
ON THE ESSENTIAL COMMUTANT OF TOEPLITZ
OPERATORS IN SEVERAL COMPLEX VARIABLES

Abstract. Using the joint local mean oscillation, Xia [11] showed
that the essential commutant of T(L) - the algebra generated by
all Toeplitz operators Tg where g is bounded and has at most one
discontinuity, is T(QC). Even though Xia’s method cannot be used,
we are able to generalize his result to Toeplitz operators in higher
dimensions with a different approach. This result is stronger than
the well-known fact stating that the essential commutant of the
full Toeplitz algebra T is T(QC).

1. Introduction

For an integer n ≥ 1, let Cn denote the Cartesian product of n
copies of C. For z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn, we use

〈z, w〉 = z1w1 + · · ·+ znwn and |z| =
√
|z1|2 + · · ·+ |zn|2 for the inner

product and the associated Euclidean norm. Let Bn denote the open
unit ball which consists of points z ∈ Cn with |z| < 1. Let Sn denote
the unit sphere which is the boundary of Bn. We denote by σ the
unitary-invariant measure on Sn so normalized that σ(Sn) = 1.

Let A(Bn) be the algebra of all functions that are analytic in the
open unit ball Bn and continuous on the closed unit ball B̄n. We write
Lp for Lp(Sn, dσ) and Hp for the Hardy subspace of Lp for 1 ≤ p ≤ ∞.
For each ζ ∈ Sn, kζ(w) = (1 − |ζ|2)n/2(1 − 〈w, ζ〉)−n is a normalized
reproducing kernel for H2. We have ‖kζ‖ = 1 and 〈ϕ, kζ〉 = (1 −
|ζ|2)n/2ϕ(z) for all ϕ ∈ H2. Let P : L2 −→ H2 denote the orthogonal
projection. For any f ∈ L∞, the Toeplitz operator Tf and the Hankel
operator Hf are defined by Tfϕ = P (fϕ) and Hfϕ = fϕ − P (fϕ),
respectively, for all ϕ ∈ H2. We have Tgf − TgTf = H∗

gHf for all

f, g ∈ L∞. Let B(H2) denote the C∗−algebra of all bounded linear
operators on H2. For any subset G of L∞, we denote by T(G) the
C∗−subalgebra of B(H2) generated by the set {Tf : f ∈ G}. Then
T = T(L∞) is the full Toeplitz algebra. Let K denote the ideal of all
compact operators on H2. It is well-known that K ⊂ T. We us π to
denote the canonical map from T onto the Calkin algebra T/K.
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For any ζ ∈ Sn, let Kζ be the closed two-sided ideal of T generated
by the set {Tf : f is continuous on Sn and f(ζ) = 0}. Then each Kζ

contains the compact operators K and
⋂

ζ∈Sn

Kζ = K. This follows from

the localization in T, see [5, p. 176-177].

For any subset S of B(H2), we denote by EssCom(S) the essential
commutant of S, that is,

EssCom(S) = {A ∈ B(H2) : AT − TA is compact for all T ∈ S}.

For any z, w ∈ B̄n, let d(z, w) = |1 − 〈z, w〉|1/2. Then d is a metric
on Sn which is called the nonisotropic metric, see [9, 5.1]. Because
of the denominators of the reproducing kernels, it is this metric, not
the usual Euclidean metric, which is closely associated to the theory
of Toeplitz and Hankel operators on Sn. Note that for |ζ| = 1 and
|z| ≤ 1, (d(ζ, z))2 ≤ |ζ − z| ≤

√
2 d(ζ, z).

For ζ ∈ Sn and r > 0, let Q(ζ, r) = {z ∈ Sn : d(z, ζ) < r} be the
open ball of radius r centered at ζ in the metric d. There is a constant
A0 depending on n so that

(1.1) 2−nr2n ≤ σ(Q(ζ, r)) ≤ A0r
2n.

For any function f ∈ L1 and any ζ ∈ Sn, the mean oscillation of f
at ζ is

LMO(f)(ζ) = lim
δ↓0

sup

{
1

σ(Qr)

∫
Qr

|f − fQr | dσ : Qr ⊂ Q(ζ, δ), r < δ

}
,

where Qr denotes a ball of radius r centered at a point on Sn in the

d−metric and fQr =
1

σ(Qr)

∫
Qr

f dσ.

A function f ∈ L1 is said to have bounded mean oscillation if

‖f‖BMO = sup{LMO(f)(ζ) : ζ ∈ Sn} < ∞.

A function f ∈ L1 is said to have vanishing mean oscillation if
LMO(f)(ζ) = 0 for all ζ ∈ Sn.

Define

BMO = {f ∈ L1 : f has bounded mean oscillation},
VMO = {f ∈ L1 : f has vanishing mean oscillation}.
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Let QC = VMO∩L∞. Davidson proved in [2] that for n = 1,
EssCom(L∞) = T(QC). The key result from which Davidson derived
the above identity is the following Theorem.

Theorem 1.1. Consider n = 1. If S is a bounded operator on H2

which is not the sum of a Toeplitz operator and a compact operator
then there is a function h ∈ H∞ such that ThS − STh is not compact.
The function h can be taken to have at most one discontinuity.

For any ζ ∈ Sn, let L(ζ) be the collections of bounded measurable
functions on Sn which are continuous on Sn\{ζ} and let H(ζ) = H∞∩
L(ζ).

Xia proved in [11] the following Theorem which is a local version of
a result of Sarason and used this together with Theorem 1.1 to deduce
that EssCom(L) = T(QC) when n = 1. Note that L is indeed smaller
than L∞, which was also showed by Xia in the same paper.

Theorem 1.2. Let f ∈ L∞ and let ζ ∈ S1.

(a) If [Tf , Th] ∈ Kζ for all h ∈ H(ζ) then LMO(Qf)(ζ) = 0.

(b) If LMO(Qf)(ζ) = 0, then [Tf , Tg] ∈ Kζ for all g ∈ H∞.

Here Q = 1− P is the orthogonal projection of L2 onto L2 	H2.

We would like to generalize Xia’s results to Toeplitz operators on the
Hardy spaces of the unit sphere in higher dimensions. To do that, we
need the high dimensional versions of Theorem 1.1 and Theorem 1.2.

A result quite similar to Theorem 1.1 was proved by Ding and Sun
in [4] but there they did not have the continuity of h. In the following
Theorem we do have the continuity of h which is necessary in Xia’s
proof.

Theorem 1.3. Let n ≥ 1. Suppose S is a bounded operator on B(H2)
which is not the sum of a Toeplitz operator and a compact operator.
Then there is a function h ∈ H∞ so that ThS − STh is not compact.
The function h can be taken to have at most one discontinuity.

One of the important ingredients needed to prove Theorem 1.2 is the
identity 1−TξzT

∗
ξz

= kz⊗kz, where z ∈ B1 and ξz(τ) = (z−τ)(1−zτ)−1,

where τ ∈ S1. We do not know if such a similar identity exists in higher
dimensions where there is no continuous inner function (note that each
ξz is a continuous inner function on S1.) So we cannot use Xia’s method
for n ≥ 2. Nevertheless, with a different approach, we can generalize
Theorem 1.2. Note that when n = 1, by checking directly, we can
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show that Hfkz = (Qf − (Qf)(z))kz and hence lim
|z|<1
z→ζ

‖Hfkz‖ = 0 if and

only if LMO(Qf)(ζ) = 0 for any ζ ∈ S1, see [12, Theorem 6] for more
details. Therefore, the following Theorem is a version of Theorem 1.2
for n ≥ 2.

