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Abstract. In this paper we discuss some algebraic properties of diag-
onal Toeplitz operators on weighted Bergman spaces of the unit ball in
Cn. We give the affirmative answer to the zero-product problem when
all but possibly one of the involving Toeplitz operators are diagonal
with respect to the standard orthonormal basis. We also study Toeplitz
operators which commute with diagonal Toeplitz operators.

1. INTRODUCTION

For any integer n ≥ 1, let Cn denote the Cartesian product of n copies
of C. For any z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn, we write
〈z, w〉 = z1w1 + · · · + znwn and |z| =

√
|z1|2 + · · ·+ |zn|2 for the inner

product and the associated Euclidean norm. Let Bn denote the open unit
ball consisting of all z ∈ Cn with |z| < 1. Let Sn denote the unit sphere
consisting of all z ∈ Cn with |z| = 1.

Let ν denote the Lebesgue measure on Bn normalized so that ν(Bn) = 1.
Fix a real number α > −1. The weighted Lebesgue measure να on Bn is
defined by dνα(z) = cα(1−|z|2)αdν(z), where cα is a normalizing constant so

that να(Bn) = 1. A direct computation shows that cα =
Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
.

For 1 ≤ p ≤ ∞, let Lp
α denote the space Lp(Bn,dνα). Note that L∞α is the

same as L∞ = L∞(Bn,dν).
The weighted Bergman space Ap

α consists of all holomorphic functions in
Bn which are also in Lp

α. It is well-known that Ap
α is a closed subspace of

Lp
α. In this paper we are only interested in the case p = 2. We denote the

inner product in L2
α by 〈, 〉α.

For any multi-index m = (m1, . . . ,mn) of non-negative integers, we write
|m| = m1 + · · · + mn and m! = m1! · · ·mn!. For any z = (z1, . . . , zn) ∈ Cn,
we write zm = zm1

1 · · · zmn
n . The standard orthonormal basis for A2

α is {em :
m ∈ Nn}, where

em(z) =
[Γ(n + |m|+ α + 1)

m! Γ(n + α + 1)

]1/2
zm, m ∈ Nn, z ∈ Bn.
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For a more detailed discussion of A2
α, see Chapter 2 in [12].

Since A2
α is a closed subspace of the Hilbert space L2

α, there is an orthog-
onal projection Pα from L2

α onto A2
α. For any function f ∈ L2

α the Toeplitz
operator with symbol f is denoted by Tf , which is densely defined on A2

α

by Tfϕ = Pα(fϕ) for bounded holomorphic functions ϕ on Bn. If f is a
bounded function then Tf is a bounded operator on A2

α with ‖Tf‖ ≤ ‖f‖∞
and (Tf )∗ = Tf̄ . If f and g are bounded functions such that either f or ḡ
is holomorphic in the open unit ball then TgTf = Tgf . These properties can
be verified directly from the definition of Toeplitz operators.

There is an extensive literature on Toeplitz operators on the Hardy space
H2 of the unit circle. We refer the reader to [9] for definitions of H2 and
their Toeplitz operators. In the context of Toeplitz operators on H2, it was
showed by A. Brown and P. Halmos [4] back in the sixties that if f and g are
bounded functions on the unit circle then TgTf is another Toeplitz operator
if and only if either f or ḡ is holomorphic. From this it is readily deduced
that if f, g ∈ L∞ such that TgTf = 0 then one of the symbols must be
the zero function. A more general question concerning products of several
Toeplitz operators is the so-called “zero-product problem”.

Problem 1.1. Suppose f1, . . . , fN are functions in L∞ such that Tf1 · · ·TfN

is the zero operator. Does it follow that one of the functions fj’s must be
the zero function?

