 0 \) for all \(v, u \in \mathcal{H} \). If \(|\lambda| \neq 1 \), then \(A = 0 \) and the conclusion follows. Now we assume that \(|\lambda| = 1 \). Since \(N \) is nilpotent, there exists a positive integer \(r \) such that \(A N^\alpha = 0 \) whenever \(|\alpha| = r \). We claim that \(r \) may be taken to be 2. To prove the claim, we assume \(r \geq 3 \) and show that \(A N^\alpha = 0 \) for all \(|\alpha| = r - 1 \).
Since $T = \lambda I + N$ is $(A, 2)$-isometric, the tuple N is an A-root of the polynomial

$$p(x, y) = \left(\sum_{j=1}^{d} (x_j + \bar{\lambda}_j)(y_j + \lambda_j) - 1 \right)^2 = \left(\sum_{j=1}^{d} x_jy_j + \lambda_jx_j + \bar{\lambda}_jy_j \right)^2.$$

On the other hand, N is an A-root of x^α and y^α for all $|\alpha| = r$. This shows that $p(x, y)$, x^α and y^α belong to $J(A; N, N)$ for all $|\alpha| = r$. To simplify the notation, we shall denote $J(A; N, N)$ by J in the rest of the proof. Take any multiindex β with $|\beta| = r - 2$. We write

$$x^\beta p(x, y)y^\beta = x^\beta \left(\sum_{j=1}^{d} \lambda_j x_j \right) \left(\sum_{\ell=1}^{d} \bar{\lambda}_\ell y_\ell \right)y^\beta + \sum_{|\gamma| \geq r} x^\gamma H_\gamma(x, y) + G_\gamma(x, y)y^\gamma$$

for some polynomials H_γ and G_γ. Since the left-hand side and the second term on the right-hand side belong to J, which is an ideal, we conclude that

$$x^\beta \left(\sum_{j=1}^{d} \lambda_j x_j \right) \left(\sum_{\ell=1}^{d} \bar{\lambda}_\ell y_\ell \right)y^\beta \in J.$$

Proposition 2.3 shows that both $\left(\sum_{\ell=1}^{d} \bar{\lambda}_\ell y_\ell \right)y^\beta$ and $x^\beta \left(\sum_{j=1}^{d} \lambda_j x_j \right)$ are in J. Now for any multiindex γ with $|\gamma| = r - 3$, we compute

$$x^\gamma p(x, y)y^\gamma = x^\gamma \left(\sum_{j=1}^{d} x_jy_j \right)^2 y^\gamma + \sum_{|\beta| = r - 2} x^\beta \left(\sum_{j=1}^{d} \lambda_j x_j \right) P_\beta(x, y)$$

$$+ \sum_{|\beta| = r - 2} \left(\sum_{j=1}^{d} \lambda_j x_j \right) y^\beta Q_\beta(x, y).$$

Since the left-hand side and the last two sums on the right-hand side belong to J, it follows that $x^\gamma \left(\sum_{j=1}^{d} x_jy_j \right)^2 y^\gamma$ belongs to J. Another application of Proposition 2.3 then shows that $y_j y_\ell y^\gamma$ belongs to J for all $1 \leq j, \ell \leq d$. That is, y^α belongs to J whenever $|\alpha| = r - 1$ (as long as $r \geq 3$). As a consequence, we see that y^α, and hence x^α, belong to J for all $|\alpha| = 2$. This together with the fact that $p(x, y) \in J$ forces $\sum_{j=1}^{d} \lambda_j x_j)(\sum_{\ell=1}^{d} \bar{\lambda}_\ell y_\ell)$ to belong to J, which implies that $\sum_{\ell=1}^{d} \bar{\lambda}_\ell y_\ell$ is in J. We have then shown $AN_jN_\ell = 0$ for all $1 \leq j, \ell \leq d$ and $\sum_{\ell=1}^{d} S^\ast_\ell AN_\ell = \sum_{\ell=1}^{d} \bar{\lambda}_\ell AN_\ell = 0$, as desired.
Now let us consider T a 2-isometric tuple on a finite dimensional space \mathcal{H}. Recall that we have the decomposition $\mathcal{H} = \bigoplus_{\lambda \in \Lambda} \mathcal{H}_{\lambda}$ such that for each $\lambda \in \Lambda$, the subspace \mathcal{H}_{λ} is invariant for T and $T_{j} - \lambda_{j}I$ is nilpotent on \mathcal{H}_{λ}. By Proposition 2.4, we have $(\langle \omega, \lambda \rangle - 1)^{2}\langle v, u \rangle = 0$ for all $v \in \mathcal{H}_{\omega}$ and $u \in \mathcal{H}_{\lambda}$. It follows that $|\lambda| = 1$ for all $\lambda \in \Lambda$ and $\mathcal{H}_{\lambda} \perp \mathcal{H}_{\omega}$ whenever $\lambda \neq \omega$. As a result, each subspace \mathcal{H}_{λ} is reducing for T. To complete the proof, it suffices to consider $\mathcal{H} = \mathcal{H}_{\lambda}$. We shall show that either T is a spherical unitary or it is unitarily equivalent to a tuple given in Example 3.1. Indeed, we have $T = \lambda I + N$, where $\sum_{\ell=1}^{d} \lambda_{\ell} N_{\ell} = 0$ and $N_{j} N_{\ell} = 0$ for all $1 \leq j, \ell \leq d$. If $N = 0$, then T is a spherical unitary. Otherwise, let $M = \ker(N_{1}) \cap \cdots \cap \ker(N_{d})$. Then $N_{\ell}(\mathcal{H}) \subseteq M$ for all $1 \leq \ell \leq d$. As a consequence, with respect to the orthogonal decomposition $\mathcal{H} = M \oplus M^{\perp}$, each N_{ℓ} has the form

$$N_{\ell} = \begin{pmatrix} 0 & V_{\ell} \\ 0 & 0 \end{pmatrix}$$

for some $V_{\ell} : M^{\perp} \to M$. Since $\sum_{\ell=1}^{d} \lambda_{\ell} N_{\ell} = 0$, we have $\sum_{\ell=1}^{d} \lambda_{\ell} V_{\ell} = 0$. It follows that T is unitarily equivalent to an operator tuple in Example 3.1.

Acknowledgements

The author wishes to thank the referee for helpful suggestions which improved the presentation of the paper.

References