Theorem 1.4. Let f, g ∈ L∞ and ζ ∈ Sn.

(a) If [Tf , Th] ∈ Kζ for all h ∈ H(ζ), then lim
|z|<1
z→ζ

‖Hfkz‖ = 0.

(b) If lim
|z|<1
z→ζ

‖Hfkz‖‖Hgkz‖ = 0, then H∗
gHf = Tgf − TgTf ∈ Kζ .

An open question, which appears to be highly non-trivial, is whether
or not the converse of Theorem 1.4 (b) holds true in the case n ≥ 2.
We know that this converse holds true in the case n = 1, see [12], and
the proof uses the identity 1− TξzT

∗
ξz

= kz ⊗ kz in an essential way. A
related question is that, in the case n ≥ 2, if H∗

gHf is compact, where
f, g ∈ L∞, does it follow that

(1.2) lim
|z|↑1

‖Hfkz‖‖H∗
gkz‖ = 0 ?

From Theorem 1.4 (b) and the fact that K =
⋂

ζ∈Sn

Kζ , it follows that

(1.2) is sufficient for the compactness of H∗
gHf (see also [13, Theorem

3].) In the case n ≥ 2, the question whether or not (1.2) is necessary
for the compactness of H∗

gHf seems to be highly non-trivial. In this
context, Theorem 1.4(a), which is the main result of the paper, can be
viewed as partial progress toward answering these open questions.

Using Theorem 1.3 and Theorem 1.4, we can prove Xia’s result on
essential commutants of Toeplitz operators on the Hardy space of the
unit sphere in high dimensions.

Corollary 1.1. Let H denote the subalgebra of H∞ generated by
⋃

ζ∈Sn

H(ζ).

If f ∈ L∞ so that [Tf , Th] is compact for all h ∈ H, then lim
|z|↑1

‖Hfkz‖ = 0.

As a consequence, the essential commutant of T(H) is T(C), where
C = {f ∈ L∞ : Hf is compact}.

Corollary 1.2. Let L denote the subalgebra of L∞ generated by
⋃

ζ∈Sn

L(ζ).

Then the essential commutant of T(L) equals T(QC).
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In [11], Xia also proved the one dimensional version of the following
Theorem. We are presenting here the proof for n ≥ 2.

Theorem 1.5. Suppose S is a subset of T and suppose that S is separa-
ble in the operator-norm topology. Then there is a real valued function
f ∈ L∞ so that f is not in VMO and [Tf , S] is compact for all S ∈ S.
Furthermore, given such an S, there is a ζ = ζ(S) such that there is
an f ∈ L(ζ) which satisfies the above requirements.

In the rest of the paper, we will prove a couple of Lemmas before
giving the proof of Theorem 1.3 in Section 2 and proofs of Theorem 1.4,
Corollary 1.1 and Corollary 1.2 in Section 3. In section 4, we construct
the function f that satisfies the requirement of Theorem 1.5.

2. Operators Essentially Commuting with Analytic
Toeplitz Operators

We begin this section by a Lemma about pointwise approximation
of a positive lower semi-continuous function on Sn by a sequence of
functions in the ball algebra A(Bn). For a proof, see [7, Theorem 3.5
and Remark 3.6].

Lemma 2.1. Suppose ϕ is a lower semi-continuous function on Sn

and ϕ > 0. Then there is a sequence {ϕm}∞m=1 of functions in A(Bn)
with the following properties:

1) |ϕm| ≤ ϕ on Sn, and

2) {|ϕm|}∞m=1 converges to ϕ a.e. on Sn.

The following Lemma is a construction of the holomorphic function
which appears in Theorem 1.3.

Lemma 2.2. Suppose {Em}∞m=1 is a sequence of mutually disjoint mea-
surable subsets of Sn which cluster at only one point ζ ∈ Sn. Sup-
pose {ϕm}∞m=1 is a sequence of functions in A(Bn) so that ‖ϕm(1 −
χEm)‖∞ ≤ αm and ‖ϕm‖∞ ≤ β for all m, where β > 0 and 0 < α < 1.
Suppose S is a bounded operator on B(H2) so that [Tϕm , S] is compact
and ‖[Tϕm , S]‖ > c > 0 for all m, where c is a fixed constant. Then
there is a function h in H∞ which is continuous on Sn\{ζ} so that
‖π([Th, S])‖ ≥ c.

Proof. For each m, put Am = [Tϕm , S]. Then Am is a compact operator
for each m.
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Let E =
∞⋂

k=1

∞⋃
m=k

Em. Then σ(E) = 0 since
∞∑

m=1

σ(Em) ≤ σ(Sn) = 1.

For w ∈ Sn\E, there is a k so that w ∈ Sn\(
⋃∞

m=k Em) =
∞⋂

m=k

(Sn\Em).

Hence |ϕm(w)| ≤ αm for all m ≥ k. So the sequence {ϕm}∞m=1 con-
verges to 0 almost everywhere. By the Lebesgue Dominated Conver-
gence Theorem, it follows that the sequences {Tϕm}∞m=1 and {Tϕm

}∞m=1

converge to 0 in the strong operator topology. Therefore {Am}∞m=1

and {A∗
m}∞m=1 converge to 0 in the strong operator topology. Now,

since ‖Am‖ ≤ 2β‖S‖ for all m, passing to a subsequence of {Am}∞m=1

if necessary, we may assume that the numerical sequence {‖Am‖}∞m=1

converges. So lim
m→∞

‖Am‖ exists and is not less than c.

By [6, Lemma 2.1], there is an increasing sequence of positive integers
{m(k)}∞k=1 so that the sum

A =
∞∑

k=1

Am(k) = lim
N→∞

N∑
k=1

Am(k)

exists in the strong operator topology and

‖π(A)‖ = ‖π(
∞∑

k=1

Am(k))‖ = lim
m→∞

‖Am‖ ≥ c.

Now put h =
∞∑

k=1

ϕm(k).

For any neighborhood U of ζ in Sn, there is a k(U) so that Em(k) ⊂ U
for all k ≥ k(U). Thus

∞∑
k=1

‖ϕm(k)χSn\U‖∞ ≤
k(U)∑
k=1

‖ϕm(k)χSn\U‖∞ +
∞∑

k=k(U)+1

‖ϕm(k)χSn\U‖∞

≤
k(U)∑
k=1

‖ϕm(k)χSn\U‖∞ +
∞∑

k=k(U)+1

αm(k)

≤ βk(U) + 1/(1− α).

So {
N∑

k=1

ϕm(k)}∞N=1 converges uniformly to h on Sn\U . Because this

holds true for any neighborhood U of ζ, it follows that h is in H∞ and
continuous on Sn\{ζ}.
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Now in the strong operator topology,

A = lim
N→∞

N∑
k=1

Am(k)

= lim
N→∞

N∑
k=1

[Tϕm(k)
, S]

= [T lim
N→∞

∑N
k=1 ϕm(k)

, S]

= [Th, S].

So ‖π([Th, S])‖ = ‖π(A)‖ ≥ c > 0. �

In what follows, by a characteristic function we mean the character-
istic function of a Lebesgue measurable set of Sn. If g is a characteristic
function, we also use g to denote its support. We use w−lim to denote
limits in the weak operator topology of B(H2). The first two conclu-
sions in the following Lemma were proved in [2] for functions on the
unit circle. The high dimensional case is similar and was proved in
[4]. For our purpose of proving Theorem 1.3, we have added the third
conclusion.