For Toeplitz operators on H2, the affirmative answer was proved by K.Y.
Guo [8] for N = 5 and by C. Gu [7] for N = 6. Problem 1.1 for general
N remains open. For Toeplitz operators on the Bergman space of the unit
disk, P. Ahern and Ž. Čučković [2] answered Problem 1.1 affirmatively for the
case N = 2 with an additional assumption that both symbols are bounded
harmonic functions. In fact they studied a type of Brown-Halmos Theorem
for Toeplitz operators on the Bergman space. They showed that if f and
g are bounded harmonic functions and h is a bounded C2 function whose
invariant Laplacian is also bounded (later Ahern [1] removed this condition
on h) then the equality TgTf = Th holds only in the trivial case, that is, when
f or ḡ is holomorphic. This result was generalized to Toeplitz operators on
the Bergman space of the unit ball in Cn by B. Choe and K. Koo in [5] with
an assumption about the continuity of the symbols on an open subset of the
boundary. They were also able to show that if f1, . . . , fn+3 (here N = n+3)
are bounded harmonic functions that have Lipschitz continuous extensions
to the whole boundary of the unit ball then Tf1 · · ·Tfn+3 = 0 implies that
one of the symbols must be zero. The answer in the general case remains
unknown, even for two Toeplitz operators.

In this paper we provide the affirmative answer to Problem 1.1 when all
but possibly one of the Toeplitz operators are diagonal with respect to the
standard orthonormal basis. The only result in this direction which we are
aware of is by Ahern and Čučković in their 2004 paper [3]. There, among
other things, they showed that in the one dimensional case, if Tf or Tg is
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diagonal and TgTf = 0 then either f or g is the zero function. It is not
clear how their method will work for products of more than two Toeplitz
operators or in the setting of weighted Bergman spaces in higher dimensions.
Our result is the following theorem.

Theorem 1.2. Suppose f1, . . . , fN and g1, . . . , gM are bounded measur-
able functions on Bn so that none of them is the zero function and that
the corresponding Toeplitz operators on A2

α are diagonal with respect to
the standard orthonormal basis. Suppose f ∈ L2

α such that the operator
Tf1 · · ·TfN

TfTg1 · · ·TgM (which is densely defined on A2
α) is the zero opera-

tor. Then f must be the zero function.

A function f on Bn is called a radial function if there is a function f̃ on
[0, 1) such that f(z) = f̃(|z|) for all z ∈ Bn. It is well-known that if f ∈ L2

α

is a radial function then Tf is a diagonal operator (in the rest of the paper,
a densely defined operator on A2

α is called diagonal if it is diagonal with
respect to the standard orthonormal basis). In [6, Theorem 6], C̆uc̆ković
and Rao showed that if f and g are L∞(B1,dν) functions and g is radial
and non-constant then TfTg = TgTf implies that f is a radial function. The
situation in higher dimensions turns out to be more complicated. Since non-
radial functions may give rise to diagonal Toeplitz operators (see Theorem
3.1), a version of C̆uc̆ković and Rao’s result that one may hope for is that
if Tf and Tg commute and g is a non-constant radial function then Tf is
also diagonal. However this is not true when n ≥ 2. As we will see in
the next theorem, there is a function f ∈ L∞ so that Tf is not diagonal
and TfTg = TgTf for all radial functions g ∈ L∞. We will also show that
there is a function g ∈ L∞ such that Tg is diagonal and for any f ∈ L∞,
TfTg = TgTf implies Tf is diagonal. So the set

G = {g ∈ L∞ : Tg is diagonal

and for f ∈L∞, TfTg = TgTf implies Tf is diagonal}

is non-empty and does not contain any radial functions when n ≥ 2 (in
the one dimensional case, this set is exactly the set of all non-constant
radial functions in L∞). It would be interesting if one can give a complete
description of G as in the one dimensional case. For now we are not aware
of such a description. In Theorem 4.1 we will give a sufficient condition for
a function g to belong to G.

Theorem 1.3. Suppose n ≥ 2. The there exist
(1) a function f ∈ L∞ such that TfTh = ThTf for all radial functions h

in L∞, and
(2) a function g ∈ L∞ such that Tg is diagonal and for any h ∈ L∞,

TgTh = ThTg implies Th is diagonal.
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2. SOME FUNCTION-THEORETIC RESULTS

In this section we will prove some function-theoretic results which are
useful for our analysis of Toeplitz operators in the next two sections. For
any 1 ≤ j ≤ n, let σj : N× Nn−1 → Nn be the map defined by the formula
σj(s, (m1, . . . ,mn−1)) = (m1, . . . ,mj−1, s, mj , . . . ,mn−1) for all s ∈ N and
(m1, . . . ,mn−1) ∈ Nn−1. If M is a subset of Nn and 1 ≤ j ≤ n, we define

M̃j =
{

m̃ = (m1, . . . ,mn−1) ∈ Nn−1 :
∑
s∈N

σj(s,m̃)∈M

1
s + 1

= ∞
}

.