Lemma 2.3. Suppose F : L∞ → B(H2) is a linear map which has the
following properties:

(P1) If gm’s are in L∞ with ‖gm‖∞ ≤ M and gm → g0 almost every-
where, then w−lim F (gm) = F (g0).

(P2) If f1, f2 are characteristic functions and have disjoint closed
supports, then F (f1)F (f2) and F (f1)F (f2)

∗ are compact.
(P3) There is a characteristic function g so that ‖π(F (g))‖ > α > 0.

Then there exists a sequence of characteristic functions of disjoint
closed supports {χm} so that ‖F (χmg)‖ > C(α)/2 > 0 for all m, where
C(α) depends on α and the dimension n. These sets can be chosen to
cluster at only one point.

It then follows that there is a sequence of continuous functions {hm}
so that hm ≥ 0, ‖hm‖∞ ≤ 2, ‖hm(1−χmg)‖∞ ≤ 4−m−1 and ‖F (hm)‖ >
C(α)/2 for all m.

Consequently, if F is of the form F (g) = TgS − Tgf , where S is a
bounded operator on H2 and f is a bounded measurable function, then
there exists a sequence {ϕm} of functions in A(Bn) so that ‖ϕm‖∞ ≤
2, ‖ϕm(1− χmg)‖∞ ≤ 2−m and ‖F (ϕm)‖ > C(α)/8.
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Proof. The existence of the sequences {χm}∞m=1, {hm}∞m=1 and the con-
stant C(α) was established in [4, Lemma 4].

Now, fix an integer m. Choose a positive number β so that β <
4−m−1, and β‖F (1)‖ < C(α)/4.

Let gm = hm+β. Then gm is continuous, positive on Sn, ‖gm‖∞ ≤ 4
and |gm(1− χmg)| ≤ 4−m.

Also,

‖F (gm)‖ ≥ ‖F (hm)‖ − ‖F (β)‖
= ‖F (hm)‖ − β‖F (1)‖
> C(α)/4.

From Lemma 2.1, there is a sequence {ϑj} of functions in A(Bn) so
that |ϑj|2 ≤ gm on Sn, and |ϑj|2 → gm a.e. on Sn.

Since F (|ϑj|2) → F (gm) in the weak operator topology by (P1) and
‖F (gm)‖ > C(α)/4, there is a j(m) so that ‖F (|ϑj(m)|2)‖ > C(α)/4.

Let ϕm = ϑj(m). Then ϕm ∈ A(Bn), ‖ϕm‖∞ ≤ 2, |ϕm(1 − χmg)| ≤
2−m and ‖F (|ϕm|2)‖ > C(α)/4.

Now if F (|ϕm|2) = T|ϕm|2S − T|ϕm|2f for all m, then

C(α)/4 < ‖F (|ϕm|2)‖
= ‖Tϕmϕm

S − Tϕmϕmf‖
= ‖Tϕm

TϕmS − Tϕm
Tϕmf‖ (since ϕm is analytic)

= ‖Tϕm
(TϕmS − Tϕmf )‖

≤ ‖Tϕm
‖‖TϕmS − Tϕmf‖

≤ 2‖F (ϕm)‖.

Hence, ‖F (ϕm)‖ > C(α)/8. �

Now suppose S is a bounded operator so that [Tϕ, S] is compact for
all ϕ ∈ A(Bn). So π(S) and π(Tϕ) commute in the Calkin algebra.
Since π(Tϕ) is normal, Fuglede Theorem implies that π(S) commutes
with π(Tϕ)∗ = π(T ∗

ϕ) = π(Tϕ) for all ϕ ∈ A(Bn). Thus S essentially
commutes with the C∗−algebra generated by {Tϕ : ϕ ∈ A(Bn)}. This
implies that [Tϕ, S] is compact for any continuous function ϕ.

Now fix a sequence {ξm}∞m=1 of functions in A(Bn) so that

(C1) ‖ξm‖∞ ≤ 1 for all m ∈ N,
(C2) |ξm| → 1, a.e. on Sn as m →∞,
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(C3) Tξm
→ 0 in the weak operator topology as m →∞.

On the unit circle, we can choose ξm(w) = wm for w ∈ S1 and (C2) can
be replaced by |ξm| ≡ 1. In higher dimensions, there is no function in
A(Bn) whose absolute values on the unit sphere are identically 1. This
is the reason why we require condition (C2) which is much weaker. The
existence of such a sequence can be proved as follows.

The existence of a sequence satisfying (C1)-(C3). Suppose ϑ is an in-
ner function in the ball Bn. We then also use ϑ to denote the radial limit
of ϑ which is defined almost everywhere on Sn. For each 0 < r < 1,
put ϑr(z) = ϑ(rz), z ∈ Bn. Then ϑr ∈ A(Bn), ‖ϑr‖∞ ≤ 1 and ϑr → ϑ
a.e. on Sn when r → 1. Let δ > 0 be given. By Egoroff’s Theorem,
there is a measurable set Eδ ⊂ Sn with σ(Eδ) < δ such that ϑr → ϑ
uniformly on Sn\Eδ. Since |ϑ| = 1 a.e. on Sn, we can require that
|ϑ(w)| = 1 for all w ∈ Sn\Eδ. Also for any ε > 0, there is an r so that
|ϑ(w)− ϑr(w)| ≤ ε for all w ∈ Sn\Eδ.

Now take η to be any inner function with η(0) = 0. Then for any
u ∈ L1(Sn),

(2.1) lim
m→∞

∫
Sn

ηmu dσ = 0,

see [8, Lemma 5.1].

Apply the above remark to each ηm, we get a measurable set Em

with σ(Em) < 2−m and |η| = 1 on Em and a function ξm ∈ A(Bn) so
that ‖ξm‖∞ ≤ 1 and |ηm(w)− ξm(w)| ≤ m−1 for all w ∈ Sn\Em. Then
clearly the sequence {ξm} satisfies (C1). We claim that it also satisfies
(C2) and (C3).

Let

E =
∞⋂

k=1

∞⋃
m=k

Em.

Then σ(E) = 0 because
∞∑

m=1

σ(Em) < ∞.

Now for any w ∈ Sn\E, there is a k so that w ∈ Sn\Em for all
m ≥ k. Hence ∣∣1− |ξm(w)|

∣∣ =
∣∣|ηm(w)| − |ξm(w)|

∣∣
≤

∣∣ηm(w)− ξm(w)
∣∣

≤ m−1,
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for all m ≥ k.

Thus lim
m→∞

|ξm(w)| = 1. So |ξm| → 1 a.e. on Sn as m →∞.

In addition, for any f, g ∈ H2,

|〈Tξm
f, g〉| = |〈P (ξmf), g〉|

= |
∫
Sn

ξmfg dσ|

≤ |
∫
Sn

(ξm − ηm)fg dσ|+ |
∫
Sn

ηmfg dσ|

≤ m−1‖f‖‖g‖+ 2

∫
Em

|fg| dσ + |
∫
Sn

ηmfg dσ|.

Letting m → ∞ and using (2.1) and the fact that σ(Em) < 2−m,
we get lim

m→∞
|〈Tξm

f, g〉| = 0. Hence {Tξm
} converges to 0 in the weak

operator topology as m →∞. �

Put σm = Tξm
STξm , for m = 1, 2, . . . . Then {σm}∞m=1 is a bounded

sequence of operators in B(H2). By passing to a subsequence if neces-
sary, we can assume that the sequence {σm}∞m=1 converges in the weak
operator topology. Let T = w−lim

m→∞
σm. The following Lemma is about

properties of the operator T.

Lemma 2.4. Let T be as in the above remark. Then the followings
hold true.

(a) There is an f ∈ L∞ so that T = Tf .
(b) For any continuous function h on Sn,

w−lim
m→∞

Tξm
ThSTξm = Thf .

(c) For any continuous function h on Sn,

w−lim
m→∞

Tξm
(ThξmS − SThξm) = ThS − Thf .

Consequently, for any α < ‖ThS − Thf‖, there is an mα so that
‖Thξmα

S − SThξmα
‖ > α.
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Proof. (a) For any function b ∈ A(Bn), we have

T − TbTTb = w−lim
m→∞

(Tξm
STξm − TbTξm

STξmTb)

= w−lim
m→∞

Tξm
(S − TbSTb)Tξm

= w−lim
m→∞

{
Tξm

Tb(TbS − STb)Tξm + Tξm
T1−|b|2STξm

}
= w−lim

m→∞
Tξm

T1−|b|2STξm ,

because Tb(TbS − STb) is compact and Tξm
converges to 0 in the weak

operator topology so w−lim
m→∞

Tξm
Tb(TbS − STb)Tξm = 0.

From this, we have

T −
n∑

j=1

Tbj
TTbj

= w−lim
n→∞

Tξm
T(1−

∑n
j=1 |bj |2)STξm ,

for any b1, . . . , bn ∈ A(Bn).

In particular, for bj(z) = zj, j = 1, . . . , n, we get

T −
n∑

j=1

Tzj
TTzj

= 0.

By [3, Theorem 2.6], there is an f ∈ L∞ so that T = Tf .

Thus,

w−lim
m→∞

σm = w−lim
m→∞

Tξm
STξm = Tf .

(b) Since the span of {h1h2 : h1, h2 ∈ A(Bn)} is dense in C(Sn), it
suffices to prove the identity for h = h1h2 with h1, h2 ∈ A(Bn).

For each positive integer m,

Tξm
Th1h2

STξm = Tξm
Th1

Th2STξm

= Tξm
Th1

[Th2 , S]Tξm + Tξm
Th1

STh2Tξm

= Tξm
Th1

[Th2 , S]Tξm + Th1
Tξm

STξmTh2 .

Since [Th2 , S] is compact, the first term in the sum goes to 0 in the
weak operator topology when m →∞. So

w−lim
m→∞

Tξm
Th1h2

STξm = Th1
TfTh2 = Th1h2f .
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(c) Now for any continuous function h on Sn,

Tξm
(ThξmS − SThξm) = Th|ξm|2S − Tξm

SThTξm

= (ThS − Th(1−|ξm|2)S)

− (Tξm
ThSTξm + Tξm

[S, Th]Tξm)

= (ThS − Tξm
ThSTξm)

− (Th(1−|ξm|2)S + Tξm
[S, Th]Tξm).

Since {|ξm|} converges to 1 a.e.,

w−lim
m→∞

Th(1−|ξm|2)S = 0.

Since [S, Th] is compact and Tξm
→ 0 weakly,

w−lim
m→∞

Tξm
[S, Th]Tξm = 0.

Also from (b),
w−lim

m→∞
Tξm

ThSTξm = Thf .

So
w−lim

m→∞
Tξm

(ThξmS − SThξm) = ThS − Thf .

Since the norm is lower semi-continuous with respect to the weak
operator topology, for any α < ‖ThS − Thf‖, there is an mα so that

‖Tξmα
(Thξmα

S − SThξmα
)‖ > α.

But ‖Tξmα
(Thξmα

S − SThξmα
)‖ ≤ ‖Thξmα

S − SThξmα
‖, hence

‖Thξmα
S − SThξmα

‖ > α. �

Now we are in the position of proving Theorem 1.3.

Proof of theorem 1.3. Suppose S is a bounded operator on H2 which
is not the sum of a Toeplitz operator and a compact operator. We
need to find a holomorphic function h so that [Th, S] = ThS − STh

is not compact. If there is a function ϕ ∈ A(Bn) so that [Tϕ, S] is
not compact, take h = ϕ. Now suppose [Tϕ, S] is compact for all ϕ ∈
A(Bn). Let f be the function in Lemma 2.4. Let F : L∞ → B(H2) be
defined by

F (g) = TgS − Tgf , g ∈ L∞.

Then F satisfies the properties (P1) and (P2) in Lemma 2.3, see [2].
Since S is not the sum of a Toeplitz operator and a compact operator,
F (1) = S−Tf is not compact. The last conclusion of Lemma 2.3 gives
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a sequence {ϕm}∞m=1 of functions in A(Bn) and a sequence {χm}∞m=1 of
mutually disjoint closed sets so that ‖ϕm‖∞ < 2, |ϕm(1−χm)| < 2−m,
and

‖TϕmS − Tϕmf‖ = ‖F (ϕm)‖ > C(α)/8 for all m ∈ N,

where α = ‖π(F (1))‖/2. Furthermore, the sets {χm} cluster at only
one point of Sn, say ζ.

For each k, apply part (c) of Lemma 2.4 to ϕk, we get a function
ϑk = ϕkξmk

in A(Bn) so that ‖ϑk‖∞ ≤ 2, ‖ϑk(1 − χk)‖∞ ≤ 2−m, and
‖[Tϑk

, S]‖ > C(α)/8.

By Lemma 2.2, there is a function h in H∞ such that h is continuous
on Sn\{ζ} and [Th, S] is not compact. The proof of the Theorem is
thus completed. �

3. Local commutativity and essential commutant

In order to prove Theorem 1.4, we need a couple of results. The first
Lemma gives a necessary condition for an operator to be in Kζ .

Lemma 3.1. Let ζ be in Sn and A be an element in Kζ. Then for any
ε > 0, there is an open neighborhood Vζ of ζ depending on A and ε so
that for any continuous function η with supp(η) ⊂ Vζ and ‖η‖∞ ≤ 1,
we have ‖π(TηA)‖ < ε.

Proof. Let ε > 0 be given. There is an Ã in the ideal of T generated
by {Tϕ : ϕ ∈ C(Sn), ϕ(ζ) = 0} so that ‖A − Ã‖ < ε/2. Now there are
continuous functions ϕ1, . . . , ϕm with ϕ1(ζ) = · · · = ϕm(ζ) = 0 and
operators B1, . . . , Bm and C1, . . . , Cm in T so that Ã =

∑m
j=1 BjTϕj

Cj.

Since each ϕj is continuous, the commutator [Bj, Tϕj
] is compact, so

Ã−
∑m

j=1 Tϕj
BjCj ∈ K.
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For any η ∈ L∞(Sn) and ‖η‖∞ ≤ 1, the semi-commutator Tηϕj
−

TηTϕj
is compact for each j, so we have

‖π(TηA)‖ ≤ ε/2 + ‖π(TηÃ)‖

= ε/2 + ‖π(
m∑

j=1

TηTϕj
BjCj)‖

= ε/2 + ‖π(
m∑

j=1

Tηϕj
BjCj)‖

≤ ε/2 + M‖η(
m∑

j=1

|ϕj|)‖∞,

where M is a positive constant, depending on Bj’s, Cj’s and m. Since
ϕ =

∑m
j=1 |ϕj| is a continuous function on Sn with ϕ(ζ) = 0, there is an

open neighborhood Vζ of ζ so that for all ω ∈ Vζ , 0 ≤ ϕ(ω) ≤ ε(2M)−1.