We say that M has property (P) if one of the following statements holds.

(1) M = ∅, or

(2) M 6= ∅, n = 1 and
∑

s∈M

1
s + 1

< ∞, or

(3) M 6= ∅, n ≥ 2 and for any 1 ≤ j ≤ n, the set M̃j has property (P)
as a subset of Nn−1.

The following observations are then immediate.

(1) If M ⊂ N and M does not have property (P) then
∑

s∈M
1

s+1 = ∞.
If M ⊂ Nn with n ≥ 2 and M does not have property (P) then M̃j

does not have property (P) as a subset of Nn−1 for some 1 ≤ j ≤ n.
(2) If M1 and M2 are subsets of Nn that both have property (P) then

M1 ∪M2 also has property (P).
(3) If M ⊂ Nn has property (P) and l ∈ Zn then (M + l) ∩ Nn also has

property (P). Here M + l = {m + l : m ∈ M}.
(4) If M ⊂ Nn has property (P) then N×M also has property (P) as a

subset of Nn+1.
(5) The set Nn does not have property (P) for all n ≥ 1. This together

with (2) shows that if M ⊂ Nn has property (P) then Nn\M does
not have property (P).

For any function f ∈ L1(Bn,dν), we define

S(f)(z1, . . . zn) =
1

(2π)n

2π∫
0

. . .

2π∫
0

f(eiθ1z1, . . . , e
iθnzn)dθ1 · · ·dθn,

for z = (z1, . . . , zn) ∈ Bn. Then S(f) ∈ L1(Bn,dν), S(f)(z1, . . . , zn) =
S(f)(|z1|, . . . , |zn|) for z ∈ Bn and f = S(f) as L1(Bn,dν)–functions if and
only if f(z1, . . . , zn) = f(|z1|, . . . , |zn|) for almost all z ∈ Bn. Also, for any
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m ∈ Nn, we have∫
Bn

S(f)(z)zmz̄mdν(z)

=
∫
Bn

{ 1
(2π)n

2π∫
0

. . .

2π∫
0

f(eiθ1z1, . . . , e
iθnzn)dθ1 · · ·dθn

}
zmz̄mdν(z)

=
1

(2π)n

2π∫
0

. . .

2π∫
0

{∫
Bn

f(eiθ1z1, . . . , e
iθnzn)zmz̄mdν(z)

}
dθ1 · · ·dθn (2.1)

=
1

(2π)n

2π∫
0

. . .

2π∫
0

{∫
Bn

f(z)zmz̄mdν(z)
}

dθ1 · · ·dθn

=
∫
Bn

f(z)zmz̄mdν(z).

The next proposition shows that if f is a function in L1(Bn,dν) then

the set of all multi-indexes m such that
∫
Bn

f(z)zmz̄mdν(z) = 0 either has

property (P) or is all of Nn.

Proposition 2.1. Suppose f ∈ L1(Bn,dν) so that the set

Z(f) =
{
m ∈ Nn :

∫
Bn

f(z)zmz̄mdν(z) = 0
}

does not have property (P). Then S(f)(z) = 0 for almost all z ∈ Bn and as
a consequence, Z(f) = Nn.

Proof. Since Z(f) = Z(S(f)) (which follows from the computation pre-
ceding the proposition), we may assume without loss of generality, that
f = S(f). So f(z1, . . . , zn) = f(|z1|, . . . , |zn|) for z = (z1, . . . , zn) ∈ Bn. We
will show that f(z) = 0 for almost all z ∈ Bn by induction on the dimension
n.

Consider first n = 1. For any m ∈ Z(f), we have

0 =
∫
B1

f(z)zmz̄mdν(z) =
∫
B1

f(|z|)|z|2mdν(z) =

1∫
0

f(t1/2)tmdt.