So if η is any continuous function on Sn with supp(η) ⊂ Vζ and
‖η‖∞ ≤ 1 then ‖ηϕ‖∞ ≤ ε(2M)−1. Hence, ‖π(TηA)‖ ≤ ε. �

The next Lemma asserts that some commutators of a certain kind
cannot belong to Kζ unless they are compact.

Lemma 3.2. Let ζ ∈ Sn be given. Suppose f ∈ L∞ and g ∈ L(ζ).
Then [Tf , Tg] is in Kζ if and only if it is in K.

Proof. Because each g ∈ L(ζ) is continuous on Sn\{ζ}, for any continu-
ous function η on Sn with η(ζ) = 1, we have π(Tη[Tf , Tg]) = π([Tf , Tg]).

Now if [Tf , Tg] is in Kζ , Lemma 3.1 together with the above identity
show that ‖π([Tf , Tg])‖ < ε for all ε > 0. So [Tf , Tg] ∈ K.

The converse is obvious since K is contained in Kζ . �

Lemma 3.3. Suppose g is a function in L∞ with ‖g‖∞ ≤ 1. Suppose
ζ ∈ Sn and {zm} in Bn so that lim

m→∞
|zm−ζ| = 0, hence lim

m→∞
d(zm, ζ) =

0 as well. Also suppose that ‖Hgkzm‖ ≥ a > 0 for all m ∈ N, where
0 < a < 1 is a constant. Then there exists a function h ∈ H∞ which
is continuous on Sn\{ζ} so that [Th, Tg] is not compact.

Proof. For each m, there is a δm > 0 so that∫
Q(ζ,δm)

|kzm|2dσ < a4/9,
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where Q(ζ, δm) = {ω ∈ Sn : d(ω, ζ) ≤ δm}.
We may choose δm such that δm → 0 as m →∞.

For each m, let

εm = d(zm, ζ) + 3a−2(1− |zm|2)1/4.

Then εm → 0 as m →∞. So we can choose a subsequence {εml
}∞l=1

so that εml+1
< εml

, and εml+1
< δml

for all l ∈ N.

Let

Bl = {ω ∈ Sn : εml+1
< d(ω, ζ) < εml

}.

Then these are mutually disjoint open sets of Sn. For each l,∫
Sn\Bl

|gkzml
|2dσ ≤

∫
Q(ζ,εml+1

)

|kzml
|2dσ +

∫
Sn\Q(ζ,εml

)

|kzml
|2dσ

≤ a4/9 +

∫
Sn\Q(ζ,εml

)

|kzml
|2dσ.

(3.1)

Now for ω ∈ Sn\Q(ζ, εml
), we have

d(ω, zml
) ≥ d(ω, ζ)− d(zml

, ζ)

≥ εml
− d(zml

, ζ)

= 3a−2(1− |zml
|2)1/4.

So

3a−2(1− |zml
|2)1/4 ≤ d(ω, zml

) = |1− 〈ω, zml
〉|1/2.

Hence,

|kzml
(ω)|2 =

(1− |zml
|2)n

|1− 〈ω, zml
〉|2n

≤ (a2/3)4n ≤ a4/9.

Thus,

(3.2)

∫
Sn\Q(ζ,εml

)

|kzml
|2dσ ≤ a4/9.

Inequalities (3.1) and (3.2) give∫
Sn\Bl

|gkzml
|2dσ ≤ a4/9 + a4/9 < 4a4/9.
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So

(3.3) ‖χSn\Bl
gkzml

‖ < 2a2/3.

Now, since ‖Hgkzml
‖ ≥ a, we have〈

Hgkzml
, Hgkzml

〉
≥ a2.

On the other hand,

|〈Hgkzml
, HgχSn\Bl

kzml
〉| ≤ ‖HgχSn\Bl

kzml
‖

≤ ‖gχSn\Bl
kzml

‖
< 2a2/3 by (3.3).

So

|〈Hgkzml
, HgχBl

kzml
〉| > a2 − 2a2/3 = a2/3.

Now write g = (f (1)−f (2))+i(f (3)−f (4)), where 0 ≤ f (j) ≤ 1 for 1 ≤
j ≤ 4. For each l, the above inequality shows that there is a j = j(l) ∈
{1, 2, 3, 4} so that |〈Hgkzml

, Hf (j)χBl
kzml

〉| > a2/12. By approximating

f (j)χBl
almost everywhere on Sn by continuous functions with compact

supports in Bl, we can find a continuous function φl so that 0 ≤ φl ≤
1, supp(φl) ⊂ Bl and

|〈Hgkzml
, Hφl

kzml
〉| > a2/12.

Let α be any positive number less than a2/24. For each l ∈ N, put
ηl = max{φl, α

l}.
Then ηl is continuous, αl ≤ ηl ≤ 1 + αl, ηl(w) = αl for w ∈ Sn\Bl

and ‖ηl − φl‖∞ = αl.

So

|〈Hgkzml
, Hηl−φl

kzml
〉| ≤ ‖Hηl−φl

kzml
‖

≤ ‖ηl − φl‖∞
= αl.

Thus, for l ∈ N,

|〈Hgkzml
, Hηl

kzml
〉| > a2/12− αl > a2/12− a2/24 = a2/24.

From Lemma 2.1, for each l there is a function ϑl ∈ A(Bn) so that

(a) |ϑl(ω)|2 ≤ ηl(ω) for ω ∈ Sn, and
(b) |〈Hgkzml

, H|ϑl|2kzml
〉| > a2/24.
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Property (a) implies that ‖ϑl‖∞ ≤ 2, and |ϑl(1 − χBl
)| ≤ (

√
α)l.

Property (b) implies that

‖H∗
|ϑl|2Hg‖ > a2/24.

Now

H∗
|ϑl|2Hg = T|ϑl|2g − T|ϑl|2Tg

= Tϑl
TgTϑl

− Tϑl
Tϑl

Tg

= −Tϑl
[Tϑl

, Tg].

Since ‖Tϑl
‖ ≤ 2, we get

‖[Tϑl
, Tg]‖ > a2/48.

If there is an l so that [Tϑl
, Tg] is not compact, let h = ϑl. Otherwise,

apply Lemma 2.2, we get a function h ∈ H∞ so that h is continuous
on Sn\{ζ} and

‖π([Th, Tg])‖ ≥ a2/48. �

Before going on to the proof of Theorem 1.4, we need one more
Lemma about functions in A(Bn). This is a kind of Urysohn’s Lemma
for A(Bn).

Lemma 3.4. Suppose ζ ∈ Sn and 0 < δ, ε < 1 are given. Then there
exists a function η ∈ A(Bn) so that η(ζ) = ‖η‖∞ = 1 and |η(ω)| ≤ ε
for ω ∈ Sn with d(ω, ζ) ≥ δ.

Proof. Let ϕ be any continuous function on Sn so that 0 < ϕ ≤ 2 and
for any ω ∈ Sn, ϕ(ω) = 2 if d(ω, ζ) ≤ δ/4 and ϕ(ω) ≤ ε if d(ω, ζ) ≥
δ/2.

By Lemma 2.1, there are functions {ϕm}∞m=1 ⊂ A(Bn) such that

|ϕm| < ϕ on Sn,

and |ϕm| → ϕ a.e. σ.

So there exist m0 ∈ N so that ‖ϕm0‖∞ ≥ 1. Let ζ̃ ∈ Sn such that

|ϕm0(ζ̃)| = ‖ϕm0‖∞. Then d(ζ̃ , ζ) ≤ δ/2.

Put ϑ =
ϕm0

ϕm0(ζ̃)
. Then ϑ(ζ̃) = ‖ϑ‖∞ = 1 and |ϑ(ω)| ≤ ϕ(ω)

‖ϕm0‖∞
≤ ε

if d(ω, ζ) ≥ δ/2.

Now take U to be any rotation on Sn so that Uζ = ζ̃ . Put η = ϑ◦U.
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Then η ∈ A(Bn), ‖η‖∞ = 1, η(ζ) = ϑ(Uζ) = ϑ(ζ̃) = 1, and for any
ω ∈ Sn with d(ω, ζ) ≥ δ,

d(Uω, ζ) = d(ω, U−1ζ)

≥ d(ω, ζ)− d(ζ, U−1ζ)

= d(ω, ζ)− d(ζ, ζ̃)

≥ δ − δ/2

= δ/2,

so |η(ω)| = |ϑ(Uω)| < ε. �

Proof of Theorem 1.4. (a) If it were not true that lim
|z|<1
z→ζ

‖Hfkz‖ = 0 then

there would be a sequence {zm} of points in Bn and a constant a > 0
such that lim

m→∞
|zm−ζ| = 0 and ‖Hfkzm‖ ≥ a for all m. By Lemma 3.3,

there is a function h ∈ H(ζ) so that [Tf , Th] is not compact. Lemma 3.2
then implies that [Tf , Th] is not in Kζ either, which is a contradiction.

(b) Now suppose lim
|z|<1
z→ζ

‖Hfkz‖‖Hgkz‖ = 0. Let ε > 0 be given. There

is a δ > 0 so that for all z ∈ Bn with d(z, ζ) < 3δ,

(3.4) ‖Hfkz‖‖Hgkz‖ < ε.

By Lemma 3.4, there is a function η ∈ A(Bn) with ‖η‖∞ = η(ζ) = 1

and |η(w)| < ε′ =
ε

‖g‖∞‖f‖∞ + 1
if w ∈ Sn with d(w, ζ) ≥ δ.

We claim that

(3.5) lim sup
|z|↑1

‖Hfηkz‖‖Hgkz‖ ≤ ε.

To prove this, it suffices to show that for any ω̃ ∈ Sn,

lim sup
z→ω̃

‖Hfηkz‖‖Hgkz‖ ≤ ε.

We have

Hfηkz − ηHfkz = (fηkz − Tfηkz)− η(fkz − Tfkz)

= ηTfkz − Tfηkz

= (TηTf − Tfη)kz (since η is holomorphic)

= −H∗
ηHfkz.
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So

‖Hfηkz − ηHfkz‖ = ‖H∗
ηHfkz‖.

Since H∗
η is compact because η is continuous and kz → 0 weakly as

|z| → 1, we have lim
|z|→1

‖H∗
ηHfkz‖ = 0.

So for any ω̃ ∈ Sn with d(ω̃, ζ) < 3δ,

lim sup
|z|<1
z→ω̃

‖Hfηkz‖‖Hgkz‖ = lim sup
|z|<1
z→ω̃

‖ηHfkz‖‖Hgkz‖ ≤ ε,

by ‖η‖∞ = 1 and (3.4).

Now fix an ω̃ ∈ Sn with d(ω̃, ζ) ≥ 2δ. For any z ∈ Bn,

‖fηkz‖2 ≤
{
ε′‖χSn\Q(ζ,δ)kz‖2 + ‖χQ(ζ,δ)kz‖2

}
‖f‖∞

≤
{
ε′ + ‖χQ(ζ,δ)kz‖2

}
‖f‖∞.

For w ∈ Sn with d(w, ζ) < δ and for z ∈ Bn with d(z, ω̃) < δ/2, we
have

d(w, z) ≥ d(ω̃, ζ)− d(w, ζ)− d(z, ω̃)

≥ 2δ − δ − δ/2 = δ/2.

Thus the function χQ(ζ,δ)kz is bounded by (2/δ)2n, which is indepen-
dent of z when z → w̃. On the other hand, kz → 0 a.e. as z → ω̃. So by
the Lebesgue Dominated Convergence Theorem, lim

z→ω̃
‖χQ(ζ,δ)kz‖2 = 0.

It then follows that

lim sup
|z|<1
z→ω̃

‖fηkz‖2 ≤ ‖f‖∞ε′.

Hence

lim sup
|z|<1
z→ω̃

‖Hfηkz‖ ≤ ‖f‖∞ε′,

and so

lim sup
|z|<1
z→ω̃

‖Hfηkz‖‖Hgkz‖ ≤ ‖g‖∞‖f‖∞ε′ ≤ ε.

Therefore, (3.5) has been proved. From the proof of [13, Theorem 3],
for any γ > 0 there is a constant Cγ > 0 so that

(3.6) ‖π(H∗
gHfη)‖ ≤ C(Cγε + γ),

where C depends only on the dimension.
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Now

H∗
gHfη = Tgfη − TgTfη

= TgfTη − TgTfTη (since η is analytic)

= (Tgf − TgTf )Tη

= (Tgf − TgTf ) + (Tgf − TgTf )Tη−1.

Since η− 1 is continuous on Sn and η(ζ)− 1 = 0, the second term is
in Kζ . Let πζ denote the canonical map from T onto T/Kζ . Inequality
(3.6) then gives

‖πζ(Tfg − TgTf )‖ = ‖πζ(H
∗
gHfη)‖

≤ ‖π(H∗
gHfη)‖

≤ C(Cγε + γ).

Since ε and γ were arbitrary and C depends only on the dimension,
we conclude that πζ(Tgf − TgTf ) = 0. �

Proof of Corollary 1.1. The first conclusion follows directly from The-
orem 1.4 (a). Now suppose S is a bounded operator that essentially
commutes with all Toeplitz operators Th, h ∈ H. Theorem 1.3 implies
that S = Tf + K where f ∈ L∞ and K is a compact operator. Now
Tf essentially commutes with all Th, h ∈ H. Hence lim

|z|↑1
‖Hfkz‖ = 0.

By [13, Theorem 5], Hf is compact. So EssCom(T(H)) = T(C) where
C = {f ∈ L∞ : Hf is compact}.