Since Z(f) does not have property (P), we have
∑

m∈Z(f)

1
m+1 = ∞. It then

follows from the Muntz-Szasz Theorem (see Theorem 15.26 in [11]) that
f(t1/2) = 0 for almost all t ∈ [0, 1). Hence f(z) = 0 for almost all z ∈ B1.
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Now suppose the conclusion of the proposition holds for all n ≤ N , where
N is an integer greater than or equal to 1. Suppose that f ∈ L1(BN+1,dν)
satisfies the hypothesis of the proposition and that f = S(f). Since Z(f)
does not have property (P), Z̃(f)j does not have property (P) for some
1 ≤ j ≤ n. Without loss of generality we may assume that j = 1. For any
z ∈ BN+1 we write z = (z1,

√
1− |z1|2 w) where z1 ∈ B1 and w ∈ BN . We

then have dν(z) = (N + 1)(1− |z1|2)Ndν(z1)dν(w) (the factor N + 1 comes
from the normalization of the Lebesgue measure so that unit balls have total
mass 1). For each m̃ ∈ Z̃(f)1 let Km̃ =

{
m1 ∈ N : (m1, m̃) ∈ Z(f)

}
. Then∑

m1∈Km̃

1
m1+1 = ∞. For m̃ ∈ Z̃(f)1 and m1 ∈ Km̃, we have m = (m1, m̃) ∈

Z(f). Hence

0 =
∫

BN+1

f(z)zmz̄mdν(z)

= (N + 1)
∫
B1

{ ∫
BN

f(z1,
√

1− |z1|2 w)wm̃w̄m̃dν(w)
}

× |z1|2m1(1− |z1|2)N+|m̃|dν(z1).

By the case n = 1 which was showed above, we conclude that for each
m̃ ∈ Z̃(f)1, for almost all z1 ∈ B1,∫

BN

f(z1,
√

1− |z1|2 w)wm̃w̄m̃dν(w) = 0. (2.2)

So there is a null set E ⊂ B1 such that (2.2) holds for all m̃ ∈ Z̃(f)1 and
all z1 ∈ B1\E. Now applying the induction hypothesis, we see that for each
z1 ∈ B1\E, f(z1,

√
1− |z1|2 w) = 0 for almost all w ∈ BN . This implies

f(z) = 0 for almost all z ∈ BN+1. �

Proposition 2.2. Let M ⊂ Nn be a subset that has property (P). Suppose

f ∈ L1(Bn,dν) so that
∫
Bn

f(z)zmz̄kdν(z) = 0 whenever m, k ∈ Nn\M . Then

f(z) = 0 for almost all z ∈ Bn.

Proof. Let l ∈ Zn be an arbitrary n−tuple of integers. Then Hl = M ∪
((M − l)∩Nn) has property (P). Thus Kl = Nn\Hl does not have property
(P). Because of the identities

Kl = {m ∈ Nn : m /∈ M and m /∈ M − l}
= {m ∈ Nn : m /∈ M and m + l /∈ M}

and the assumption about f , we have
∫
Bn

f(z)zmz̄m+ldν(z) = 0 for all m ∈ Kl

with m + l � 0 (here, for any j = (j1, . . . , jn) ∈ Zn, by j � 0 we mean
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j1 ≥ 0, . . . , jn ≥ 0). Since Kl does not have property (P), Proposition 2.1
then implies that the above identity holds true for all multi-indexes m ∈ Nn

with m+l � 0. Since l was arbitrary, we conclude that
∫
Bn

f(z)zmz̄kdν(z) = 0

for all multi-indexes m and k in Nn. Since the span of {zmz̄k : m, k ∈ Nn}
is dense in C(B̄n), it follows that f(z) = 0 for almost all z ∈ Bn. �

Corollary 2.3. Let f be a function in L1(Bn,dν). Suppose there exists a
subset M̃ of Nn−1 which has property (P) so that for any m̃, k̃ ∈ Nn\M̃
and any integer l 6= 0, there is a subset N(m̃, k̃, l) ⊂ N which does not have

property (P) such that
∫
Bn

f(z)z(s,m̃)z̄(s+l,k̃)dν(z) = 0 for all s ∈ N(m̃, k̃, l)

with s ≥ −l. Then f(z1, z2, . . . , zn) = f(|z1|, z2, . . . , zn) for almost all z ∈
Bn.

Proof. For any z = (z1, . . . , zn) ∈ Bn, define

g(z1, z2, . . . , zn) =
1
2π

2π∫
0

f(eiθz1, z2, . . . , zn)dθ.