�

Proof of Corollary 1.2. Suppose S is a bounded operator that essen-
tially commutes with all Toeplitz operators Tg, where g ∈ L. Then in
particular, S essentially commutes with all Th, where h ∈ H. Theorem
1.3 implies that S = Tf + K, where K is a compact operator. Now Tf

essentially commutes with all Tg, where g ∈ L. Since L is ∗−symmetric,
Tf = T ∗

f also essentially commutes with all Tg, g ∈ L. As in the proof
of Corollary 1.1, both Hf and Hf are compact. Hence f ∈ VMO, see
[3, p. 365] or [10, p. 465]. �

4. Essential Commutant of a Separable Subset of T

In this section, we will prove Theorem 1.5 by constructing a real
valued function f that satisfies all the requirements. We begin with
the following Lemma.
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Lemma 4.1. Let 0 < a < 1 and let η be a continuous function on
[a, 1] with η(a) = η(1). Define ϕ : [0, 1] −→ R by ϕ(0) = 0 and ϕ(t) =
η(a−mt) if am+1 < t ≤ am. Then ϕ is continuous on (0, 1] and it
satisfies the following properties:

(a) For any m ≥ 0 and 0 < t ≤ am, we have ϕ(t) = ϕ(a−mt).
(b) For any ε > 0, there is a δ > 0 so that for any s, t in (0, 1] with

|1− s−1t| ≤ δ, we have |ϕ(s)− ϕ(t)| ≤ ε.
(c) Suppose n ≥ 2. For any complex number α there is a constant

c depending on η and α so that for any 0 < r < 1,

(4.1)

∫
|1−z|≤r2

|z|<1

(1− |z|2)n−2
∣∣ϕ(|1− z|1/2)− α

∣∣ dA(z) ≥ cr2n,

where dA(z) = π−1dxdy.

Proof. (a) Suppose as+1 < a−mt ≤ as for some s ≥ 0. Then as+m+1 <
t ≤ as+m. So by the definition of ϕ, we have

ϕ(t) = η(a−s−mt) = η(a−s(a−mt)) = ϕ(a−mt).

(b) Let ε > 0 be given. Since ϕ is uniformly continuous on [a2, 1],
there is a δ0 > 0 so that |ϕ(u) − ϕ(v)| < ε for all u, v ∈ [a2, 1] with
|u−v| < δ0. This δ0 depends only on η, a and ε. Let δ = min{δ0, 1−a}.

For s, t ∈ (0, 1] with |1−s−1t| < δ, we have 1− δ < s−1t < 1+ δ. But
a < 1 − δ and 1 + δ < 2 − a ≤ a−1, so a < s−1t < a−1. This implies
that there is an m ≥ 0 so that s, t ∈ (am+2, am].

Now a−ms, a−mt ∈ (a2, 1] and

|a−ms− a−mt| = a−ms|1− s−1t|
|1− s−1t| (since s ≤ am)

< δ0.

Hence |ϕ(a−ms)− ϕ(a−mt)| < ε. By (a), we have

|ϕ(s)− ϕ(t)| = |ϕ(a−ms)− ϕ(a−mt)| < ε.
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(c) By change of variable u = 1 − z, the integral on the left hand
side of (4.1) becomes∫

|u|≤r2

|1−u|≤1

(
1− |1− u|2

)n−2∣∣ϕ(|u|1/2)− α
∣∣ dA(u)

= π−1

∫
0≤t≤r2

|1−teiθ|≤1

(
1− |1− teiθ|2

)n−2∣∣ϕ(|t|1/2)− α
∣∣t dtdθ

= π−1

∫
0≤t≤r2

0≤2 cos θ−t

(
2t cos θ − t2

)n−2∣∣ϕ(|t|1/2)− α
∣∣t dtdθ.

For |θ| ≤ π

4
and 0 ≤ t ≤ 1 we have

2t cos θ − t2 ≥
√

2t− t2

= (t− t2) + (
√

2− 1)t

≥ (
√

2− 1)t.

Hence the above integral is not less than

π−1

r2∫
0

π/4∫
−π/4

(
√

2− 1)n−2tn−2
∣∣ϕ(t1/2)− α

∣∣t dθdt

= 2−1(
√

2− 1)n−2

r2∫
0

tn−1
∣∣ϕ(t1/2)− α

∣∣ dt

= (
√

2− 1)n−2

r∫
0

s2n−1|ϕ(s)− α| ds

Now choose an m ≥ 0 so that am+1 < r ≤ am. Then

r∫
0

s2n−1|ϕ(s)− α| ds ≥
am+1∫
0

s2n−1|ϕ(s)− α| ds

=
∞∑

k=m+1

ak∫
ak+1

s2n−1|ϕ(s)− α| ds



ESSENTIAL COMMUTANT OF TOEPLITZ OPERATORS 23

=
∞∑

k=m+1

a2nk

1∫
a

v2n−1|ϕ(v)− α| dv

=
a2n(m+1)

1− a2n

1∫
a

v2n−1|ϕ(v)− α| dv

≥ a2nr2n

1− a2n

1∫
a

v2n−1|ϕ(v)− α| dv

=
a2nr2n

1− a2n

1∫
a

v2n−1|η(v)− α| dv.

Let c = (
√

2− 1)n−2 a2n

1− a2n

1∫
a

v2n−1|η(v)− α| dv. We then have the

inequality (4.1). �

For each function f ∈ L1(Sn), we use f to denote the harmonic
extension of f in Bn. So for any z ∈ Bn,

f(z) =

∫
Sn

f(w)Pz(w) dσ(w),

where Pz(w) =
(1− |z|2)n

|1− 〈w, z〉|2n
is the Poisson’s kernel.

For for ζ ∈ Sn, any f, g ∈ BMO and 1 ≤ p < ∞, define

Pp(f, g)(ζ) = lim
δ↓0

sup

{(∫
Sn

|f − f(z)|pPz dσ

∫
Sn

|g − g(z)|pPz dσ
)1/p

:

|z| < 1, d(z, ζ) < δ

}
,

Mp(f, g)(ζ) = lim
δ↓0

sup

{( 1

σ(Q(z, r))

∫
Q(z,r)

|f − fQ(z,r)|p dσ

× 1

σ(Q(z, r))

∫
Q(z,r)

|g − gQ(z,r)|p dσ
)1/p

: Q(z, r) ⊂ Q(ζ, δ)

}
.
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Then LMO(f, g)(ζ) = M1(f, g)(ζ) is called the joint local mean os-
cillation of f and g at ζ.

It was proved in [12] that for any f, g ∈ BMO, any ζ ∈ S1 and any
1 ≤ p < ∞, Mp(f, g)(ζ) = 0 if and only if Pp(f, g)(ζ) = 0. The proof
can be carried over to the case n ≥ 2 with only some minor changes.
In particular, for any f, g ∈ L∞ and ζ ∈ Sn, LMO(f, g)(ζ) = 0 implies
that P1(f, g)(ζ) = 0. It then gives P2(f, g)(ζ) = 0 because f, g are
bounded.

For f ∈ L2 and z ∈ Bn, define

Var(f ; z) =

∫
Sn

|f −
∫
Sn

fPz dσ|2Pz dσ =

∫
Sn

|f − f(z)|2Pz dσ.

Then for any f, g ∈ L∞ and any ζ ∈ Sn, we have(
P2(f, g)(ζ)

)2
= lim sup

δ↓0

{
Var(f ; z) Var(g; z) : |z| < 1, d(z, ζ) < δ

}
= lim sup

|z|<1
z→ζ

Var(f ; z) Var(g; z)

≥ lim sup
|z|<1
z→ζ

‖Hfkz‖2‖Hgkz‖2,(4.2)

since ‖Hfkz‖2 ≤ Var(f ; z) and ‖Hgkz‖2 ≤ Var(g; z), see [10, Inequal-
ity 6.4].

Inequality (4.2) the above remark imply that for any f, g ∈ L∞ and
any ζ ∈ Sn, if LMO(f, g)(ζ) = 0 then lim

|z|<1
z→ζ

‖Hfkz‖‖Hgkz‖ = 0.