Then we have g(z1, z2, . . . , zn) = g(|z1|, z2, . . . , zn) for all z ∈ Bn. Further-
more, for m = (m1, . . . ,mn), k = (k1, . . . , kn) ∈ Nn with m1 6= k1,∫
Bn

g(z)zmz̄kdν(z)

=
∫
Bn

g(|z1|, . . . , zn)zmz̄kdν(z) (2.3)

=
∫
Bn

{ 1
2π

2π∫
0

(eiθz1)m1(e−iθz̄1)k1dθ
}

g(|z1|, . . . , zn)zm2
2 · · · zmn

n z̄k2
2 · · · z̄kn

n dν(z)

(by the invariance of ν under rotations, see also [10, Formula 1.4.2 (2)])
= 0.

For m, k ∈ Nn with m1 = k1, an argument similar to (2.1) shows that∫
Bn

g(z)zmz̄kdν(z) =
∫
Bn

f(z)zmz̄kdν(z).

By our assumption about f and the above identities, for any m̃, k̃ in
Nn−1\M̃ and any integer l, we have∫

Bn

(f(z)− g(z))z(s,m̃)z̄(s+l,k̃)dν(z) = 0 (2.4)
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for all s ∈ N(m̃, k̃, l) with s ≥ −l (for l = 0 we put N(m̃, k̃, 0) = N). Since
the set N(m̃, k̃, l) does not have property (P), Proposition 2.1 shows that
(2.4) holds for all s ∈ N and l ∈ Z with s + l ≥ 0. Hence we have∫

Bn

(f(z)− g(z))z(m1,m̃)z̄(k1,k̃)dν(z) = 0

for all m1, k1 ∈ N and all m̃, k̃ ∈ Nn−1\M̃ . This means the identity
∫
Bn

(f(z)−

g(z))zmz̄kdν(z) = 0 holds for all m, k ∈ Nn\(N × M̃). Since N × M̃ has
property (P), Proposition 2.2 shows that f(z) = g(z) for almost all z ∈ Bn.
Hence f(z1, z2, . . . , zn) = f(|z1|, z2, . . . , zn) for almost all z ∈ Bn.

The above proof also works for the case n = 1 in which there is no M̃ . �

Corollary 2.4. Let f be a function in L1(Bn,dν). Suppose for each 1 ≤
j ≤ n there exists a subset set M̃j of Nn−1 which has property (P) so that for
any m̃, k̃ in Nn−1\M̃j and any integer l 6= 0 there is a subset Nj(m̃, k̃, l) ⊂ N

which does not have property (P) such that
∫
Bn

f(z)zmz̄kdν(z) = 0 for any

m = σj(s, m̃) and k = σj(s + l, k̃), where s ∈ Nj(m̃, k̃, l) with s ≥ −l. Then
f(z1, . . . , zn) = f(|z1|, . . . , |zn|) for almost all z ∈ Bn.

Proof. Apply Corollary 2.3 n times. �

3. DIAGONAL TOEPLITZ OPERATORS

The following criterion for diagonal Toeplitz operators is probably well-
known but since we are not aware of an appropriate reference, we give here
a proof which is based on Corollary 2.4.

Theorem 3.1. Suppose f ∈ L∞. Then the Toeplitz operator Tf is diagonal
if and only if f(z1, . . . , zn) = f(|z1|, . . . , |zn|) for almost all z = (z1, . . . , zn)
in Bn.

Proof. If Tf is a diagonal operator then 〈Tfem, ek〉α = 0 for all m, k ∈ Nn

with m 6= k. Thus
∫
Bn

f(z)zmz̄k(1 − |z|2)αdν(z) = 0 for all m, k ∈ Nn with

m 6= k. Corollary 2.4 (with M̃j = ∅ and Nj(m̃, k̃, l) = N for each 1 ≤ j ≤ n,
l ∈ Z\{0}, and m̃, k̃ ∈ Nn−1) implies that f(z1, . . . , zn) = f(|z1|, . . . , |zn|)
for almost all z = (z1, . . . , zn) ∈ Bn.

Now suppose f(z1, . . . , zn) = f(|z1|, . . . , |zn|) for almost all z ∈ Bn. Then
as in (2.3) we see that 〈Tfem, ek〉α = 0 for all m, k ∈ Nn with m 6= k. So Tf

is diagonal with respect to the standard orthonormal basis {em : m ∈ Nn}.
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In fact, Tf =
∑

m∈Nn

ωα(f,m)em ⊗ em, where the eigenvalues are given by

ωα(f,m) = 〈Tfem, em〉α

=
Γ(n + |m|+ α + 1)
m! Γ(n + α + 1)

∫
Bn

f(z)zmz̄mdνα(z) (3.1)

= cα
Γ(n + |m|+ α + 1)
m! Γ(n + α + 1)

∫
Bn

f(|z1|, . . . , |zn|)zmz̄m(1− |z|2)αdν(z)

for m ∈ Nn. �

We are now ready for our proof of Theorem 1.2.

Proof of Theorem 1.2. For any h ∈ {f̄1, . . . , f̄N , g1, . . . , gM}, the Toeplitz
operator Th is diagonal by assumption. Theorem 3.1 then shows that for
almost all z in Bn, h(z1, . . . , zn) = h(|z1|, . . . , |zn|). Let Z(h) = {m ∈
Nn : ωα(h, m) = 0}. Then since h is not the zero function, Proposition 2.1
shows that Z(h) must have property (P). Put Z = Z(f̄1) ∪ · · · ∪ Z(f̄N ) ∪
Z(g1) ∪ · · · ∪ Z(gM ). Then Z has property (P). For any m and k in Nn\Z,
there are nonzero numbers αm and βk such that Tg1 · · ·TgM em = αmem and
Tf̄N

· · ·Tf̄1
ek = βkek. Therefore,

〈fem, ek〉α = 〈Tfem, ek〉α

=
1

αmβ̄k
〈TfTg1 · · ·TgM em, Tf̄N

· · ·Tf̄1
ek〉α

=
1

αmβ̄k
〈Tf̄1

· · ·Tf̄N
TfTg1 · · ·TgM em, ek〉α = 0.

This implies that
∫
Bn

f(z)zmz̄k(1−|z|2)αdν(z) = 0 for all m, k ∈ Nn\Z. Since

Z has property (P), Proposition 2.2 then shows that f(z)(1− |z|2)α = 0 for
almost all z ∈ Bn. Hence f is the zero function. �

4. COMMUTING WITH DIAGONAL TOEPLITZ OPERATORS

Suppose g ∈ L∞ so that g(z1, . . . , zn) = g(|z1|, . . . , |zn|) for almost all z ∈
Bn then from Theorem 3.1, Tg is diagonal and Tg =

∑
m∈Nn ωα(g,m)em⊗em.

Note that ωα(ḡ,m) = ω̄α(g,m) for any m ∈ Nn. Suppose f is a function in
L∞. Then TfTg = TgTf if and only if 〈TfTgem, ek〉α = 〈TgTfem, ek〉α for all
m, k ∈ Nn. This is equivalent to

ωα(g,m)〈Tfem, ek〉α = 〈Tfem, ωα(ḡ, k)ek〉α
for all m, k ∈ Nn, which is in turn equivalent to

(ωα(g,m)− ωα(g, k))〈Tfem, ek〉α = 0 (4.1)

for all m, k ∈ Nn.
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The following theorem gives a sufficient condition for g ∈ L∞ to belong
to G. Recall that the set G is given by

G = {g ∈ L∞ : Tg is diagonal

and for f ∈L∞, TfTg = TgTf implies Tf is diagonal}

The hypothesis of Theorem 4.1 is easier to check when the function g is
invariant under permutations of the variables.

Theorem 4.1. Suppose g ∈ L∞ so that g(z1, . . . , zn) = g(|z1|, . . . , |zn|) for
almost all z ∈ Bn. Suppose that for any 1 ≤ j ≤ n, any m̃, k̃ in Nn−1 and
any integer l > 0, the set

Zj(m̃, k̃, l) =
{
s ∈ N : ωα(g, σj(s, m̃)) = ωα(g, σj(s + l, k̃))

}
has property (P). Let f ∈ L∞ so that TfTg = TgTf . Then for almost all
z ∈ Bn we have f(z1, . . . , zn) = f(|z1|, . . . , |zn|). As a consequence, the
operator Tf is diagonal.