Now fix 0 < a < 1. Choose a function η as in the hypothesis of

Lemma 4.1 so that

1∫
a

t2n−1|η(t)− α| dt ≥ c0 > 0 for all α, where c0 is

a constant independent of α. Any continuous function η on [a, 1] with
η(a) = η(1) = 0, η(t) = 1 if a1 < t < a2, η(t) = 0 if a3 < t < a4,
where a < a1 < a2 < a3 < a4 will satisfy the requirements. Let ϕ be
as in Lemma 4.1. Let ζ be a point on Sn. Define f(w) = ϕ(d(w, ζ)) for
all w ∈ Sn. Then f is a continuous function on Sn\{ζ}. The following
proposition gives more properties of the function f.

Proposition 4.1. Let f be as in the preceding paragraph. Then the
followings hold true.

(a) LMO(f)(ζ) > 0.
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(b) For any function g ∈ L∞ so that ζ is a Lebesgue point of g, we
have LMO(f, g)(ζ) = 0. Therefore, lim

|z|<1
z→ζ

‖Hfkz‖‖Hgkz‖ = 0.

Proof. (a) Let 0 < r < 1 be given. Put αr =
1

σ(Q(ζ, r))

∫
Q(ζ,r)

f dσ.

We have∫
Q(ζ,r)

|f − fQ(ζ,r)| dσ

=

∫
Q(ζ,r)

∣∣ϕ(|1− 〈w, ζ〉|1/2)− αr

∣∣ dσ(w)

= (n− 1)

∫
|u|≤1

|1−u|1/2≤r

(1− |u|2)n−2|ϕ(|1− u|1/2)− αr| dA(u) (see [9])

≥ (n− 1)(
√

2− 1)n−2 a2n

1− a2n
c0r

2n (from Lemma 4.1)

Recall that there is a constant A0 so that σ(Q(ζ, r)) ≤ A0r
2n. Hence

for all 0 < r < 1,

1

σ(Q(ζ, r))

∫
Q(ζ,r)

|f − fQ(ζ,r)| dσ ≥ (n− 1)(
√

2− 1)n−2 a2n

1− a2n

c0

A0

.

This implies that LMO(f)(ζ) > 0.

(b) Now let g be a function in L∞ so that τ is a Lebesgue point of g.

Let ε > 0 be given. By Lemma 4.1(b), there is an M > 0 so that
|ϕ(s)− ϕ(t)| < ε for all s, t ∈ (0, 1] with |1− s−1t| < M−1.

Since ζ is a Lebesgue point of g, there is a δ0 > 0 so that for all
0 < r < δ0,

(4.3)
1

σ(Q(ζ, r))

∫
Q(ζ,r)

|g − g(ζ)| dσ < (M + 2)−2nε.
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Now for all 0 < r < (M + 2)−1δ0, we have

1

σ(Q(ζ, r))

∫
Q(ζ,(M+2)r)

|g − g(ζ)| dσ

≤ σ(Q(ζ, (M + 2)r))

σ(Q(ζ, r))
(M + 2)−2nε.

Since σ(Q(ζ, r)) ≥ 2−nr2n and σ(Q(ζ, (M +2)r)) ≤ A0(M +2)2nr2n,
the above inequality implies

(4.4)
1

σ(Q(ζ, r))

∫
Q(ζ,(M+2)r)

|g − g(ζ)| dσ ≤ 2nA0ε.

Let Q(z, r) be any ball of radius r centered at z that is contained in
Q(ζ, (M + 2)−1δ0). Then r ≤ (M + 2)−1δ0.

There are two cases. First, suppose Q(z, r) ∩Q(ζ, Mr) 6= ∅. It then
follows that Q(z, r) ⊂ Q(ζ, (M + 2)r). Therefore,

1

σ(Q(z, r))

∫
Q(z,r)

|g − gQ(z,r)| dσ ≤ 2

σ(Q(z, r))

∫
Q(z,r)

|g − g(ζ)| dσ

≤ 2

σ(Q(z, r))

∫
Q(ζ,(M+2)r)

|g − g(ζ)| dσ

≤ 2n+1A0ε (because of (4.4)).

Here we have used
1

σ(E)

∫
E

|g − gE| dσ ≤ 2

σ(E)

∫
E

|g − α| dσ for all

α, in the first inequality.

Hence
(4.5)

1

σ(Q(z, r))

∫
Q(z,r)

|f−fQ(z,r)| dσ
1

σ(Q(z, r))

∫
Q(z,r)

|g−gQ(z,r)| dσ ≤ ‖f‖∞2nA0ε.
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Second, suppose Q(z, r) ∩ Q(ζ, Mr) = ∅. For any w ∈ Q(z, r) we
have d(w, ζ) ≥ Mr. This gives

|d(w, ζ)− d(z, ζ)|
d(w, ζ)

≤ d(w, z)

d(wζ)

< r(Mr)−1

= M−1.

By our choice of M, we then have

|f(w)− f(z)| = |ϕ(d(w, ζ))− ϕ(d(z, ζ))| < ε.

Therefore
1

σ(Q(z, r))

∫
Q(z,r)

|f − fQ(z,r)| dσ ≤ 2

σ(Q(z, r))

∫
Q(z,r)

|f − f(z)| dσ

< 2ε.

Hence for this case,
(4.6)

1

σ(Q(z, r))

∫
Q(z,r)

|f − fQ(z,r)| dσ
1

σ(Q(z, r))

∫
Q(z,r)

|g − gQ(z,r)| dσ ≤ 2‖g‖∞ε.

Inequalities (4.5) and (4.6) give

1

σ(Q(z, r))

∫
Q(z,r)

|f − fQ(z,r)| dσ
1

σ(Q(z, r))

∫
Q(z,r)

|g − gQ(z,r)| dσ

≤ max{2n+1A0‖f‖∞, 2‖g‖∞}ε,

for any Q(z, r) ⊂ Q(ζ, (M + 2)−1δ0).

Thus, LMO(f, g)(ζ) = 0. �

Proof of Theorem 1.5. The separability of S implies that S is in the
operator norm closure of a countable subset {A1, A2, . . .} of T. Now
each Aj is the limit in the operator norm of a sequence of operators

of the form
∑M

k=1 Tgk1
· · ·TgkM

, where gkl ∈ L∞. Hence we can find a
countable set G = {g1, g2, · · · } of real-valued functions in L∞ so that
S is contained in T(G).

For each gj, all most every point of Sn is a Lebesgue point. Therefore
there is a ζ ∈ Sn which is a Lebesgue point for all functions gj, for
j = 1, 2 . . . . For this ζ, let f be the function in Proposition (4.1). Since
f is continuous on Sn\{ζ}, LMO(f, gj)(w) = 0 for all w ∈ Sn\{ζ}. So
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lim
|z|<1
z→w

‖Hfkz‖‖Hgj
kz‖ = 0 for all w ∈ Sn\{ζ}. Proposition 4.1 also gives

lim
|z|<1
z→ζ

‖Hfkz‖‖Hgj
kz‖ = 0. By Theorem 1.4 (b), Tgjf − Tgj

Tf ∈ Kw for

all w ∈ Sn. Thus, Tgjf − Tgj
Tf is compact. Since both f and gj are

real valued-functions, it then follows that [Tf , Tgj
] is compact for all j.

Hence [Tf , S] is compact for all S ∈ T(G). Proposition 4.1 also yields
that LMO(f)(ζ) > 0, hence f /∈ VMO . �
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