Proof. For any 1 ≤ j ≤ n, any m̃, k̃ ∈ Nn−1 and any integer l > 0, let
Nj(m̃, k̃, l) = N\Zj(m̃, k̃, l). Then Nj(m̃, k̃, l) does not have property (P).
For any s in Nj(m̃, k̃, l), let m = σj(s, m̃) and k = σj(s + l, k̃). Then
ωα(g,m) 6= ωα(g, k), so equation (4.1) implies that 〈Tfem, ek〉α = 0 and
〈Tfek, em〉α = 0. Thus,∫

Bn

f(z)zmz̄k(1− |z|2)αdν(z) = 0 and
∫
Bn

f(z)zkz̄m(1− |z|2)αdν(z) = 0.

Applying Corollary 2.4, we get f(z1, . . . , zn) = f(|z1|, . . . , |zn|) for almost all
z ∈ Bn. �

We next give examples of functions that satisfy the requirements of The-
orem 1.3.

Proof of Theorem 1.3. To show (1), we consider the function f(z) = z1z̄2.
For m, k ∈ Nn,∫

Bn

f(z)zmz̄k(1− |z|2)αdν(z)=
∫
Bn

zm+δ1 z̄k+δ2(1− |z|2)αdν(z) = 0

unless m+δ1 = k+δ2 (here δj = (0, . . . , 0, 1, 0, . . . , 0) where the number 1 is
in the jth slot, for 1 ≤ j ≤ n). So 〈Tfem, ek〉α = 0 whenever m+δ1 6= k+δ2.

Now suppose that h ∈ L∞ is a radial function, say h(z) = h̃(|z|) for some
bounded measurable function h̃ on [0, 1). Then by (3.1),

ωα(h, m) = cα
Γ(n + |m|+ α + 1)
m! Γ(n + α + 1)

∫
Bn

h̃(|z|)zmz̄m(1− |z|2)αdν(z),
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for any m ∈ Nn. Using polar coordinates and the explicit formula of cα, we
see that

ωα(h, m) =
Γ(n + |m|+ α + 1)
Γ(α + 1)Γ(n + |m|)

1∫
0

rn+|m|−1(1− r)αh̃(r1/2)dr.

So ωα(h, m) = ωα(h, k) whenever |m| = |k|. This shows that when m+ δ1 =
k + δ2 we have ωα(h, m) = ωα(h, k). Therefore equation (4.1) (with h in
place of g) holds for all m, k ∈ Nn, which implies TfTh = ThTf .

To show (2), we consider the function g(z) = |z1|2 · · · |zn|2. Then for any
m ∈ Nn, we have

ωα(g,m) = cα
Γ(n + |m|+ α + 1)
m! Γ(n + α + 1)

∫
Bn

g(z)zmz̄m(1− |z|2)αdν(z)

= cα
Γ(n + |m|+ α + 1)
m! Γ(n + α + 1)

∫
Bn

zm+(1,...,1)z̄m+(1,...,1)(1− |z|2)αdν(z)

=
Γ(n + |m|+ α + 1)
m! Γ(n + α + 1)

(m + (1, . . . , 1))! Γ(n + α + 1)
Γ(n + |m + (1, . . . , 1)|+ α + 1)

=
(m1 + 1) · · · (mn + 1)

(m1 + · · ·+ mn + α + 2n) · · · (m1 + · · ·+ mn + α + n + 1)
.

We will show that g satisfies the hypothesis of Theorem 4.1. Since the
function g is independent of the order of the variables, we only need to
show that for any m̃ = (m1, . . . ,mn−1), k̃ = (k1, . . . , kn−1) ∈ Nn−1 and any
integer l > 0 the set N1(m̃, k̃, l) = {s ∈ N : ωα(g, (s, m̃)) = ωα(g, (s + l, k̃))}
has property (P). In fact, we will show that N1(m̃, k̃, l) has at most n + 1
elements. Consider the polynomial

p(w) = (w + 1)(w + |k̃|+ α + 2n)
n−1∏
j=1

(mj + 1)(w + |k̃|+ α + 2n− j)

− (w + l + 1)(w + l + |m̃|+ α + 2n)
n−1∏
j=1

(kj + 1)(w + l + |m̃|+ α + 2n− j).

Then N1(m̃, k̃, l) is exactly the set of all non-negative integer roots of p.
Since p(−1) 6= 0, p(w) is not identically zero. This shows that p has at most
n + 1 distinct roots. �
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